
Mosaic Industries Page 1 of 12 Any questions? Call (510) 790 - 8222

Mosaic Industries

Summary

The following describes how to get greater resolution
for the QED’s 8-bit DAC.

Description

Often greater resolution is needed than that provided
by the QED Board’s 8-bit DAC. One solution is to
combine two DAC channels in hardware to produce a
single channel of greater resolution. This solution is
implemented by the QED Analog Conditioning Board,
on which two pairs of channels are combined with their
output calibrated against the 12-bit A/D, or any other

pairs combined without direct calibration. This
application note provides another solution: The output
of any of the DAC channels can be modulated so that it
rapidly flickers between two adjacent levels. After the
output is averaged with a low pass filter, up to 256
discrete analog voltages can be produced within each
step of the 8-bit DAC. Resolutions up to 16 bits can be
produced (given sufficient averaging time), but without
the true accuracy of 16-bit D/A converter. The
absolute accuracy is still limited to that of the 8-bit DAC
itself. Even so, this accuracy is generally better than 8-
bits; it is approximately 10-11 bits without calibration,
and if calibrated against the 12-bit A/D, better than 12-
bits resolution with 12-bits of accuracy can be attained.

APPLICATION
NOTE

MI-AN-057

Greater Resolution for the
QED’s 8-bit DAC

\ ***
\ ***
\ ********** **********
\ ********** Greater Resolution for the QED’s 8-bit DAC **********
\ ********** **********
\ ********** Copyright January 1998 by Mosaic Industries, Inc. **********
\ ********** 5437 Central Ave. Ste. 1 **********
\ ********** Newark, CA 94560 **********
\ ********** **********
\ ********** This code is provided to customers of the QED Board **********
\ ********** for use with the QED Board Software Development **********
\ ********** environment. The provision of this code is governed **********
\ ********** by the QED software license. **********
\ ********** **********
\ ********** For further information **********
\ ********** contact Paul Clifford 510-790-8222 **********
\ ********** **********
\ ***
\ ***

Mosaic Industries Page 2 of 12 Any questions? Call (510) 790 - 8222

Greater Resolution for the QED 8-bit DAC

\ ***
\ ********** **********
\ ********** Overview **********
\ ********** **********
\ ***

\ This program writes 16-bit values to the 8-bit DAC channels. Intermediate
\ values between the standard 8-bit levels are achieved by rapidly flickering
\ between two adjacent levels (i.e., pulse width modulating). In this way
\ each step of the 8-bit DAC is divided into 256 smaller steps. Downstream
\ of the DAC a low pass filter smooths the flickering levels into an average
\ value with a small residual ripple. The flickering is done using a PWM
\ algorithm that is optimal in the respect that it requires the least averaging
\ time to achieve a given level of resolution.

\ ***
\ ********** **********
\ ********** Under the Hood: How It Works **********
\ ********** **********
\ ***

\ For a detailed description of the PWM algorithm see the Mosaic Industries QED
\ Application Note "MI-AP-056: A PWM Algorithm with Optimal Averaging Properties".
\
\ An interrupt service routine services the DACs every t seconds, where t can
\ be adjusted from a minimum of about 3 msec (it takes 2.36 msec to service all
\ the DAC channels) to as much as 131 msec. Downstream filtering with a time
\ constant of t seconds or less would result in significant ripple, allowing the
\ DACs time to settle to a resolution of only 8-bits. Each doubling of the
\ downstream filtering time adds an additional bit of resolution to the DAC.
\ For example, with an interrupt service time set to 5 msec and a downstream
\ filter time constant of 80 msec or greater the filter time is 16 times the
\ minimum, and the DAC resolution would be increased by 4 bits (the base 2 log
\ of 16) to 12-bits. This code sets the interrupt service time to a default
\ value of 5 msec; I recommend that a downstream filtering time constant of
\ 0.1 second be used.
\
\ Although this program successfully divides each 8-bit DAC step into 256
\ smaller steps, the DAC still does not have any better absolute accuracy or
\ linearity than it started with. It is guaranteed to be monotonic to 8-bits,
\ and to have an integral nonlinearity of typically +/-1/2 lsb, over an ambient
\ temperature range of -40°C to +85°C. However, if we examine its Data Sheet
\ (for the Analog Devices DAC-8841F) we find that its per step linearity error
\ over the entire temperature range is typically +/- 1/8 lsb. So its step to
\ step accuracy is really approximately 10 to 11 bits, rather than just 8-bits.
\ The algorithm of this program allows us to increase its resolution to better
\ take advantage of that accuracy.
\
\ In tests of the program over the entire range of D/A output I find that there
\ is a maximum error of 1.5 millivolts for a 3.0 volt full scale output. That
\ is, the maximum fractional error is one part in two thousand, or there is
\ 11 bits of accuracy.

