Power MOSFET

FEATURES
- Dynamic dV/dt Rating
- 175 °C Operating Temperature
- Fast Switching
- Ease of Paralleling
- Simple Drive Requirements
- Compliant to RoHS Directive 2002/95/EC

DESCRIPTION
Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220AB package is universally preferred for commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220AB contribute to its wide acceptance throughout the industry.

PRODUCT SUMMARY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Limit</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>VDS</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>VGS</td>
<td>± 20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>ID</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Linear Derating Factor</td>
<td>IDM</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Single Pulse Avalanche Energy</td>
<td>EAS</td>
<td>100</td>
<td>mJ</td>
</tr>
<tr>
<td>Maximum Power Dissipation</td>
<td>PD</td>
<td>150</td>
<td>W</td>
</tr>
<tr>
<td>Peak Diode Recovery dV/dt</td>
<td>dV/dt</td>
<td>4.5</td>
<td>V/ns</td>
</tr>
<tr>
<td>Operating Junction and Storage Temperature Range</td>
<td>TJ, Tstg</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Recommendations (Peak Temperature)</td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Mounting Torque</td>
<td></td>
<td>10</td>
<td>lbf · in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.1</td>
<td>N · m</td>
</tr>
</tbody>
</table>

Notes
- Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
- VDD = 25 V, starting TJ = 25 °C, L = 44 μH, Rg = 25 Ω, IDSS = 51 A (see fig. 12).
- ISD ≤ 51 A, di/dt ≤ 250 A/μs, VDS ≤ VDS, TJ ≤ 175 °C.
- 1.6 mm from case.
- Current limited by the package, (die current = 51 A).

* Pb containing terminations are not RoHS compliant, exemptions may apply
IRFZ44, SiHFZ44
Vishay Siliconix

THERMAL RESISTANCE RATINGS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient</td>
<td>R_{thJA}</td>
<td>-</td>
<td>62</td>
<td>°C/W</td>
</tr>
<tr>
<td>Case-to-Sink, Flat, Greased Surface</td>
<td>R_{thCS}</td>
<td>0.50</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction-to-Case (Drain)</td>
<td>R_{thJC}</td>
<td>-</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATIONS (T_J = 25 °C, unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>TEST CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Breakdown Voltage</td>
<td>V_{DS}</td>
<td>$V_{GS} = 0 \text{ V, } I_D = 250 \mu\text{A}$</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>V_DS Temperature Coefficient</td>
<td>$\Delta V_{DS}/T_J$</td>
<td>Reference to 25 °C, $I_D = 1 \text{ mA}$</td>
<td>-</td>
<td>0.060</td>
<td>-</td>
<td>°C/V</td>
</tr>
<tr>
<td>Gate-Source Threshold Voltage</td>
<td>$V_{GS(th)}$</td>
<td>$V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$</td>
<td>2.0</td>
<td>-</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Leakage</td>
<td>I_{GS}</td>
<td>$V_{GS} = \pm 20 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>± 100</td>
<td>nA</td>
</tr>
<tr>
<td>Zero Gate Voltage Drain Current</td>
<td>I_{DSS}</td>
<td>$V_{DS} = 60 \text{ V, } V_{GS} = 0 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>μA</td>
</tr>
<tr>
<td>Drain-Source On-State Resistance</td>
<td>$R_{DS(on)}$</td>
<td>$V_{GS} = 10 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>0.028</td>
<td>Ω</td>
</tr>
<tr>
<td>Forward Transconductance</td>
<td>g_f</td>
<td>$V_{DS} = 25 \text{ V, } I_D = 31 \text{ A}$</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>S</td>
</tr>
</tbody>
</table>

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 μs; duty cycle ≤ 2 %.

drain-source body diode characteristics
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Fig. 1 Typical Output Characteristics, $T_C = 25 \, ^\circ C$

Fig. 2 - Typical Output Characteristics, $T_C = 175 \, ^\circ C$

Fig. 3 - Typical Transfer Characteristics

Fig. 4 - Normalized On-Resistance vs. Temperature
Fig. 9 - Maximum Drain Current vs. Case Temperature

Fig. 10a - Switching Time Test Circuit

Fig. 10b - Switching Time Waveforms

Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig. 12a - Unclamped Inductive Test Circuit

Fig. 12b - Unclamped Inductive Waveforms

Pulse width ≤ 1 µs
Duty factor ≤ 0.1%

Figures and Notes

Vary \(t_p \) to obtain required \(I_{AS} \)

1. Duty factor, \(D = t_f/12 \)
2. Peak \(T_J = P_{ON} \times T_{JJC} + T_c \)
IRFZ44, SiHFZ44
Vishay Siliconix

Fig. 12c - Maximum Avalanche Energy vs. Drain Current

Fig. 13a - Basic Gate Charge Waveform

Fig. 13b - Gate Charge Test
Peak Diode Recovery dV/dt Test Circuit

- D.U.T. (Device Under Test)
- D.U.T. V_{GD} waveform
- Re-applied voltage
- Inductor current
- Body diode forward drop
- Ripple ≤ 5%
- I_{SO}
- Diode recovery dV/dt
- Body diode forward current dI/dt
- Reverse recovery current
- D.U.T. I_{SO} waveform
- D.U.T. V_{DD} waveform
- Period
- D = P.W. / Period
- \(V_{GD} = 10 \, V \)
- \(V_{GD} = 5 \, V \) for logic level devices

Circuit layout considerations:
- Low stray inductance
- Ground plane
- Low leakage inductance current transformer

- D.V.dt controlled by \(R_g \)
- Driver same type as D.U.T.
- \(I_{SO} \) controlled by duty factor “D”
- D.U.T. - device under test

Fig. 14 - For N-Channel
TO-220AB

Notes

* M = 1.32 mm to 1.62 mm (dimension including protrusion)
Heat sink hole for HVM

- Xi’an and Mingxin actual photo

Package Information

MILLIMETERS	**INCHES**
A | 4.25 - 4.65 | 0.167 - 0.183
b | 0.69 - 1.01 | 0.027 - 0.040
b(1) | 1.20 - 1.73 | 0.047 - 0.068
c | 0.36 - 0.61 | 0.014 - 0.024
D | 14.85 - 15.49 | 0.585 - 0.610
E | 10.04 - 10.51 | 0.395 - 0.414
e | 2.41 - 2.67 | 0.095 - 0.105
e(1) | 4.88 - 5.28 | 0.192 - 0.208
F | 1.14 - 1.40 | 0.045 - 0.055
H(1) | 6.09 - 6.48 | 0.240 - 0.255
J(1) | 2.41 - 2.92 | 0.095 - 0.115
L | 13.35 - 14.02 | 0.526 - 0.552
L(1) | 3.32 - 3.82 | 0.131 - 0.150
Ø P | 3.54 - 3.94 | 0.139 - 0.155
Q | 2.60 - 3.00 | 0.102 - 0.118

ECN: X12-0208-Rev. N, 08-Oct-12
DWG: 5471

This document is subject to change without notice. The products described herein and this document are subject to specific disclaimers, set forth at www.vishay.com/doc?91000
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.