

AN2318/D
Rev. 0, 8/2002

Using the I2C Bus with
HCS12 Microcontrollers

Application Note

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

n
c

..
.

by Grant M More
Applications Engineering
Freescale, East Kilbride

Introduction

The I2C bus is a simple two-wire bi-directional serial communication medium
that is intended for inter-IC communication over short distances. This is
typically, but not exclusively, between any number of devices on the same
printed circuit board, the limiting factor being the bus capacitance.

Freescale have taken advantage of this flexible standard by including hardware
support for I2C bus interfacing on most of the HCS12 range of 16-bit
microcontrollers. Full details of the I2C module can be found in the I2C block
user guide on the Freescale website.

Hardware and Connections

Connecting an HCS12 device to an I2C bus is simple. Connect the SCL pin on
the MCU to the serial clock line of the bus. Connect the SDA pin on the MCU
to the serial data line of the bus. It is important to ensure that all devices that
will use the bus to communicate are referenced to a common electrical ground.
There is no requirement to terminate an I2C bus.

The I2C bus operates using the wired-AND principle. The bus lines are held in
a logic 1 state (usually 5v) by obligatory pull-up resistors external to devices on
the bus. The nodes can drive the bus by switching on a pull-down transistor and
driving either of the bus lines to ground (logic 0). When the transistor is turned
off, the bus line returns to the logic 1 state. The choice of value of the pull-up
resistors depends on bus capacitive loading. The greater the bus capacitive
loading, the lesser the value of the pull-up resistors must be. See Figure 1. I2C
Bus and Interface Hardware.
© Motorola, Inc., 2002

For More Information On This Product,
 Go to: www.freescale.com

rxzb30
ForwardLine

rxzb30
freescalecolorjpeg

rxzb30
fslcopyrightline

AN2318/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 1. I2C Bus and Interface Hardware

The HCS12 I2C module is designed in accordance with the 100kbit/s standard-
type I2C bus specification. This will allow 100kbit/s communication on the bus
at the maximum capacitive bus loading of 400pF. Higher communication
speeds are possible, but reduced bus loading is necessary. In this case, it is
the responsibility of the user to ensure that correct pull-up resistor values and
bus loading are observed.

For 100kbit/s communication on a fully loaded (400pF) bus, we recommend
using pull-up resistors of no greater than 2kΩ. On a lightly loaded bus (100pF)
this value can be increased to 8kΩ. Exact details of pull-up resistor values are
detailed in the specification document for the I2C bus.

Gnd

MCU

Bus Node Y

MCU

MCU

MCUMCU

Gnd

MCU

Serial Clock Line (SCL)

SDA Drive (Tx)

Bus Node X

SCL Drive (Tx)

SDA Rx

Gnd

SCL Drive (Tx)

Serial Data Line (SDA)

S
D

A
 R

es

SDA Rx SCL RxSCL Rx

S
C

L
R

es

+Vcc

Gnd

SDA Drive (Tx)

MCU

MCU
2 Using the I2C Bus with HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D
Configuring the HCS12 I2C Nodes

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Configuring the HCS12 I2C Nodes

Node Address (IBAD
Address Register)

Each node on the I2C bus requires a unique address to allow it to be addressed
as a slave device by a master device. The HCS12 MCU devices support 7-bit
addressing. The slave address of the node can be set by writing the address
value to the IBAD slave address register. Note that IBAD[7:1] should contain
the 7-bit address. Writes to bit 0 are meaningless and will be ignored as it is
reserved for future use. The 8th bit transmitted by a master in the address data
is used to inform a slave of the read/write status during the impending data
transfer.

Frequency Divider
(IBFD Frequency
Divider Register)

Once the I2C bus transfer rate has been chosen, the HCS12 nodes need to be
configured such that they all communicate on the bus at the same clock
frequency, even though the I2C modules are possibly being clocked at differing
frequencies by the MCU. The bus serial clock frequency has exactly the same
value as the bus transfer rate. For example, a bus with a transfer rate of
100kbit/s will have a serial clock frequency of 100kHz. This value can be used
in conjunction with the frequency of the internal MCU bus clock (driving the I2C
module) to generate a divider value, the SCL Divider. See Figure 2. Equation
Used to Calculate SCL Divider Value.

