
T.A. Henzinger and C.M. Kirsch (Eds.): EMSOFT 2001, LNCS 2211, pp. 486-492, 2001.
© Springer-Verlag Berlin Heidelberg 2001

Embedded Systems and Real-Time Programming

Niklaus Wirth

wirth@inf.ethz.ch

Abstract. Although computers have been employed for decades to control
machinery and entire laboratories, the term embedded system has received
renewed attention and is about to establish itself as a discipline of its own. We
therefore try to identify its characteristics and peculiarities. The most
outstanding single item is the role of time. The addition of timing conditions to
all other specifications of a system causes real-time programming to appear as a
particularly difficult and challenging subject. We ask how the rapidly growing
demands can be met, and emphasize that reliability must be guaranteed in view
of the potentially disastrous consequences of failures upon the controlled
equipment and its environment.

1. Introduction

For decades we have been told that writing a program is easy, and everybody could
do it. That may be so. But certainly getting a program to “run” is already somewhat
harder. Providing a complete specification of requirements, and then writing a
program that meets these specifications is very much harder, not to speak of
analytically verifying its correctness. Designing a program that one is willing to
publish in good conscience (for others to study, not just “open source”) is even an
order of magnitude harder. And writing a program that someone else is willing to
adopt and use is almost impossibly hard.

I have used this scale of difficulty for over a decade, and one can readily extend it
in many directions. For example, programming concurrent processes presents its own
class of new difficulties, particularly if it involves several real processors instead of
concurrency simulated by threads. What about real-time programming for embedded
systems? Is it also a class of its own? Before we talk about the technical term of
embedded system, we need to identify the characteristics that distinguish it from
conventional programming and perhaps influence the challenges and difficulties
encountered in design.

2. Challenges and Difficulties

As the term suggests, an embedded system is part of a larger whole that typically
consists of many components, not just computer modules, but also sensors and

mailto:wirth@inf.ethz.ch

Embedded Systems and Real-Time Programming 487

actuators. This implies that many activities occur concurrently, and are to be
controlled by the embedded computer system part. This results in a variety of
challenges and problems that have no counterpart in conventional programs, neither
in commercial data processing nor in scientific computing. Without claim for
completeness, let me list a few:

The various ongoing activities imply multiple, concurrent computing processes,
and with them the problem of their synchronization for harmonious cooperation in
their exchange of data, be it via messages or a common store.

The activities in the system run at a given speed, and thereby impose constraints on
the delays with which a computing process must generate reactions and responses.
These real-time constraints are requirements unknown in conventional programs,
where the only limitation of delay is typically the impatience of a human user. It is
indeed one of the great achievements of digital computing that we can abstract from
time. The only condition that matters is that the programmed operations are strictly
performed in the prescribed sequence, one after the other.

In mechanical systems, economy is more important than it is usually considered by
computer programmers. Economy of computing power and of memory are essential,
although in a declining degree. The ever growing speed of microprocessors and
capacity of memory chips have the negative consequence that careful and
economizing design becomes less respected.

An embedded computer system receives its inputs from a variety of sensors of
voltage, temperature, pressure, light, acceleration, rotation (gyros), radiation,
chemical gases. It delivers its outputs to actuators, lights, signals, current sources,
motors, steppers, relays, valves. The challenge for the programmer is to manage
various devices outside the digital world through interfaces, that often are subject to
stringent real-time constraints, and at the same time inadequately specified.

Recently, a criterion has entered considerations that has hardly played a role in the
past: Electrical power consumption. It has been brought into the limelight by battery-
powered computers; and many embedded applications belong into this category. To
an increasing degree, it is the ratio of computing power over power consumption that
is decisive in the selection of a processor. Low power may render cooling equipment
unnecessary, thereby reducing overall consumption even further.

The addition of a flexible computer to control mechanical equipment makes it
possible to operate this equipment without human intervention. The resulting systems
are called intelligent robots. This opens new possibilities to operate them in places
where humans would not dare to enter, in hostile environments. This application calls
for special properties of hardware components, such as radiation resistance, but also
imposes additional requirements on programs, such as a fail-safe strategy.

Finally, this brings us to the topic of reliability, which plays a much heavier role
than in pure computing applications. A failure no longer results in a wrong number or
a black screen, but in a crash, the loss of very expensive equipment, or even of lives.
Programming becomes a serious activity, where personal responsibility cannot be
abdicated. Reliability must be a permanent property and have overriding importance.

The consequences of a mistake may affect adversely many people, as the following
story will show. It happened in Basel on June 15. Basel is a large railway station
connecting systems of Switzerland, Germany and France:

Traffic in Basel’s main railway station collapsed totally on Friday between 9:30
and 11:15. 50 trains and thousands of passengers were afflicted. The reason for this
standstill was the failure of a computer system in the main switch controlling station.

