
Mosaic Industries Page 1 of 10 Any questions? Call (510) 790 - 8222

Mosaic Industries

Summary

The following software describes how to use peripheral
port A (PPA) for PWM or as a DAC.

APPLICATION
NOTE

MI-AN-058

Using Port PPA for PWM
or as a DAC

\ ***
\ ***
\ ********** **********
\ ********** Using Port PPA for PWM or as a DAC **********
\ ********** **********
\ ********** Copyright January 1998 by Mosaic Industries, Inc. **********
\ ********** 5437 Central Ave. Ste. 1 **********
\ ********** Newark, CA 94560 **********
\ ********** **********
\ ********** This code is provided to customers of the QED Board **********
\ ********** for use with the QED Board Software Development **********
\ ********** environment. The provision of this code is governed **********
\ ********** by the QED software license. **********
\ ********** **********
\ ********** For further information **********
\ ********** contact Paul Clifford 510-790-8222 **********
\ ********** **********
\ ***
\ ***

\ ***
\ ********** **********
\ ********** Overview **********
\ ********** **********
\ ***

\ This program pulse width modulates bits of peripheral port A (PPA) so that
\ the apparent pseudo-period of the PWM waveform is as short as possible, and
\ with a resolution of one part in 256. This enables, among other functions,
\ bits of PPA to be low pass filtered to create 8-bit DAC channels.
\ levels are produced. Downstream of the digital output a low pass filter
\ smooths the PWM signal into an average value with a small residual ripple.
\ The PWM algorithm is optimal in the respect that it requires the least
\ averaging time to achieve a given level of resolution. This property makes it
\ good for analog purposes, and it also makes it good for digital signals in
\ which the apparent PWM duty cycle should change as rapidly as possible. This
\ algorithm gives an apparent duty cycle for times smaller than the full period

Mosaic Industries Page 2 of 10 Any questions? Call (510) 790 - 8222

Using Port PPA for PWM or as a DAC

\ that is as good an approximation of the true duty cycle as it can be. The
\ error in duty cycle (or resolution if used as a DAC) is limited to less than
\ 1/(2*n) where n is the number of consecutive updates of the port bits up to
\ n=256, the full period. For n=256 the duty cycle error is zero because the
\ duty cycles are produced exactly with a period of 256 updates.

\ ***
\ ********** **********
\ ********** Under the Hood: How It Works **********
\ ********** **********
\ ***

\ For a detailed description of the PWM algorithm used see the Mosaic Industries
\ QED Application Note "MI-AP-056: A PWM Algorithm with Optimal Averaging
\ Properties".
\
\ An interrupt service routine services PPA every t seconds, where t can
\ be adjusted from a minimum of about 2 msec (it takes 1.1 msec to service all
\ the PPA bits) to as much as 131 msec. If used as a DAC downstream filtering
\ is required. If the filtering time constant, Tau, is less than 256*t
\ there is significant ripple. For every doubling of Tau beyond Tau=t
\ the ripple is reduced a factor of two and a bit or resolution is gained, up
\ to Tau=256*t. Beyond that the ripple continues to decrease but no more
\ resolution is gained, and the settling time is needlessly lengthened.
\
\ For example, with an interrupt service time set to 2 msec and a downstream
\ filter time constant of 0.5 sec or greater the filter time is 256 times the
\ minimum, and the DAC resolution is a full 8-bits. This code sets the
\ interrupt service time to a default value of 2 msec; I recommend that a
\ downstream filtering time constant of 0.5 seconds be used.
\

\ ***
\ ********** **********
\ ********** How to Use It **********
\ ********** **********
\ ***

\
\ 1. Download this text file.
\
\ 2. Configure PPA for output using
\ TRUE flag INIT.PIA
\ The TRUE initializes PPA as output.
\ flag = true indicates that upper PPC is output. Choose upper PPC
\ to be input or output as you need.

