
Mosaic Industries Page 1 of 6 Any questions? Call (510) 790 - 8222

Mosaic Industries

Summary

There are times you may want to control the QED Board’s
digital-to-analog converter (DAC) from assembly
language because you may need to precisely control the
timing of DAC outputs or run the DAC near full speed.
For example, you may want to feed an audio waveform to
the DAC and control the rate at which samples are output,
while guaranteeing that samples are put out with very
uniform timing. While the QED kernel’s words >DAC and
(>DAC) are very good for putting out single samples you
may want to better control the timing of the output
samples than you can using those. This application note
shows you how you can achieve that.

Description

This application note provides the following two blocks of
code that you can modify for your own purposes:

1. The QED Forth Kernel’s source code for the
word (>DAC); and,

2. An example which outputs samples to the DAC
from within an interrupt service routine.

Each is described in detail.

1. The Source Code for the routine
(>DAC)

The first block of code is the QED Forth Kernel’s source
code for the word (>DAC) It shows how to write to the
DAC through the SPI (Serial Peripheral Interface) using
assembly code. For a basic understanding of the
operation of the routine please read the glossary entries
for the words >DAC and (>DAC).

The DAC communicates with the 68HC11 processor on
the serial peripheral interface (SPI), a high speed serial
bus. Details of the DAC’s hardware requirements,
including the data sheet for the chip (an Analog Devices
DAC-8841) are provided in the QED Hardware Manual.
Writing a byte to a processor register signals the
processor to send the byte out serially. As the byte is
shifted out to the DAC another byte is simultaneously
shifted from the DAC into the processor. In the following
code the routine ACCB<->SPI transfers the byte by
writing it to the SPDR (serial peripheral data register)

register, and loops on a status register (SPSR) until the
byte transfer is completed. The status register must be
read before the next byte transfer can take place. (>DAC)
calls the word ACCB<->SPI to first shift a channel
number to the DAC, then again to shift in the data byte.
Finally, the DAC is chip selected; that is, the DAC’s load
pin is strobed by writing to the DAC’s address.

The following code is heavily commented and should be
self explanatory:

APPLICATION
NOTE

MI-AN-059

Controlling the QED Digital-to-Analog
Converter from within an Interrupt Service
Routine

Mosaic Industries Page 2 of 6 Any questions? Call (510) 790 - 8222

Controlling the QED Digital-to-Analog Converter from within an Interrupt Service Routine

\ ***
\ **** ****
\ **** The source code for (>DAC) ****
\ **** ****
\ **** This code is provided only to customers of Mosaic Industries' QED ****
\ **** Board for use in assisting them in coding their applications. ****
\ **** Copyright 1997 by Mosaic Industries, Inc. ****
\ **** ****
\ ***

HEX

80C0 CONSTANT DAC.ADDR \ thru 80CF;a byte written to any of these
 \ addresses causes the onboard PAL to assert
 \ the DAC.CS (its load pin) high

8028 CONSTANT SPCR \ SPI (serial peripheral interface) control register
 \ This register must be written to by the words
 \ INIT.SPI or INIT.A/D12&DAC before calling (>DAC)
 \ (>DAC) and >DAC do not use it directly.

8029 CONSTANT SPSR \ SPI status register. This register is read to
 \ determine when the SPI transfer is complete.

802A CONSTANT SPDR \ SPI data register. A write into this register
 \ initiates bidirectional data transfer

 80 CONSTANT SPI.TRANSFER.COMPLETE \ Poll this flag in SPSR to detect
 \ completion of data transfer.

CODE ACCB<->SPI (-- | needs byte to be transferred in in ACCB)
 \ This routine shifts a byte in accumulator B out the SPI and replaces
 \ accumulator B with the byte received. ACCB is sent via the SPI to
 \ whatever slave is active. The slave's response is returned in ACCB.
 \ Only accumulator B is affected by this word.
 SPDR EXT STAB \ Send out ACCB via the SPI.
 \ A simple store initiates the SPI transfer.
 SPI.TRANSFER.COMPLETE IMM LDAB \ Load ACCB with the transfer complete mask.
 BEGIN, \ Loop on the status register and wait until
 SPSR EXT BITB \ the transfer complete bit is set. Transfer
 NE UNTIL, \ occurs in 4 usec on a QED-3 Board.
 \ Even in applications in which we don't need
 \ to loop on the status bit we still must
 \ read SPSR before sending out another byte.
 SPDR EXT LDAB \ Load ACCB with the incoming SPI byte.
 RTS
END.CODE