Figure 2. Equation Used to Calculate SCL Divider Value

Unless explicitly set by the PLL, the CPU bus clock frequency on HCS12
devices is the oscillator clock frequency divided by two. Refer to the HCS12
CRG block user guide for full details.

Once the SCL divider value has been calculated, the value for the IBFD
frequency divider register can be selected from a lookup table. This is available
in the I2C block user guide or in software tools soon to accompanying this
documentation. It is possible to have more than one valid IBFD combination for
a specific SCL divider value. The variable in this case is the SDA hold time,
which is the time (in clock cycles) from the falling edge of SCL to the change in
value of the SDA line. This value can be found in the lookup table. The choice
of value here will depend on the other devices on the bus with respect to setup
and hold times. Refer to the documentation for these devices. Greater bus
loading may also affect this value in that greater loading may effectively reduce
the setup and hold times as the bus takes longer to charge and discharge,
hence the hold value may have to be artificially inflated. Note that the I2C bus
specification dictates that the maximum hold time when using a 100kHz I2C bus
is 3.45µS.

SCL Divider CPU Bus Clock Frequency IIC Bus Serial Clock Frequency÷=
Using the I2C Bus with HCS12 Microcontrollers 3

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

As an example, consider an HCS12 device clocked from a 16MHz crystal (no
PLL in use):

• I2C Bus Communication Rate = 100kbit/s (frequency = 100kHz)
• HCS12 Bus Clock Frequency = 16MHz ÷ 2 = 8MHz

The SCL divider can be calculated:

• SCL Divider = 8MHz ÷ 100kHz = 80

From the lookup table in the I2C block user guide, there are five corresponding
IBFD values for this SCL divider value:

• IBFD = $14 SDA hold time = 17 clock cycles = 2.125µS @ 8MHz (VALID)
• IBFD = $18 SDA hold time = 9 clock cycles = 1.125µS @ 8MHz (VALID)
• IBFD = $47 SDA hold time = 20 clock cycles = 2.5µS @ 8MHz (VALID)
• IBFD = $4B SDA hold time = 18 clock cycles = 2.25µS @ 8MHz (VALID)
• IBFD = $80 SDA hold time = 28 clock cycles = 3.5µS @ 8MHz (NOT VALID)

The first four are valid IBFD values as the SDA hold time is within the 3.45µS
specification. When IBFD is $80, the SDA hold time will contravene this
specification, thus should not be used. The choice of SDA hold time from the
four remaining possibilities will then depend upon the other devices on the bus
and the bus loading.

A software tool for calculating the value of IBFD will be available soon.

Communicating Using the HCS12

Introduction There are a number of possible ways to communicate using the HCS12 I2C
module. The most efficient method, with respect to MCU core usage time and
delegation of tasks to dedicated hardware, is to use the I2C interrupt vector.
This ensures that the HCS12 core is only used when data is received or has to
be transmitted. The remainder of this document will concentrate on this
methodology. A polling approach may be used to monitor the hardware flags in
the IBSR status register, but this method is not as efficient and is not
recommended.

Once the HCS12 I2C modules are configured, it is necessary to enable the
module. This is accomplished by setting the IBEN bit in the IBCR register. If the
interrupt driven approach is to be adopted, the IBIE interrupt enable bit in the
IBCR register must also be set.
4 Using the I2C Bus with HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D
Communicating Using the HCS12

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Buffers and Packets I2C communication can be made simple with the use of transmit and receive
buffers, and through the use of packet communication. This embraces the idea
of organising the stream of data into packets, which are groups of data of
specific length. This is shown in Figure 3. Continuous Data Stream vs.
Packet Transmission. This demonstrates sixteen units (bytes) of data
transmitted as a data stream and as four discrete four byte packets.

Figure 3. Continuous Data Stream vs. Packet Transmission

The devices on the bus must aware of how much data must be transmitted and
received in each packet. The size of the packets can be transmitted actively on
the bus and controlled by software, or stored by the devices as a constant. In
either circumstance, the data transmitted and received is unchanged, what is
varied is the size of groups in which the data is transmitted.