Application Note MI-AN-058

Mosaic Industries Page 3 of 10 Any questions? Call (510) 790 - 8222

\
\ 6. Execute
\ Start.PPA.PWM
\ to install the interrupt service routine and start periodic updates of
\ the PPA bits. No PWM waveforms are generated until you specify duty
\ cycles using >PPA.PWM.
\
\ 7. Execute
\ >PPA.PWM (u\n --)
\ to send a PWM duty cycle to any PPA output pin. This top level word
\ takes as input an 8-bit unsigned value, u, as the PWM duty cycle
\ and the PPA pin number, n, where 0 <= n <= 7. Other output pins are
\ unaffected. Values of u from 0 to 256 are allowed, with 256
\ indicating a continuously ON condition. The duty cycle is given by
\ D.C.= u/256. The time between updates of the output pins is determined
\ by the value of PERIOD, which holds the time as the number of 2 usec
\ ticks of the TCNT clock.
\
\ 8. If you are filtering the PWM outputs for digital to analog conversion
\ then use the word
\ >PPA.DAC (u\n --)
\ instead of
\ >PPA.PWM (u\n --)
\ This word will cause the PWM signal to over or undershoot appropriately
\ whenever there is a change of duty cycle to compensate for the filter
\ delay so that the DAC output is updated as rapidly as possible. For this
\ to work optimally the filter time constant should be 256 times the update
\ interval.
\
\ Also, you must install an analog filter with a time constant of 0.5 sec
\ (256 times the update interval of 2 msec) or more on the PPA pin. A
\ 50 Kohm resistor and 10 uF capacitor will provide the proper time
\ constant. If a low impedance output is needed the filter should be followed
\ by an op-amp voltage follower, or the filter and op-amp may be combined
\ as an active filter.
\
\ 9. To stop the PWM waveforms execute
\ Stop.PPA.PWM
\ and the interrupt service routine will stop. The PPA output pins that
\ had been used will be left set to zero, except for any that had been set
\ fully on (high) by sending a duty cycle of 256. They will be left high.
\
\
\ The following are descriptions of all the user words:

\ Start.PPA.PWM (--)
 \ Starts up the periodic interrupt service of the PPA bits but doesn't
 \ actually modify any bits until >PPA.PWM is executed.

Using Port PPA for PWM or as a DAC Application Note MI-AN-058

Mosaic Industries Page 4 of 10 Any questions? Call (510) 790 - 8222

\ Stop.PPA.PWM (--)
 \ Stops the interrupt service of the PPA bits, leaving the bits that had
 \ been PWMing set to the zero, and not affecting other bits.

\ ReStart.PPA.PWM (--)
 \ Restarts up the PIA's periodic interrupt service returning the PIA bits
 \ that had been PWMing before Stop.PPA.PWM had been executed back to their
 \ PWM action.

\ >PPA.PWM (u\n --)
 \ u is an unsigned 8-bit PWM value to send to PPA and 0 <= n <= 7 is
 \ the PPA output bit number. Values of u from 0 to 256 are allowed, with 256
 \ indicating a continuously ON condition. The time between updates of the
 \ output pins is determined by the value of PERIOD, which holds the time
 \ as the number of 2 usec ticks of the TCNT clock.

\ >PERIOD (u --)
 \ u is and unsigned integer representing the number of 2 microsecond clock
 \ ticks of TCNT between updates of the PWMed PPA outputs. A period of 2
 \ milliseconds would require u = 1000. PERIODs less than 2 msec are not
 \ recommended as the servicing of PPA takes about 1.1 msec.
 \ If the PERIOD is too small interrupts will be missed and full TCNT
 \ rollover periods of 131 msec will be inserted as delays into the interrupt
 \ servicing. The PERIOD is initialized to 2 msec by Start.PPA.PWM, and can
 \ be changed thereafter by >PERIOD.

\ ***
\ ********** **********
\ ********** The Code **********
\ ********** **********
\ ***

ANEW <PPA.PWM>
6 WIDTH !