Application Note MI-AN-059

Mosaic Industries Page 3 of 6 Any questions? Call (510) 790 - 8222

CODE (>DAC) (u\n --)
 \ This routine sends a byte to a particular DAC channel. Note that it
 \ assumes that the SPI is available for use by the DAC. Use the word >DAC
 \ to resolve contention when multiple slaves could be using the SPI. The
 \ DAC is written to by first shifting in the channel# via the SPI, then
 \ shifting in the data, then strobing the load pin on the chip.
 \ In the stack picture, u is the data byte to be sent to the DAC and n is
 \ the channel number where: 0 <= u (data) <= 255 ; 1 <= n (channel) <= 8
 01 IND,Y LDAB \ Load ACCB with the channel# from the stack
 \ channel# is the lsbyte of the top stack item and
 \ register Y holds the parameter stack pointer.
 ACCB<->SPI EXT JSR \ Send the channel# to the DAC.
 03 IND,Y LDAB \ Load ACCB with the data byte from the stack.
 \ The data is the lsbyte of the buried stack item.
 ACCB<->SPI EXT JSR \ Send the data byte to the DAC.
 DAC.ADDR EXT STAB \ Write to the DAC address to strobe the data from the
 \ DAC's internal shift register into its internal data
 \ register. The load, or chip select, signal is
 \ generated by a PAL on the QED Board.
 4 IMM LDAB \ Increment the stack pointer to drop two stack
 ABY \ cells.
 RTS

Controlling the QED Digital-to-Analog Converter from within an Interrupt Service Routine Application Note MI-AN-059

Mosaic Industries Page 4 of 6 Any questions? Call (510) 790 - 8222

2. Outputting to the DAC from within
an Interrupt Service Routine

The second block of code shows how you might
sequentially write 8-bit samples from a buffer into the
DAC from within an interrupt service routine. To
understand its operation first read the description and
code for (>DAC) above. This code is very similar.

In this example it is assumed that every time the interrupt
service routine is called another byte of data from a queue
is output to the DAC. For the greatest speed possible the
queue is kept in the QED Board’s common memory or on
the same page as the code that calls it so that no page
change is needed to address it. A 16-bit address keeps
track of the current position in the queue and is
incremented each time the interrupt service routine is
called. In order for the queue to wrap around, every time
the address is incremented it is compared to the end
address of the buffer (queue) and reset to the starting
address if needed.

For the greatest speed the address computations and test
are done while the SPI is outputting the channel number
to the DAC, and because this takes a little more than the
4 usec needed for the serial transfer we don’t need to
loop on the SPI’s status register. Instead, a single
dummy read of the status register prepares the SPI for
the next transfer. Subsequently, the data is sent to the
DAC by the SPI. While the data byte is being transferred
you can either loop on the status register as is done in
(>DAC) above, or, to save time, you can execute any
other code that needs to be done in the interrupt service
routine. After sufficient time has elapsed, a single dummy
read of the status register prepares the SPI for the next
transfer, and writing to the DAC’s address strobes its load
pin.

The interrupt service routine should be called by an
interrupt tied to one of the 68HC11’s timers so that you
can easily control its timing.

\ ***
\ **** ****
\ **** An example of using the DAC ****
\ **** from inside an interrupt service routine: ****
\ **** ****
\ **** ****
\ **** This code is provided only to customers of Mosaic Industries' QED ****
\ **** Board for use in assisting them in coding their applications. ****
\ **** Copyright 1997 by Mosaic Industries, Inc. ****
\ **** ****
\ ***

01 CONSTANT DAC.CHANNEL \ This can be changed to any of the DAC channels 1-8.
VARIABLE Base.Addr \ The 16-bit base address of the sample stream
 \ to be sent out. It is assumed here that the
 \ samples are contained in a queue extending from
 \ the Base.Addr to the End.Addr. The queue can be
 \ any length as long as it fits on a single page.
 \ The samples can be on the common page or on the same
 \ page as the interrupt service routine. Base.Addr
 \ and End.Addr must be initialized before the first
 \ time the interrupt is serviced.