In the software example accompanying this documentation, packets are
defined as communications that carry eight bytes of user data (not including the
address of the slave). It is useful to declare a transmit and a receive data array
and assigning flags and pointers to those arrays. By doing this data can be
buffered and manipulated in a manageable way which complements use of the
interrupt service routine. See Figure 4. Transmit and Receive Buffer
Arrangement.

Data Stream

Packet 1 Packet 2 Packet 3 Packet 4
Using the I2C Bus with HCS12 Microcontrollers 5

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Each array consists of a number of elements, with a variable pointer (position
pointer) used to fill and empty the arrays, and a fixed pointer (end pointer) that
is used to denote the end of the array. Transmission and reception complete
situations can be detected when the pointers both point to the same array
element.

Figure 4. Transmit and Receive Buffer Arrangement

The buffers provide a useful interface between the bus and the software
environment. When transmitting, the data to be transmitted can be loaded into
the array independent of the I2C bus, and then transmitted when the array is
full. The array is transmitted as a packet by the interrupt service routine,
minimising bus usage and maximising efficiency. When receiving, the packet
appears as a full buffer of data. A flag is raised to declare that the buffer is full
and a packet of data has been received when the position pointer points to the
same array element as the end pointer.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

TxBufferPositionPointer

TxBufferEndPointer RxBufferEndPointer

RxBufferPositionPointer

Rx BufferTx Buffer
6 Using the I2C Bus with HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D
Communicating Using the HCS12

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Interrupts The HCS12 I2C module has one interrupt vector. This vector is taken when any
one of three conditions occur. The conditions are:

TCF — Byte transfer complete
This flag is set and the I2C interrupt routine is called when a byte of data (or
an address) is successfully transferred to or from the I2C module. The flag
is raised after the ninth clock cycle has occurred (the acknowledge cycle).
This interrupt source can be used to sequentially increment the packet
position pointers and load the data to or from the IBDR data register for
transfer or reception, implementing an automatic packet handling routine.

IAAS — Module addressed as slave
This flag is set and the I2C interrupt routine is called when an address
received on the I2C bus matches the address previously written to the IBAD
address register.

IBAL — Bus arbitration lost
This flag is set and the I2C interrupt routine is called when a collision has
been detected on the bus and the module has lost master status on the bus.
This occurs when a master samples an unexpected condition on the bus
which was not driven by the master’s own output stage. The exact reasons
for this situation occurring are detailed in the I2C block user guide.

When an interrupt occurs, it is the responsibility of the software to identify the
specific cause of the interrupt and take appropriate action. The I2C interrupt
service routine is arguably the most important part of the I2C communication
system on the HCS12, as the module has been designed to be driven by
actions taken after interrupts occur.

The flow for the recommended interrupt service routine is shown in Figure 5.
Recommended Interrupt Service Routine Flow Diagram.
Using the I2C Bus with HCS12 Microcontrollers 7

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Figure 5. Recommended Interrupt Service Routine Flow Diagram

Y N

TX RXTx/Rx
 ?

Master

Y

 N

Arbitration
 Lost?

 Clear IBAL

RTI

Switch to
Rx mode

 Dummy read
 from IBDR

 Generate
 stop signal

 Dummy read
 from IBDR

Set RX
 Mode

 Write next
 byte to IBDR

 last byte

 N

 Y

 Y

 Y

Y

 N

 Y

 N

 N
RXAK
 =0?

end of

 to be read?

2nd last

 byte to be read?

 set TXAX=1
Generate

N

Y
 Y

 N

 RX
 TX

Y

Y(Read)

N(Write)

 IAAS=1?

address transfer

 Data Transfer

 IAAS=1?

 SRW=1?

Set Tx
 Mode

 TX/RX

Write Data
to IBDR

TX next
Byte

Switch to
Rx mode

 Dummy read
 from IBDR

Clear IBIF

Mode?

Last Byte

Transmitted?

Address cycle
(master RX?)

N

Stop signal

Read data from
IBDR and store

Read data from
IBDR and store

ACK from
Receiver?