VARIABLE PERIOD \ Holds the period between interrups as the number of
 \ 2 microsecond ticks of TCNT. A value of 1000
 \ corresponds to 2 msec.
HEX
801A REGISTER: TOC3
8020 REGISTER: TCTL1
8022 REGISTER: TMSK1
8023 REGISTER: TFLG1
20 CONSTANT OC3.MASK
10 CONSTANT OC3.LEVEL.MASK
20 CONSTANT OC3.MODE.MASK

DECIMAL

Using Port PPA for PWM or as a DAC Application Note MI-AN-058

Mosaic Industries Page 5 of 10 Any questions? Call (510) 790 - 8222

Structure.Begin: PPA.Record
 BYTE-> +PWM.Value \ Only a single byte is used for the 8-bit
 \ unsigned value to be written to the output pin
 \ as a PWM signal for values from 0 to 255.
 2 RESERVED \ For use as a running average PWM for this channel.
Structure.End

\ Create a single structure containing all eight DAC channel records:

Structure.Begin: Info.for.PPA.PWM
 8 PPA.Record * RESERVED
Structure.End

\ Now we instantiate (reserve space for) the PIA.DAC.Info structure in variable
\ space:

Info.for.PPA.PWM V.INSTANCE: PPA.PWM.Data

Variable PPA.Bits.Used \ a byte mask with bits set corresponding to PPA
 \ output bits used for PWM. Other bits are unaffected.

\ If we were not to use the above data structure we would need the following
\ two variables for each PWM channel. They are shown here only for clarity.
\ The variable Average.PWM must directly follow the variable Target.PWM
\ in memory.

\ VARIABLE Target.PWM \ Holds the target PWM as an 8-bit number in the high
 \ order byte. The contents of the low order byte are
 \ irrelevant. Fetch or store to this variable using C@
 \ and C!.

\ VARIABLE Average.PWM \ Used internally by the algorithm; holds a running
 \ average PWM. To update the PWM immediately set both
 \ Target.PWM and Average.PWM to the new value. To
 \ update the 256-bit long integral of the output most
 \ quickly do not modify Average.PWM when Target.PWM is
 \ reset. The Average.PWM is set by setting its high
 \ order byte to the desired PWM (0-255) and setting
 \ its low order byte to 255.

\ The following is a high level version of the corresponding assembly language
\ routine. It is provided here for documentary purposes only:

Using Port PPA for PWM or as a DAC Application Note MI-AN-058

Mosaic Industries Page 6 of 10 Any questions? Call (510) 790 - 8222

\ : ?Update.PWM (xaddr -- Flag)
\ \ This word implements as PWM routine that optimally averages.
\ \ xaddr is the address of Target.PWM and xaddr+2 is the address of
\ \ Average.PWM, both as 16-bit unsigned integers.
\ \ Flag is the bit to be outputted, either true for high or false for low.
\ \ Each time Update.PWM is called Flag is set to either true or false
\ \ to maintain the proper average value for the PWM output.
\ [BASE @ HEX]
\ XDUP 2 XN+
\ Locals{ x&Average.addr x&Target.addr }
\ x&Target.addr @ FF00 AND x&Average.addr @ U>
\ IF
\ x&Average.addr @ x&Average.addr C@ - 00FF + x&Average.addr !
\ TRUE
\ ELSE
\ x&Average.addr @ x&Average.addr C@ - x&Average.addr !
\ FALSE
\ ENDIF
\ [BASE !]
\ ;

\ The following code is an assembly language version of the above high level
\ routine.