488 N. Wirth

All trains were blocked; they could neither enter nor leave the station. The failure
occurred in a new computer system that was put in operation only recently. It controls
all the switches and signals in the entire railway station.

Four days later, the computers failed for the second time paralyzing traffic
completely:

The cause for this disaster remains unclear. Further such break downs therefore
cannot be excluded.

Two weeks later, reports said the error had been found. The most illuminating
comment was that the two computers had failed to understand each other, also
causing the backup computer to clonk out. Reliable sources later said that it was still
unclear whether the mistake had actually been identified.

3. Ways to Overcome the Complexity of Real-Time Programming

Indeed, the design of embedded systems appears to be of an overwhelming difficulty.
One must wonder how so many successful systems had been designed in the past,
considering the often flaky techniques and tools at the engineers’ disposal. Their
achievements are truly remarkable. Large embedded systems control gigawatt power
stations, huge water dams, atomic reactors, they guide high-speed trains, aircraft and
missiles. “Large” here means megabytes of code and millions of lines of program
text. One wonders how it was at all possible to build systems of such a staggering
complexity, when it seems utterly impossible to guarantee their reliability and one is
content with a reasonably low probability of failure. This state of affairs is well-
known in other fields of engineering, where, however, this rest of uncertainty
originates in mechanical and physical properties of materials. In software, dealing
with abstract artifacts that do not wear out, we should strive to do better.

To master complexity is evidently the name of the game. Therefore, a large effort
has recently gone into studying the foundations of programming and into establishing
a theory. With a solid theory about the subject, so the theory goes, we will be able to
develop programs within a framework and with tools that control the process to the
effect that mistakes will become, if not eliminated, then at least rare. An axiomatic
theory and a discipline of programming have been created, automated tools,
themselves of a staggering complexity have been built, and text books have been
written about program verification and programming with inherent correctness proofs.
These efforts deserve praise, but they have hardly begun to take the added problems
of real-time programming into account. If one considers the very limited degree in
which these theories are being practiced, severe doubts appear as to their effectiveness
in the world of computing at large. Surely ambitions and expectations have been
scaled down.

How do most people learn to program? By learning rules of a language and then
writing. This is in contrast to learning how to compose prose. There we first read and
read again before testing our own writing talent. Our compositions are scrutinized by
the teacher, correcting our spelling mistakes and gradually improving our style by
making suggestions. In programming, our compositions are rarely scrutinized by a
teacher; our teacher is the computer telling us whether or not “it runs”. And
sometimes it runs without being correct, and sometimes it fails in spite of appearing
correct. Inspecting programs is an unappealing business, and the more intricate and

Embedded Systems and Real-Time Programming 489

inscrutable a writing is, the less is it in danger of being inspected. As a teacher I have
seen some orderly and much disorderly code. But every time I looked at a larger
“piece of code” (notice the term code, implying some secrecy), I discovered that
much of its intricacy did not stem from the problem to be solved, but from poor
mastery of the art of programming. In other words, much of the complexity is home-
made. Every time it was possible to achieve the same goal in a simpler, often much
simpler way, by factors of 2 to 10. This is staggering!

The truth remains that for good programming talent is required. Complicated
theories and overly complex tools are not enough. In fact, sometimes they even foster
bad style and add complexity. They seduce the programmer into the belief that he can
easily abdicate responsibility to the tools, and the tools will guarantee proper form
and style. This is no crusade against sound theoretical foundations and honest tools,
but the best, in my experience, is the rule to combat complexity like the devil.

4. An Example of Reducing Complexity

Let me tell you about one of my recent encounters with that ubiquitous devil. I am
interested since my youth in flying objects. Six years ago, I heard about a project with
the aim of constructing a model helicopter for autonomous flight, controlled by an on-
board computer [1]. As a layman, I was surprised that this was not standard practice
in every helicopter. But actually this is not so, and in fact controlling a model
helicopter is harder than a big craft, because the latter’s big rotor has a much larger
moment of inertia, leaving more time for corrections. Nevertheless, occasionally
helicopters crash due to pilot errors in difficult situations. Hence, a computer-based
stabilization system might be handy.

Our model, with a rotor diameter of 180 cm, was equipped with two commercial
computer boards, each with an Intel 486 processor and an 8 Mbytes store. The
software was based on a commercial real-time operating system, chosen because of
the many concurrent processes to be managed. The resulting machinery with
computer boards, inertial guidance system with gyros, servos, compass, telemetry
and, last but not least, batteries weighed some 20 kg, and consumed some 20W. It did
not take me long to believe that a simpler system could be designed, the software
being only part of the simplification.

