<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>430BOOST-TMP006 BoosterPack Overview</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Overview</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>TMP006 Information</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>TMP006EVM</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Getting Started</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Requirements</td>
<td>4</td>
</tr>
<tr>
<td>3.2</td>
<td>Configuring LaunchPad</td>
<td>4</td>
</tr>
<tr>
<td>3.3</td>
<td>Connecting Hardware</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Obtaining Software Packages</td>
<td>5</td>
</tr>
<tr>
<td>4.1</td>
<td>Re-Downloading or Modifying Firmware</td>
<td>5</td>
</tr>
<tr>
<td>4.2</td>
<td>Installing BoosterPack GUI</td>
<td>5</td>
</tr>
<tr>
<td>4.3</td>
<td>Starting The Demo Application</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>User Experience Application</td>
<td>6</td>
</tr>
<tr>
<td>5.1</td>
<td>Data Sampling Mode</td>
<td>6</td>
</tr>
<tr>
<td>5.2</td>
<td>Data Logging Mode</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>API Guide</td>
<td>9</td>
</tr>
<tr>
<td>6.1</td>
<td>Summary of API Functions</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Schematics</td>
<td>10</td>
</tr>
</tbody>
</table>
1 430BOOST-TMP006 BoosterPack Overview

1.1 Overview

The 430BOOST-TMP006 BoosterPack provides a quick and low-cost solution to evaluate and develop with the TMP006 contactless temperature sensor. To quickly get started, this BoosterPack comes with a pre-loaded firmware for MSP430G2553 device. The software ecosystem also provides fully commented source code for customers to get started with developing their application. A GUI is also available for interaction with the BoosterPack. See Figure 1 for an overview of the BoosterPack hardware.
2 TMP006 Information

The TMP006 is a contactless temperature sensor that uses an infrared thermopile sensor to detect the temperature of a target object. The TMP006 data sheet contains all relevant electrical information (both analog and digital) pertaining to the device. The TMP006 User’s Guide answers many common questions related to the operation of the TMP006, including critical application criteria, printed circuit board (PCB) layout guidelines, and the equations used to calculate target object temperature.

2.1 TMP006EVM

This BoosterPack is intended to demonstrate how an MSP430 and TMP006 can integrate into one system. To simplify this integration, the TMP006EVM is included as part of this BoosterPack kit. The TMP006EVM hardware is well documented in the TMP006EVM User Guide; however, note that this BoosterPack contains different software.

3 Getting Started

3.1 Requirements

TMP006 BoosterPack requires LaunchPad rev1.4 and above. See www.ti.com/launchpadwiki for more information. TMP006 BoosterPack also requires a MSP430G2553 device, which is included. This device is pre-programmed with the user experience firmware (see Section 5).

3.2 Configuring LaunchPad

1. LaunchPad rev1.4 and below requires cross jumpering the UART lines. See MSP-EXP430G2 LaunchPad Experimenter Board User’s Guide (SLAU318) for more information.

2. For LaunchPad rev1.5, switch to hardware UART through J3 jumpers (see Figure 2).

Figure 2. J3 Jumper

3. Remove P1.6 jumper for I2C operation (see Figure 3).

Figure 3. P1.6 Jumper

4. Do not touch the TMP006 sensor.

5. Replace the existing LaunchPad device with the MSP430G2553 device inside the TMP006 BoosterPack. This device has been pre-loaded with the user experience firmware.

6. Insert BoosterPack on top of the LaunchPad.
3.3 Connecting Hardware

Install the LaunchPad drivers included in the firmware package, if needed (see Section 4 for details on downloading the latest software).

Connect LaunchPad using a USB cable to a PC that is running Windows (see Figure 4). If prompted, allow Windows to install the software automatically.

4 Obtaining Software Packages

Download the latest software packages from www.ti.com/tmp006boosterpack.

Download the two software packages. One package contains the source code and binaries for MSP430G2553 firmware. The other is the GUI application created in LabView for interacting with the BoosterPack.

4.1 Re-Downloading or Modifying Firmware

This step is optional to get started if you have used the pre-loaded MSP430G2553 device inside the TMP006 BoosterPack. This step can be used to reload the firmware with a newer version or to a blank device. The quickest way to re-download firmware image is to run MSP430Flashe.bat inside the bin/firmware folder.

To modify the firmware, see Section 5 regarding supported compilers.

4.2 Installing BoosterPack GUI

Extract the software zip software package with the filename 430boost_tmp006_gui_x_xx_xx_xx.zip. Execute the setup.exe inside gui_installer folder and follow the installation instructions.

4.3 Starting The Demo Application

1. Determine LaunchPad COM port through the Windows Device Manager.
2. Launch TMP006 BoosterPack GUI software.
3. Select COM Port and OK (see Figure 5).
5 User Experience Application

This software package includes the project files to allow customers re-compile the code for user development. You could download free and unrestricted compilers and debuggers, including:

- Code Composer Studio™ version 5.2 (CCS)
- IAR Embedded Workbench™ v5.40.3

These project files are located inside 430boost_tmp006_x_xx_xx_xx.zip src folder with their respective compiler names as the folder.