N

 Set IBIF

 Set IBIF
8 Using the I2C Bus with HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D
Communicating Using the HCS12

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The majority of this flow chart can be easily translated into software with a
number of if-else statements. A few global flags are required to track progress
of packet transmission and reception. In the example, the flags used are as
follows:

TxCompleteflag This flag is set when the module is the bus master and the last byte in the
transmit buffer has been transmitted. It is used to flag the ISR to ensure that a
stop signal is generated before returning to non-ISR code at the end of packet
transmission.

RxCompleteflag This flag is similar to the TxCompleteflag except that this flag is used to signal
to the ISR the fact that the bus master is finished receiving data from a slave
device.

TxBufferemptyflag This flag is used to signal to the calling function that the ISR has transmitted the
packet on the bus and that the calling function can now stop waiting for the
packet to transmit.

RxBufferfullflag This flag is raised to signal to the non-interrupted code that a packet of data has
been received. The flag is used to make the calling function wait until a packet
of data has been received.

MasterRxFlag This flag is set by the calling function to make the ISR aware that the only data
to be transmitted is the address of the slave that should transmit data back to
the master. This ensures that the module switches into receive mode as soon
as the address is transmitted.

While the implementation of the ISR is relatively straightforward, there are a
small number of areas that require a little more effort. These are detailed below.
Using the I2C Bus with HCS12 Microcontrollers 9

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Transmission using the ISR

When the ISR recognises that the master device is to transmit data to a slave
device, it is necessary to check the status of the transmit packet position pointer
before transmitting data. By performing a comparison between the packet end
pointer and the position pointer, it is possible to detect when the contents of the
buffer have been transmitted. Refer to Figure 6. ISR Master Transmit
Segment.

Iic.ibdr.byte = *TxPacketpositionptr; /* write byte to IBDR */
if (TxPacketpositionptr == TxPacketendptr) /* if last data Tx’d */
{
TxCompleteflag = SET; /* set the ISR transmit complete flag */
}
else /* there is still data to be Tx’d */
{
TxPacketpositionptr++; /* move to next byte to Tx */
}

Figure 6. ISR Master Transmit Segment

The transmit complete flag is raised to signal to the ISR the fact that
transmission is complete when in master mode. This allows the ISR to detect
this on the final pass and generate a stop condition. The stop condition is
generated by clearing the MSSL bit in the IBCR control register. A stop
condition, by definition, is when the module returns to slave status by releasing
the SCL line then the SDA line. A code example of this is shown in Figure 7.
Generation of a Stop Condition.

if(TxCompleteflag == SET) /* if last byte has been Tx’d */
{
TxCompleteflag = CLEAR; /* clear ISR Tx complete flag */
Iic.ibcr.byte = (IBEN|TXRX); /* send stop (clear MSSL) */
TxBufferemptyflag = SET; /* set Tx buffer empty flag */
}

Figure 7. Generation of a Stop Condition
10 Using the I2C Bus with HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D
Reception using the ISR

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When in slave mode, it is sufficient to raise the transmit buffer empty flag when
transmission is complete because the slave device does not generate the stop
condition on the bus, and thus the ISR routine will not be executed again once
the last byte of data has been transmitted. Refer to Figure 8. ISR Slave
Transmit Segment.

if (TxPacketpositionptr == TxPacketendptr) /* if last data Tx’d */
{
TxBufferemptyflag = SET; /* set the Tx buffer empty flag */
}

Figure 8. ISR Slave Transmit Segment

Reception using the ISR

Reception is relatively straightforward after taking a few points into
consideration. Firstly, with the exception of the situation when arbitration is lost,
when a module is interrupted and switched to receive mode, the contents of the
IBDR data register must be read to allow the bus master to transmit the next
byte. This includes the situation where a slave receives an address. In this case
the IBDR should be read using a dummy variable and the contents ignored (the
contents will be the address of the slave module and can be discarded).