The first decision was to build an entirely new system on a single board. As
processor I chose a Strong ARM (DEC 1035), a RISC architecture delivering the
computing power of (at least) the two Intel 486s with a power consumption of little
more than 1W. The next decision was to eliminate the RT-OS, as it seemed possible
to do essentially without concurrent processes in the form of threads. The third
decision was to program the entire software in Oberon [2], which is very suitable for
“programming close to the hardware”. This implied, however, to first build an Oberon
compiler for the Strong ARM. This turned out to be easy (1 man month) because
much could be taken over from existing compilers [3], and provided the invaluable
advantage to add SA-specific inline procedures for handling processor initialization
and device interfaces. In order to slightly simplify the task of compiler construction, a
few features of Oberon were omitted, and a few new ones were added (see
Appendix).

490 N. Wirth

The task of the helicopter controller is essentially to sample sensors
(accelerometers and gyros), compute new values for power, pitch, roll, and yaw, and
output the computed values to the respective servos. This can be done in a single loop
which is triggered in equal time intervals, in this case every 20ms. Because for every
new group of outputs 4 preceding groups of inputs are required as arguments, the
inputs are buffered. Input and output interfaces were implemented by two PLDs,
converting the PWM signals to binary (8-bit) values and vice-versa. They could be
considerably simplified by converting the (up to) 8 signals sequentially. As a
consequence, the interrupt time slice was chosen as 2ms, and a counter is incremented
to identify the signals being input and output.

As a result, the time critical operations are kept in a single interrupt handler,
triggered by a clock generated in one of the PLDs. This routine is, and must be, very
short. It reads a single byte from the input PLD and deposits it in the input buffer, and
it picks a single byte from the output buffer and feeds it to the output PLD. The “main
program” is a single loop (after initialization), at one point waiting for the next change
of the counter. In this loop, four value sets are taken from the input buffer, and a new
output set is computed. All that had to be done concerning real-time constraint was to
measure the time needed for this computation. Fortunately it turned out to be less than
half of the 20ms time slice.

5. Some Conclusions

Certainly, this example may be called academic, because it is simple, or rather turned
out to be simple. I am fully aware that different criteria apply in other cases, and that
“real-world” systems “out there” are much more intricate. Yet, this example does
show that drastic simplifications are possible – even in simple cases! With the
addition of further input sources such as a compass and a GPS, for example, affairs
become more complicated, because those inputs cannot simply be sampled, but arrive
at unpredictable intervals. Hence, the temptation to introduce threads (and a system
handling them) arises, and even may turn out to be justified.

However, one must be aware of the consequences. Task switching becomes
hidden, and it becomes impossible to guarantee real-time constraints. It may all be
very well, as long as processing power is available in excess, i.e. if the processor idles
most of the time. But “throwing in resources in abundance” is not sound engineering
practice, even if it appears to be cheap.

If we are to design reliable real-time systems, we must demand precise
specifications, and then be able to guarantee that the computing time required
between specified events is shorter than their interval of occurrence. This implies the
availability of tools (compilers) that provide data about the time required to execute
certain sequences of statements. Such tools are hardly available to my knowledge.
Instead, “break-points” are inserted in the program, and a tool is used to measure the
time consumed. But this is like program testing vs. analytic verification: The result
applies only to the specific test case, but not in general The practical idea is that the
test case is sufficiently “representative”, and a safety factor is thrown in, in case of
doubt.

Embedded Systems and Real-Time Programming 491

The dubiousness of this practice is compounded by two circumstances:
If interrupts are involved, the interrupt handler steals time from the interrupted

process (thread). If neither place nor duration of the interrupt are known, the effect on
time bounds of the interrupted process may be considerable, and the worst case
condition taken for analysis may be so much bigger than the “normal’ case that the
temptation to ignore the (very rare) worst case may be large.

Modern processors commonly use on-chip cache memories and pipelining,
resulting in rather unpredictable performance variations. The time for an instruction
sequence cannot be taken as the sum of the time of the individual instructions. Yet,
the real-time program must reliably handle the worst case, which may be 10 or more
times slower than the average case. Temptations to ignore that ugly worst case loom
large.

Not even sophisticated analytical tools help to overcome these intrinsic difficulties
with machinery displaying a stochastic behavior. As a consequence, we recommend
the following two rules of thumb for the real-time programmer:

Refrain from using interrupts. If interrupts cannot be excluded, make sure that the
time consumed by interrupt handlers is orders of magnitude shorter than any specified
real-time condition. Handlers must be free of loops (with an unknown number of
repetitions).