CODE ?Update.PWM (xaddr -- Flag)
 \ xaddr is the address of Target.PWM as a single byte and xaddr+1 is the
 \ address of Average.PWM as a 16-bit unsigned integer. (In the high level
 \ example above they were both 16-bit integers. In this version the Target
 \ value is assumed to take only one byte in memory.)
 \ Flag is the bit to be outputted, true indicates one or high.
 \ Each time ?Update.PWM is called Flag is set to either true or false
 \ to maintain the proper average value for the PWM output.
 BASE @ HEX
 02 IND,Y LDD \ Get the Target.PWM address
 01 IMM ADDD \ and increment by 1 and push it on the stack
 DEY DEY 00 IND,Y STD \ as the Average.PWM address.
 02 IND,Y LDD \ Fetch and push the page too.
 DEY DEY 00 IND,Y STD \
 02 IND,Y LDD \ Then XDUP the Average.PWM xaddress
 DEY DEY 00 IND,Y STD
 02 IND,Y LDD
 DEY DEY 00 IND,Y STD
 CALL @ \ @ Average.PWM and push it
 00 IND,Y LDAB CLRA \ get Average.PWM/256
 DEY DEY 00 IND,Y STD \ push Average.PWM/256
 02 IND,Y LDD 00 IND,Y SUBD \ replace Average.PWM/256 on tos with
 00 IND,Y STD \ Average.PWM - Average.PWM/256
 0A IND,Y LDD DEY DEY 00 IND,Y STD \ put Target address on tos
 0A IND,Y LDD DEY DEY 00 IND,Y STD \ put Target page on tos
 CALL C@ \ C@ Target.PWM and push it
 01 IND,Y LDAA \ get target from stack into high byte of D
 CLRB \ zero out the low order byte
 04 IND,Y CPD \ Target.PWM - Average.PWM

Using Port PPA for PWM or as a DAC Application Note MI-AN-058

Mosaic Industries Page 7 of 10 Any questions? Call (510) 790 - 8222

HI IF, \ if Target.PWM > Average.PWM
 TRUE IMM LDD 0C IND,Y STD \ set output to true and store it in place
 \ of target.addr on stack
 CLRA 02 IND,Y ADDD \ add 255 to Average.PWM - Average.PWM/256
 0A IND,Y STD \ and store it in place of the target page on
 \ the stack
 ELSE,
 FALSE IMM LDD 0C IND,Y STD \ else just set output false
 02 IND,Y LDD 0A IND,Y STD \ and store Average.PWM - Average.PWM/256
 \ in place of the target page on the stack
 ENDIF,
 06 IMM LDAB ABY \ drop top three stack cells
 \ we now have (flag\new.avg\avg.xaddr)
 CALL ! \ store to Average.PWM
 RTS
 BASE !
 END.CODE

\ This high level code is provided to help document the following assembly
\ language version:

\ : Update.PPA.Bits (--) \ Takes about 2.1 msec to execute
\ \ Steps through the PPA bits, calling ?Update.PWM to determine
\ \ which value to send to the bit, and accumulating them in PPA.Value, then
\ \ sending PPA.Value to PPA all at once.
\ 0 Locals{ &PPA.Value }
\ 1 \ bit place counter, gets doubled each iteration
\ 8 0 \ for each bit from lsb to msb
\ DO
\ \ Call ?Update.PWM for each channel:
\ PPA.PWM.Data PPA.Record I * XN+ +PWM.Value ?Update.PWM
\ \ Depending on flag returned by ?Update.PWM send either a one or a zero:
\ IF DUP &PPA.Value + TO &PPA.Value ENDIF
\ 2* \ shift place counter
\ LOOP
\ DROP
\ &PPA.Value PPA.Bits.Used C@ PPA PIA.CHANGE.BITS
\ ;

CODE Update.PPA.Bits (--) \ Takes about 1.1 msec to execute
 \ Steps through the PPA bits, calling ?Update.PWM to determine
 \ which value to send to the bit, and sends it.
 01 IMM LDAB \ load counter value into B
 DEY 00 IND,Y STAB \ and put it on stack (counter)
 00 IMM LDAB \ initialize PPA.Value
 DEY 00 IND,Y STAB \ and put it on stack (counter\ppa.value)

 PPA.PWM.Data +PWM.Value SWAP \ get xaddress of first PWM value
 IMM LDD DEY DEY 00 IND,Y STD \ put address on the stack
 IMM LDD DEY DEY 00 IND,Y STD \ put page on stack (counter\ppa.value\xaddr)