When receiving as a master, it is important to give the slave device indication
of when to stop transmitting data. This is accomplished by not acknowledging
the slave when it transmits the last byte of data. An example of this is shown in
Figure 9. Instructing Slave to Stop Transmitting. Here the active low
acknowledge bit is made active high (effectively disabling it) just before the
receive packet position pointer is incremented to point to the last byte.

if(RxPacketpositionptr == (RxPacketendptr - 1))
{
Iic.ibcr.bit.txak = SET; /* disable active low acknowledge */
}

Figure 9. Instructing Slave to Stop Transmitting

The receive functionality is based on the same principles as the transmit
functionality, the key difference being the filling of the receive buffer rather than
the emptying of the transmit buffer.
Using the I2C Bus with HCS12 Microcontrollers 11

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Bus Master Mode –
Transmitting to a
Slave Device

To initiate communication on the I2C bus, it is necessary for the module that is
initiating the communication to assert itself and become master on the bus.
Before attempting to grab the bus, it is important to check that no other devices
are communicating to minimise any possibility of data collision. Wait until the
IBB bit in the IBSR status register has cleared before switching the module to
master mode.

Master status on the bus can be accomplished by setting the MSSL bit in the
IBCR register. The TXRX bit should also be set at the same time as the next
thing to do is transmit the address of the slave which the master is to
communicate with. This creates a start condition on the bus (SDA then SCL
lines driven low by master). At this stage it is necessary to transmit the address
of the slave that is to be communicated with. Once this has been accomplished,
the I2C interrupt service routine will perform the necessary actions to transfer
the contents of the transmit buffer. At this stage wait for the transmit buffer to
empty, signalling that transfer is complete. An example of code to perform this
function is shown in Figure 10. Bus Master Transmit to Slave Function. The
transmit packet position pointer should be set to point to the first element in the
array after reception in anticipation of the transmission of the next packet.

while(Iic.ibsr.bit.ibb == SET) /* while bus is busy */
{ /* wait until bus free */
}
Iic.ibcr.byte = (IBEN|IBIE|MSSL|TXRX); /* grab bus */
Iic.ibdr.byte = slaveAddress; /* address the slave(rx) */
while(TxBufferemptyflag == CLEAR) /* wait for tx complete */
{
}
TxPacketpositionptr = &TxPacket[0]; /* point to first element */
TxBufferemptyflag = CLEAR; /* clear flag */

Figure 10. Bus Master Transmit to Slave Function
12 Using the I2C Bus with HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D
Reception using the ISR

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Bus Master Mode –
Receiving from a
Slave Device

Making a slave device transmit data requires a very similar approach to
transmitting to a slave device. The key difference is the slave address. The
address depends on whether the slave is to receive data from or transmit data
to the master addressing it. If the slave is to transmit data, the address of the
slave must be OR’ed with the value 1 to ensure that the last bit of the address
indicates to the slave that it must transmit data during the impending transfer.
Of course, when receiving from a slave, the destination of the data is the
receive buffer, hence the flag raised when reception is complete is the receive
buffer full flag. Both procedures are otherwise the same. See Figure 11. Bus
Master Receive from Slave Function.

MasterRxFlag = SET; /* set master rx flag */

while(Iic.ibsr.bit.ibb == SET) /* while bus is busy */
{ /* wait until bus free */
}
Iic.ibcr.byte = (IBEN|IBIE|MSSL|TXRX); /* grab bus */
Iic.ibdr.byte = (slaveAddress | 0x01); /* address the slave(tx) */
while(RxBufferfullflag == CLEAR) /* wait for rx complete */
{
}
RxPacketpositionptr = &RxPacket[0]; /* point to 1st element */
MasterRxFlag = CLEAR; /* reset master rx flag */

Figure 11. Bus Master Receive from Slave Function

Bus Slave Mode –
Receiving from a
Bus Master

This mode is the default passive mode of an I2C device, the mode that the
device should revert to as a slave to ensure the device can be addressed by a
bus master. The majority of the data receive operation is carried out by the I2C
interrupt service routine, but the buffer for receiving the data must be reset and
configured to accept the incoming data. Once the buffer is prepared, wait for
the packet to be received. This can be done by monitoring the state of the
receive buffer full flag. When the flag is set, the packet has been received and
the flag can be cleared. The data can then be extracted from the receive buffer.
See Figure 12. Slave Module Wait While Message Received Function.
Note that the MCU is held in a while loop waiting for the flag to set. This is for
simplicity of this example, normally the MCU would be busy dealing with other
tasks and this flag would be polled at regular intervals.