Be skeptical about sophisticated processors with caches and pipelines. Test your
programs with caches turned off. (I am afraid this implies that the caches may just as
well be left out anyway). Digital signal processors (DSP) typically do not feature
caches, and are therefore to be preferred.

What renders the seemingly hopeless situation less desperate is the fact that in
most cases the real-time constraints are weak; they are specified in seconds (or
hundreds of milliseconds), while the processor executes millions of instructions per
second, implying that real-time constraint can almost be ignored. However, in the
case where several interrupt sources must be handled, it might be wise to employ an
individual processor for each of them. After all, silicon is now cheap, and system
reliability is dear. We should remember that interrupts were originally introduced to
spare the use of separate, expensive processors for events that rarely occur and then
take a negligible amount of time for a very simple, straight-forward action.

We might note that in the case of embedded systems the requirements concerned
with time are in addition to all other correctness specifications. Could it therefore be
possible to separate the two categories? Separation of concerns has always been a
useful design principles. Hence, the appearance of a formalism (language) allowing
real-time constraints to be considered and checked separately, perhaps by separate
software tools, would mark a desirable step ahead.

Here we are concerned with systems containing computers embedded as crucial
parts of a larger whole. The consequence is that the designer of the computer section
must understand the whole, or at least be able to rely on complete and precise
specifications of the interfaces between the rest and the computer. Often these
interfaces are themselves unnecessarily complex (particularly if they comply with
established standards!), giving rise to misunderstandings and mistakes. A second
corollary of embededness is that failures of the whole may be due to other than
computer malfunction, requiring much wider horizons in the search for errors. The
designer of embedded systems should be a mechanical, electrical, and software
engineer all in one. In our helicopter example, mechanical oscillations and
resonances, loosening contacts, over sensitivity of sensors to vibrations, electrical

492 N. Wirth

noise of the combustion engine, or mechanical fatigue of the exhaust muffler caused
failures in spite of correctly functioning software, where crashes could be avoided
only by an immediate fall back to the remote pilot, acting as a human reset button. In
many applications no such easy solution exists. The Pathfinder vehicle landing on
Mars comes to mind.

The major difference between “regular” and “embedded” systems programming,
however, lies not so much in the compounded difficulties of the latter, but rather in
the more stringent reliability expectations. If a system crashes, it may be fatal. It is as
if every mistake may force you to restart construction from scratch, to step back to
square zero. This increased awareness of consequences of malfunction and of our
responsibility should make us doubly anxious to look for simple (not simplicistic!)
solutions, and at the same time triply skeptical towards black boxes that we do not
fully understand but nevertheless have to assume responsibility. I also warn against an
exaggerated reliance on sophisticated development tools. Although they may be
helpful, they cannot be a substitute for detailed understanding. I have witnessed cases
where the mastery of the toolbox took a greater effort than the solution of the problem
at hand, thereby diverting attention from the essence.

In our programming plight, we rightly expect to receive support from programming
languages and their compilers. But even at run-time we are used to rely on checks
detecting mistakes such as indices out of array bounds, arithmetic overflow, and other
rare cases. When relying on such implicit checks, we are in a state of sin, because
they detect mistakes that should have been avoided a priori by proper design. In the
case of embedded systems, this becomes manifest by our uncertainty of the actions to
be taken in the case of failure. For instance, in the case of the model helicopter, what
should be done in the case of an array bound violation, what in the case of an
arithmetic overflow? There is no reset button!

In summary, I do not only plead for avoiding complexity in program design, but
also in the tools used. The more difficult the problem at hand, the more we must strive
for reasonably simple solutions. They must never exceed our mental abilities to
understand them fully. And the simpler the theories and tools employed, the more
perspicuous are the engineer’s designs, and the more realistically can he take
responsibility for a design. Past achievements of clever engineers have been
wonderful; think only of the automated flights of satellites around the earth, to the
moon and past planets. But the fight against mistakes and the overestimation of our
infallibility will last for ever. It must not keep us from trying hard to do better.

References

1. J. Chapuis, C. Eck, M. Kottmann, M. Sanvido, O. Tanner, "Control of Helicopters,"
in K. J. Åström, P. Albertos, M. Blanke, A. Isidori, W. Schaufelberger, R. Sanz
(Eds): Control of Complex Systems, Springer Verlag.

2. N. Wirth. The Programming Language Oberon. Software – Practice and Experience,
18, 7, (July 1988), 661-670.

3. N. Wirth. Compiler Construction. Addison-Wesley, 1996, ISBN 0-201-40353-6.

	1. Introduction
	2. Challenges and Difficulties
	3. Ways to Overcome the Complexity of Real-Time Programming
	4. An Example of Reducing Complexity
	5. Some Conclusions
	References