This application uses hardware UART using the MSP430G2553 USCI module to communicate to the PC via the LaunchPad's backchannel UART. The software is capable of using timer-based UART, but the user would need to change the HARDWARE_UART definition inside the uart.h file, re-compile, and re-download the firmware.

There are two main user application modes in this user experience code. It operates together with the GUI application.

- Data Sampling Mode
- Data Logging Mode

5.1 Data Sampling Mode

This mode samples the object temperature and streams the data back to the PC via the MSP430 LaunchPad backchannel UART. The PC then displays the data on the GUI. The Object Temperature is the calculated temperature of the object. The Local Temperature is the temperature with transient correction filter applied.

When this mode is operating, the LED1 (RED) on the LaunchPad is on.

The BoosterPack has green (D1) and red (D2) LEDs onboard. These LEDs light up depending on how cold or hot since it was last calibrated. The colder the temperature is from the calibrated value, the brighter the green LED would be. The hotter the temperature is from the calibrated value, the brighter the red led would be. To calibrate a new value, press the S1 button on the Launchpad.
Change the conversion rate on how often to sample the target temperature

Clear the data logger memory from Flash

Raw data output from MSP430

Toggle between Data Stream and Data Logger Modes

Triggers a data dump from LaunchPad's memory buffer to the PC. Available only in Data Logging Mode.

Figure 6. BoosterPack GUI in Data Streaming Mode

Figure 7 shows the graph plot of the data that were streamed back to the PC over time. To save the data into a CSV file (for example, for data analysis), click Tools > Save Streamed Temperature Data.
5.2 Data Logging Mode

In this mode, temperature can be sampled without connection to a PC. An external power source like a battery pack, not included, must be used. To start data logging mode, press the S2 button. This button is required if the BoosterPack is used in an untethered mode from the PC. Ensure that LED1 is no longer ON, which indicates that the firmware is no longer in Data Logging Mode.

To operate the following user configurations, the BoosterPack must be connected to a PC. Select the data logging mode in the GUI or press the S2 button to switch the mode if the BoosterPack is in data sampling mode. Clear the data logging buffer in flash memory by pressing Erase Flash Data on the GUI. To send the data to the PC for data analysis, click Dump Flash Data to PC in the GUI. All of the logged temperature from the flash memory is read. This data can then be used for data analysis; for example, using an Excel® spreadsheet.
This source code allows the user to leverage it for their application development when coupled with an MSP430 device and TMP006. The TMP006 API source code is fully documented in the doc folder. See the Doxygen output under doc folder for detailed information on all available API functions.

6.1 Summary of API Functions

The following API functions are available for code development:

```c
void tmp006_init (unsigned char drdyPinEn, unsigned int conversionTime)
void tmp006_wakeup (void)
void tmp006_disable (void)
unsigned char tmp006_ready (void)
struct TempReading tmp006_getTemp (void)
long double tmp006_calculateTemp (long double *tDie, long double *vObj)
int tmp006_read (unsigned char writeByte)
void tmp006_write (unsigned char pointer, unsigned int writeByte)
```

7 References

1. MSP-EXP430G2 LaunchPad Experimenter Board User’s Guide (SLAU318)
Figure 9. 430BOOST-TMP006 Schematic
Texas Instruments (TI) provides the enclosed Evaluation Board/Kit/Module (EVM) under the following conditions:

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING LIMITED WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please visit www.ti.com/esh or contact TI.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used. TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

REGULATORY COMPLIANCE INFORMATION

As noted in the EVM User's Guide and/or EVM itself, this EVM and/or accompanying hardware may or may not be subject to the Federal Communications Commission (FCC) and Industry Canada (IC) rules.

For EVMs not subject to the above rules, this evaluation board/kit/module is intended for use for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC or ICES-003 rules, which are designed to provide reasonable protection against radio frequency interference. Operation of the equipment may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

General Statement for EVMs including a radio

User Power/Frequency Use Obligations: This radio is intended for development/professional use only in legally allocated frequency and power limits. Any use of radio frequencies and/or power availability of this EVM and its development application(s) must comply with local laws governing radio spectrum allocation and power limits for this EVM and its development application(s). It is the user's sole responsibility to only operate this radio in legally acceptable frequency space and within legally mandated power limitations. Any exceptions to this are strictly prohibited and unauthorized by Texas Instruments unless user has obtained appropriate experimental/development licenses from local regulatory authorities, which is responsibility of user including its acceptable authorization.

For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant

Caution

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.
FCC Interference Statement for Class B EVM devices

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

For EVMs annotated as IC – INDUSTRY CANADA Compliant

This Class A or B digital apparatus complies with Canadian ICES-003.

Changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

Concerning EVMs including radio transmitters

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concerning EVMs including detachable antennas

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Cet appareil numérique de la classe A ou B est conforme à la norme NMB-003 du Canada.

Les changements ou les modifications pas expressément approuvés par la partie responsable de la conformité ont pu vider l’autorité de l’utilisateur pour actionner l’équipement.