VARIABLE End.Addr \ The 16-bit final address of the sample stream. It
 \ should actually point to the address just beyond
 \ the last sample.

VARIABLE Addr.Pointer \ Before the first invocation of the interrupt
 \ service routine the Addr.Pointer should be
 \ initialized to the Base.Addr. The Addr.Pointer
 \ steps through the sample queue wrapping back to
 \ the beginning when it gets to the end.

Controlling the QED Digital-to-Analog Converter from within an Interrupt Service Routine Application Note MI-AN-059

Mosaic Industries Page 5 of 6 Any questions? Call (510) 790 - 8222

\ Before the Interrupt.Service is called the first time an initialization
\ routine should call INIT.A/D12&DAC and also initialize Base.Addr, End.Addr,
\ and Addr.Pointer.

CODE Interrupt.Service
 \ ...
 \ ...
 \ ...
 \ ...
 \ other code within the interrupt service routine
 \ ...
 \ ...
 \ ...
 DAC.CHANNEL IMM LDAB \ Load ACCB with the DAC channel.
 SPDR EXT STAB \ Send out ACCB via the SPI.
 \ A simple store initiates the SPI transfer.
 Addr.Pointer DROP EXT LDX \ While we're waiting 4 usec for the SPI
 \ we have time to load the sample and do the
 \ address computations.
 00 IND,X LDAB \ Fetch the next sample from memory into ACCB
 INX \ Increment the address to point to the next
 \ sample.
 End.Addr DROP EXT CPX \ Compare the address to the end address.
 EQ IF, \ Are we pointing to the buffer's end?
 Base.Addr DROP EXT LDX \ If so, reload reg X with the buffer's start
 ENDIF, \ address.
 \ Since beginning of SPI tansfer 5.25 to 6.5
 \ usec have elapsed.
 SPSR EXT LDAA \ A dummmy read of the SPI's status register
 \ prepares it for the next transfer.
 SPDR EXT STAB \ Send out data in ACCB via the SPI.
 \ A simple store initiates the SPI transfer.
 Addr.Pointer DROP EXT STX \ Store the new address.

\ Here, you can either loop on the status flag like this....
 SPI.TRANSFER.COMPLETE IMM LDAB \ Load ACCB with the transfer complete mask.
 BEGIN, \ Loop on the status register and wait until
 SPSR EXT BITB \ the transfer complete bit is set. Transfer
 NE UNTIL, \ occurs in 4 usec on a QED-3 Board.

\ or do other things that take at least 2.75 usec (1.25 usec was already taken
\ by the STX above) followed by a dummy read of the status flag as,
 \ ...
 \ ...
 \ other code that must be in the interrupt service routine anyway
 \ ...
 \ ...
 SPSR EXT LDAA \ A dummmy read of the SPI's status register
 \ prepares it for the next transfer.

\ Finally, strobe the DAC so that the data transferred to it appears as its
\ analog output.
 DAC.ADDR EXT STAB \ Write to the DAC address to strobe the data
 \ from the DAC's internal shift register into
 \ its internal data register. The load, or
 \ chip select, signal is generated by a PAL

Controlling the QED Digital-to-Analog Converter from within an Interrupt Service Routine Application Note MI-AN-059

Mosaic Industries Page 6 of 6 Any questions? Call (510) 790 - 8222

\ on the QED Board.

\ Then continue with your interrupt service routine.
\ ...
\ ...
\ ...
\ ...

 RTS \ Return from the interrupt service.
END-CODE \ Note that an RTS is used instead of an RTI.

Controlling the QED Digital-to-Analog Converter from within an Interrupt Service Routine Application Note MI-AN-059

Mosaic Industries
5437 Central Ave Suite 1, Newark, CA 94560 Telephone: (510) 790-8222 Fax: (510) 790-0925

This application note is intended to assist developers in using the QED Board. The information provided is believed to be reliable;
however, Mosaic Industries assumes no responsibility for its use or misuse, and its use shall be entirely at the user's own risk. Any
computer code included in this application note is provided to customers of the QED Board for use only on the QED Board. The
provision of this code is governed by the applicable QED software license. For further information about this application note contact:
Paul Clifford at Mosaic Industries, Inc., (510) 790-1255.