while(RxBufferfullflag == CLEAR) /* wait until packet received */
{
}
RxBufferfullflag = CLEAR; /* clear packet received flag */

Figure 12. Slave Module Wait While Message Received Function
Using the I2C Bus with HCS12 Microcontrollers 13

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Bus Slave Mode –
Transmitting to a
Bus Master

This procedure is almost the same as the receive from a bus master routine,
except that data must be available in the transmit buffer for the interrupt service
routine to transmit. Ensure that the transmit buffer position pointer is set to point
to the first element of the transmit array before transfer begins. Wait for the
transmit buffer empty flag to be set to indicate that transmission is complete.

Loss of Bus
Arbitration

If a module loses master status on the bus, the IBAL bit in the IBSR will be set
and the I2C interrupt service routine will be called. In this situation a 1 must be
written to the IBAL bit to clear the flag. If the device has not been addressed as
a slave (IAAS = 0) then the device is not being addressed by the master that it
lost arbitration to. In this instance the module will automatically revert to slave
mode and the ISR should be terminated.

Should the device find that it has lost arbitration on the bus, but that the device
that it lost arbitration to addresses it, the module should behave as if the other
master had addressed it as a slave. This is outlined as part of the interrupt
service routine shown in Figure 5. Recommended Interrupt Service Routine
Flow Diagram.

It is the responsibility of the software programmer to take necessary steps to
prevent loss of data when loss of bus arbitration occurs. A possible solution
would be for the transmitter that lost arbitration to set a data corrupted by
arbitration lost flag and to attempt retransmission of the data until the flag is
cleared by a successful transmit buffer empty condition. In this case the
receiver would ignore incoming data until the receive buffer is full. Note that the
buffer position pointers on both the transmitter and receiver must be reset each
time a loss of bus arbitration occurs.

Clock Stretching Slave devices can control the rate at which data to transmitted and received on
the bus by clock stretching. HCS12 devices support this principle in that the
SCL clock line is held low by a slave until the contents of the IBDR data register
are read. The reading of this data register is controlled by software and thus it
is possible, by controlling the delay between the interrupt service routine call
and the read of the IBDR register, for a slave to control the transmit rate of a
master device. This is of particular use when devices of different families,
speeds and architectures are used on the bus. A slower device can hold off a
bus master while data from a previous transmission is stored or processed.
14 Using the I2C Bus with HCS12 Microcontrollers

For More Information On This Product,
 Go to: www.freescale.com

AN2318/D
Reception using the ISR

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Repeated Start The HCS12 microcontroller series supports repeated start functionality.
Although not explicitly demonstrated in the accompanying code, repeated start
conditions can be used to replace stop conditions if the master wishes to
continue transmission on the bus after it has finished communicating with a
particular slave. Write a 1 to the RSTA bit in the IBCR control register to
generate a repeated start condition instead of the normal clearing of MSSL to
generate a stop condition.
Using the I2C Bus with HCS12 Microcontrollers 15

For More Information On This Product,
 Go to: www.freescale.com

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

AN2318/D
For More Information On This Product,

 Go to: www.freescale.com

rxzb30
hibbertleft

rxzb30
disclaimer

rxzb30
freescalecolorjpeg

	Introduction
	Hardware and Connections
	Configuring the HCS12 I2C Nodes
	Node Address (IBAD Address Register)
	Frequency Divider (IBFD Frequency Divider Register)

	Communicating Using the HCS12
	Introduction
	Buffers and Packets
	Interrupts

	Transmission using the ISR
	Reception using the ISR
	Bus Master Mode – Transmitting to a Slave Device
	Bus Master Mode – Receiving from a Slave Device
	Bus Slave Mode – Receiving from a Bus Master
	Bus Slave Mode – Transmitting to a Bus Master
	Loss of Bus Arbitration
	Clock Stretching
	Repeated Start