Concernant les EVMs avec appareils radio

Le présent appareil est conforme aux CNR d’Industrie Canada applicables aux appareils radio exempts de licence. L’exploitation est autorisée aux deux conditions suivantes : (1) l’appareil ne doit pas produire de brouillage, et (2) l’utilisateur de l’appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d’en compromettre le fonctionnement.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d’Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d’un type et d’un gain maximal (ou inférieur) approuvé pour l’émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l’intention des autres utilisateurs, il faut choisir le type d’antenne et son gain de sorte que la puissance isotope rayonnée équivalente (p.i.r.e.) ne dépasse pas l’intensité nécessaire à l’établissement d’une communication satisfaisante.

Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d’antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l’impédance requise pour chaque type d’antenne. Les types d’antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l’exploitation de l’émetteur.
【Important Notice for Users of this Product in Japan】

This development kit is NOT certified as Confirming to Technical Regulations of Radio Law of Japan

If you use this product in Japan, you are required by Radio Law of Japan to follow the instructions below with respect to this product:

1. Use this product in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan.
2. Use this product only after you obtained the license of Test Radio Station as provided in Radio Law of Japan with respect to this product, or
3. Use of this product only after you obtained the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to this product. Also, please do not transfer this product, unless you give the same notice above to the transferee. Please note that if you could not follow the instructions above, you will be subject to penalties of Radio Law of Japan.

Texas Instruments Japan Limited
(address) 24-1, Nishi-Shinjuku 6 chome, Shinjuku-ku, Tokyo, Japan

http://www.tij.co.jp

【ご使用にあたっての注】
本開発キットは技術基準適合証明を受けておりません。
本製品のご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。

日本テキサス・インスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
http://www.tij.co.jp
EVALUATION BOARD/KIT/MODULE (EVM)
WARNINGS, RESTRICTIONS AND DISCLAIMERS

For Feasibility Evaluation Only, in Laboratory/Development Environments. Unless otherwise indicated, this EVM is not a finished electrical equipment and not intended for consumer use. It is intended solely for use for preliminary feasibility evaluation in laboratory/development environments by technically qualified electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems and subsystems. It should not be used as all or part of a finished end product.

Your Sole Responsibility and Risk. You acknowledge, represent and agree that:

1. You have unique knowledge concerning Federal, State and local regulatory requirements (including but not limited to Food and Drug Administration regulations, if applicable) which relate to your products and which relate to your use (and/or that of your employees, affiliates, contractors or designees) of the EVM for evaluation, testing and other purposes.

2. You have full and exclusive responsibility to assure the safety and compliance of your products with all such laws and other applicable regulatory requirements, and also to assure the safety of any activities to be conducted by you and/or your employees, affiliates, contractors or designees, using the EVM. Further, you are responsible to assure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard.

3. You will employ reasonable safeguards to ensure that your use of the EVM will not result in any property damage, injury or death, even if the EVM should fail to perform as described or expected.

4. You will take care of proper disposal and recycling of the EVM's electronic components and packing materials.

Certain Instructions. It is important to operate this EVM within TI's recommended specifications and environmental considerations per the user guidelines. Exceeding the specified EVM ratings (including but not limited to input and output voltage, current, power, and environmental ranges) may cause property damage, personal injury or death. If there are questions concerning these ratings please contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, some circuit components may have case temperatures greater than 60°C as long as the input and output are maintained at a normal ambient operating temperature. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors which can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during normal operation, please be aware that these devices may be very warm to the touch. As with all electronic evaluation tools, only qualified personnel knowledgeable in electronic measurement and diagnostics normally found in development environments should use these EVMs.

Agreement to Defend, Indemnify and Hold Harmless. You agree to defend, indemnify and hold TI, its licensors and their representatives harmless from and against any and all claims, damages, losses, expenses, costs and liabilities (collectively, "Claims") arising out of or in connection with any use of the EVM that is not in accordance with the terms of the agreement. This obligation shall apply whether Claims arise under law of tort or contract or any other legal theory, and even if the EVM fails to perform as described or expected.

Safety-Critical or Life-Critical Applications. If you intend to evaluate the components for possible use in safety critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, such as devices which are classified as FDA Class III or similar classification, then you must specifically notify TI of such intent and enter into a separate Assurance and Indemnity Agreement.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>Automotive and Transportation</td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>Communications and Telecom</td>
<td>www.ti.com/communications</td>
</tr>
<tr>
<td>Data Converters</td>
<td>Computers and Peripherals</td>
<td>www.ti.com/computers</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>Consumer Electronics</td>
<td>www.ti.com/consumer-apps</td>
</tr>
<tr>
<td>DSP</td>
<td>Energy and Lighting</td>
<td>www.ti.com/energy</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>Industrial</td>
<td>www.ti.com/industrial</td>
</tr>
<tr>
<td>Interface</td>
<td>Medical</td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td>Logic</td>
<td>Security</td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>Space, Avionics and Defense</td>
<td>www.ti.com/space-avionics-defense</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>Video and Imaging</td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td>RFID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAP Applications Processes</td>
<td>TI E2E Community</td>
<td>e2e.ti.com</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td></td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments:
430BOOST-TMP006