Using Port PPA for PWM or as a DAC Application Note MI-AN-058

Mosaic Industries Page 8 of 10 Any questions? Call (510) 790 - 8222

BEGIN, \ (counter\ppa.value\xaddr)
 02 IND,Y LDD \ XDUP the xaddress
 DEY DEY 00 IND,Y STD
 02 IND,Y LDD
 DEY DEY 00 IND,Y STD \ (counter\ppa.value\xaddr\xaddr)
 CALL ?Update.PWM \ (counter\ppa.value\xaddr\flag)
 00 IND,Y LDD \ test the flag
 NE IF,
 06 IND,Y LDAA \ add counter to ppa.value
 07 IND,Y ADDA
 06 IND,Y STAA
 ENDIF,
 02 IMM LDAB ABY \ drop the flag (counter\ppa.value\xaddr)
 PPA.Record IMM LDD \ get offset
 02 IND,Y ADDD \ increment the address to point to the
 02 IND,Y STD \ next desired PWM
 05 IND,Y ASL \ increment the counter
 CS UNTIL, \ are we done?

 04 IND,Y LDAB CLRA \ set up the stack for PIA.CHANGE.BITS
 04 IND,Y STD \ put the value on the stack
 PPA.Bits.Used \ get xaddress of PPA.Bits.Used
 IMM LDD 00 IND,Y STD \ put page on the stack
 IMM LDD 02 IND,Y STD \ put addr on the stack (ppa.value\xaddr)
 CALL C@ \ get PPA.Bits.Used (ppa.value\ppa.bit.mask)
 PPA SWAP \ get xaddress of PPA
 IMM LDD DEY DEY 00 IND,Y STD \ put address on the stack
 IMM LDD DEY DEY 00 IND,Y STD \ put page on stack
 \ stack now: (ppa.value\ppa.bit.mask\xaddr)
 CALL PIA.CHANGE.BITS \ send out the bits
 RTS
END.CODE
: >PPA.PWM (u\n --)
 \ u is an unsigned 8-bit PWM value to send to PPA and 0 <= n <= 7 is
 \ the PPA output bit number. Values of u from 0 to 256 are allowed, with 256
 \ indicating a continuously ON condition. The time between updates of the
 \ output pins is determined by the value of PERIOD, which holds the time
 \ as the number of 2 usec ticks of the TCNT clock.
 Locals{ &channel &value }
 &channel 0 MAX 7 MIN TO &channel
 &value 256 =
 IF
 1 &channel SCALE PPA.Bits.Used CLEAR.BITS
 1 &channel SCALE PPA PIA.SET.BITS
 ELSE
 &value PPA.PWM.Data PPA.Record &channel * XN+ +PWM.Value C!
 \ The following two lines are used if PWM update must be immediate
 \ rather than allowing over/undershoot for downstream averaging:
 &value PPA.PWM.Data PPA.Record &channel * XN+ +PWM.Value 1XN+ C!
 0 PPA.PWM.Data PPA.Record &channel * XN+ +PWM.Value 2XN+ C!
 \ we set PPA.Bits.Used after setting the value so that we don't have
 \ transient update problems
 1 &channel SCALE PPA.Bits.Used SET.BITS
 ENDIF
 ;

Using Port PPA for PWM or as a DAC Application Note MI-AN-058

Mosaic Industries Page 9 of 10 Any questions? Call (510) 790 - 8222

: >PERIOD (n --)
 \ n is the number of 2 microsecond clock ticks of TCNT between updates of
 \ the PWMed D/A outputs. A period of 2 millisecond or 2000 microseconds
 \ would require n = 1000
 PERIOD ! ;

: PWM.Update.Interrupt.Service
 OC3.MASK TFLG1 C! \ Reset the OC3 interrupt flag so that new
 \ OC3 interrupts will be recognized. Because the flag is cleared by writing
 \ a one to it we can use a C! command without affecting the other bits.
 PERIOD @ TOC3 +! \ Add the PERIOD to TOC3 to set the time at which
 \ the next interrupt occurrs.
 Update.PPA.Bits \ Update the PPA output bits
 ;