Application Note MI-AN-057

Mosaic Industries Page 3 of 12 Any questions? Call (510) 790 - 8222

\ ***
\ ********** **********
\ ********** How to Use It **********
\ ********** **********
\ ***

\ To use this higher resolution option perform the following steps:
\
\ 1. Connect the QED Board to an Analog Conditioning Board and insert
\ 100 microfarad capacitors in board at locations FD1, FD2...FD8
\ corresponding to the DAC channels you wish to use for greater
\ resolution. This provides a 0.1 second output filter time constant.
\
\ 2. Insert gain resistors on the Analog Conditioning Board at locations
\ GD1, GD2...GD8 corresponding to the DAC channels you wish to use
\ to scale the maximum DAC output to voltages as great as 10.2 volts while
\ still sourcing up to 10 ma, and about 11.5 volts with little source
\ current capability. (The maximum voltage is the supply voltage of
\ nominally 13. +/- .13 volts less the op-amp headroom of 1.5 volts.)
\
\ 3. If you wish to continue using some channels as 8-bit DACs rather than
\ higher resolution DACs, and you do not require update times more
\ rapid than 5 msec then you can continue to use this code. You can just
\ use this software, but pass the desired 8-bit value to >Hi.Res.DAC
\ as the high order byte of its 16-bit integer input and set the low
\ order byte to zero. This program will then update the DAC channel with
\ the desired 8-bit value within 5 msec, and there will be no flicker on
\ that channel. You do not need a low pass filter on that channel.
\ If you need updates on an 8-bit channel more rapid than every 5 msec
\ while at the same time requiring high resolution channels then you
\ will need to modify this code appropriately.
\
\ 4. Download this text file.
\
\ 5. Execute Start.DAC to initialize all DAC outputs to zero, attach the
\ DAC service interrupt, and start up the periodic DAC update every
\ 5 msec.
\
\ 6. Send 16-bit integers to the desired DAC channel using the word
\ >Hi.Res.DAC which has the stack picture (u\n --). This top level word
\ takes as input a 16-bit unsigned value, u, and the DAC channel number, n.
\ The DAC output flickers between the most significant byte (MSB) and the
\ value one greater, MSB+1, with a duty cycle determined by the lower byte
\ (LSB), so that after adequate low-pass filtering an average analog voltage
\ is produced corresponding to one of 256 levels in between MSB and MSB+1.
\ The minimum output code is 0000 hex, and the maximum output code is FF00,
\ with all codes in between represented. Note that codes between FF00 and
\ FFFF all result in the maximum output. There are 255*256 = 65280 possible
\ inputs/outputs. To produce an output voltage, V, given a full scale
\ output, Vmax, the unsigned value that must be sent to >Hi.Res.DAC would
\ be u = 65280 * V / Vmax.

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

Mosaic Industries Page 4 of 12 Any questions? Call (510) 790 - 8222

\ 7. To calibrate a DAC channel send FF00 to the channel using >Hi.Res.DAC and
\ measure the voltage produced. This voltage is then used to determine
\ the code sent to a DAC channel to produce any voltage. For example,
\ suppose the voltage measured for channel #3 is 10.31 volts. The
\ following code sends any desired voltage up to 10.31 volts to DAC
\ channel 3:
\
\ 10.31 FCONSTANT Vmax#3 \ a constant to hold the maximum output
\ \ voltage
\ : >Channel#3 (r --)
\ \ r is a floating point number representing the voltage to
\ \ send to channel #3
\ Vmax#3 F/
\ 0.0 FMAX \ limit the input voltages to positive values
\ 1.0 FMIN \ limit the input to less than the maximum
\ 65280. F* UFIXX 3 >Hi.Res.Dac
\ ;
\
\ You would then send a voltage, for example 5.2 volts to that DAC channel
\ by executing:
\ 5.2 >Channel#3
\
\ 8. To stop updating the DACs execute Stop.DAC and the interrupt service
\ routine will stop. The DACs will be left set to the 8-bit level either
\ just greater or less than the 16-bit value sent to them.
\
\ 9. Because this routine uses the kernel word (>DAC) which does not
\ expect SPI resource conflicts, it does not call SPI.RESOURCE GET and
\ RELEASE. Consequently, this routine should not be used when other
\ hardware (for example the 12-bit A/D) may also require the SPI.
\ If you want to use routine in conjunction with other code that
\ also uses the SPI then you should disable interrupts around the
\ other user of the SPI. For example, to use the 12-bit A/D, instead of
\ calling the word A/D12.SAMPLE you would execute the sequence:
\
\ DISABLE.INTERRUPTS (A/D12.SAMPLE) ENABLE.INTERRUPTS
\
\ in which the faster flavor of the A/D word is used ((A/D12.SAMPLE) instead
\ of A/D12.SAMPLE) which doesn't call GET or RELEASE because that's
\ not necessary if interrupts are disabled around all SPI using words.
\ For example if you want to measure a signal from a temperature
\ transducer on the A/D12 channel #4 you could write a word like the
\ following:
\
\ : Get.Temperature (-- u)
\ \ u is an unsigned integer representing the temperature
\ -1 \ put a flag on the stack for single ended,
\ \ unipolar conversion
\ 4 \ the A/D channel number between 0 ad 7
\ DISABLE.INTERRUPTS (A/D12.SAMPLE) ENABLE.INTERRUPTS
\ ;

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

Mosaic Industries Page 5 of 12 Any questions? Call (510) 790 - 8222

\
\ The following are descriptions of all the user words:

\ Start.DAC (--)
 \ Initializes DAC outputs to zero and starts up their periodic interrupt
 \ service.