: Install.PWM.Update.Interrupt.Service
 OC3.MASK TMSK1 CLEAR.BITS \ First we disable OC3 interrupts.
 OC3.MODE.MASK TCTL1 CLEAR.BITS \ Set the OC3 mode and level bits so that
 OC3.LEVEL.MASK TCTL1 CLEAR.BITS \ the timer is disconnected from output pin.
 CFA.FOR PWM.Update.Interrupt.Service \ Attach the service routine.
 OC3.ID ATTACH
 OC3.MASK TFLG1 C! \ Clear the OC3 interrupt flag.
 \ We clear the OC3 interrupt flag by writing a one to it. This seems counter-
 \ intuitive but that's the way the hardware works! It makes sense when
 \ we realize that we can just use a C! and not affect the other bits.
 \ OC3.MASK TMSK1 SET.BITS \ Finally, we enable OC3 interrupts.
 \ Interrupts won't start until interrupts are also globally enabled by
 \ ENABLE.INTERRUPTS. Locally enabling the interrupts here is commented out
 \ because, although it's a good idea for some applications, for this
 \ application we don't want the interrupts starting until a separate
 \ word, called Start.PPA.Update is executed.
 ;
: Stop.PPA.PWM (--)
 \ Stops the PWMing outputs and sets them to zero.
 OC3.MASK TMSK1 CLEAR.BITS \ Disables the OC3 interrupts.
 0 PPA.Bits.Used C@ PPA PIA.CHANGE.BITS
 8 0
 DO
 0 PPA.PWM.Data PPA.Record I * XN+ +PWM.Value C!
 0 PPA.PWM.Data PPA.Record I * XN+ +PWM.Value 1XN+ !
 LOOP
 ;

: (Start.PPA.Update)
 Install.PWM.Update.Interrupt.Service
 1000 >PERIOD
 OC3.MASK TMSK1 SET.BITS \ Enables the OC3 interrupts
 ENABLE.INTERRUPTS \ and globally enables interrupts.
 ;

Using Port PPA for PWM or as a DAC Application Note MI-AN-058

Mosaic Industries Page 10 of 10 Any questions? Call (510) 790 - 8222

: Start.PPA.PWM (--)
 \ Sets no bits for PWM output and initializes all bits for zero duty cycle.
 0 PPA.Bits.Used C!
 8 0
 DO
 0 PPA.PWM.Data PPA.Record I * XN+ +PWM.Value C!
 0 PPA.PWM.Data PPA.Record I * XN+ +PWM.Value 1XN+ !
 LOOP
 (Start.PPA.Update)
 ;

: ReStart.PPA.PWM (--)
 \ Restarts the PWM output updates but does not send them any duty cycles.
 \ That must be done with >PPA.PWM or >PPA.DAC
 (Start.PPA.Update)
 ;

\ AXE out all words that the user doesn't need:

AXE PERIOD
AXE TOC3 AXE TCTL1 AXE TMSK1 AXE TFLG1
AXE OC3.MASK AXE OC3.LEVEL.MASK AXE OC3.MODE.MASK

AXE PPA.Record AXE +PWM.Value
AXE Info.for.PPA.PWM AXE PPA.PWM.Data AXE PPA.Bits.Used
AXE ?Update.PWM AXE Update.PPA.Bits
AXE Install.PWM.Update.Interrupt.Service
AXE PWM.Update.Interrupt.Service

AXE (Start.PPA.Update)

\ ***
\ ********** **********
\ ********** End of Code **********
\ ********** **********
\ ***

Using Port PPA for PWM or as a DAC Application Note MI-AN-058

Mosaic Industries
5437 Central Ave Suite 1, Newark, CA 94560 Telephone: (510) 790-8222 Fax: (510) 790-0925

This application note is intended to assist developers in using the QED Board. The information provided is believed to be
reliable; however, Mosaic Industries assumes no responsibility for its use or misuse, and its use shall be entirely at the user's
own risk. Any computer code included in this application note is provided to customers of the QED Board for use only on the
QED Board. The provision of this code is governed by the applicable QED software license. For further information about
this application note contact: Paul Clifford at Mosaic Industries, Inc., (510) 790-1255.