\ Stop.DAC (--)
 \ Stops the interrupt service of the DACs, leaving the DACs set to the
 \ nearest 8-bit approximation of their programmed value.

\ ReStart.DAC (--)
 \ Restarts up the DAC's periodic interrupt service returning them to their
 \ prior 16-bit values.

\ >Hi.Res.DAC (u\n --)
 \ Sends a 16-bit value to a DAC channel. u is the unsigned 16-bit value to
 \ send to the DAC and n, where 1 <= n <= 8, is the channel number. The
 \ minimum value for u is 0000 hex, and the maximum is FF00 (65280.), with
 \ all codes in between represented. Note that codes between FF00 and FFFF
 \ (or greater than 65280.) all result in the maximum output. There are
 \ 255*256 = 65280 possible inputs/outputs. To produce an output voltage, V,
 \ given a full scale output, Vmax, the unsigned value that must be sent to
 \ >Hi.Res.DAC would be u = 65280 * V / Vmax. If V and Vmax are floating
 \ point values this would be computed as
 \ V F@ 0.0 FMAX Vmax F@ FMIN Vmax F@ F/ 65280. F* UFIXX

\ >PERIOD (u --)
 \ u is and unsigned integer representing the number of 2 microsecond clock
 \ ticks of TCNT between updates of the PWMed D/A outputs. A period of 5
 \ milliseconds would require u = 2500. PERIODs less than 5 msec are not
 \ recommended as the servicing of all 8 DAC channels takes about 2.5 msec.
 \ If the PERIOD is too small interrupts will be missed and full TCNT
 \ rollover periods of 131 msec will be inserted as delays into the interrupt
 \ servicing. The PERIOD is initialized to 5 msec by Start.DACs, and can
 \ be changed thereafter by >PERIOD.
\ ***
\ ********** **********
\ ********** Warnings! **********
\ ********** **********
\ ***
\ Note: The following routine uses the kernel word (>DAC) which does not
\ expect SPI resource conflicts so does not call SPI.RESOURCE GET and
\ RELEASE. Consequently, this routine should not be used when other hardware
\ (for example the 12-bit A/D) may also require the SPI. If you want to use
\ this in an multitasking environment, or in conjunction with other code that
\ also uses the SPI then you would generally need to replace the call to (>DAC)
\ in the word Update.DAC.Values with a call to >DAC instead. However, in this
\ case, that solution is unsufficient. Because the call occurrs from within an
\ interrupt service routine, the GET would loop forever if the SPI is not free
\ because the interrupts that switch tasks are disabled while the interrupt
\ service routine runs (interrupts are not allowed to nest). A solution is to
\ continue to use (>DAC) but to disable interrupts around any other uses of the
\ SPI in any tasks so that this interrupt service routine never attempts to use
\ the SPI while it is otherwise in use. Because (>DAC) is called by this code
\ from within an interrupt service routine other users of the SPI will not be
\ able to interrupt (>DAC)'s use of it so that is not a concern.

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

Mosaic Industries Page 6 of 12 Any questions? Call (510) 790 - 8222

\ ***
\ ********** **********
\ ********** The Code **********
\ ********** **********
\ ***

ANEW <Hi.Res.DACs>

VARIABLE PERIOD \ Holds the period between interrups as the number of
 \ 2 microsecond ticks of TCNT. A value of 2500
 \ corresponds to 5 msec.
HEX
801A REGISTER: TOC3 8020 REGISTER: TCTL1
8022 REGISTER: TMSK1 8023 REGISTER: TFLG1

20 CONSTANT OC3.MASK
10 CONSTANT OC3.LEVEL.MASK
20 CONSTANT OC3.MODE.MASK

DECIMAL

Structure.Begin: DAC.Channel.Record
 TYPE.OF:
 INT-> +DAC.Value \ for the 16-bit unsigned value to be written
 1 RESERVED \ for the low order byte of the Target.PWM
 OR.TYPE.OF:
 1 RESERVED \ for the MSB to be sent directly to the DAC
 INT-> +Target.PWM \ for the lower order byte of the DAC value
 \ (the high byte of Target.PWM) to be PWMed
 TYPE.END
 2 RESERVED \ for use as Average.PWM by ?Update.DAC.PWM
 BYTE-> +Greater.DAC.Value \ for the MSB+1 to be sent to the DAC
Structure.End

\ Create a single structure containing all eight DAC channel records:

Structure.Begin: All.DAC.Info
 8 DAC.Channel.Record STRUCTS-> +DAC.Info.Start
Structure.End

\ Now we instantiate (reserve space for) the DAC.Info structure in variable
\ space:

All.DAC.Info V.INSTANCE: DAC.Info

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

Mosaic Industries Page 7 of 12 Any questions? Call (510) 790 - 8222

\ If we were not to use the above DAC data structure we would need the following
\ two variables for each DAC channel. They are shown here only for clarity.
\ The variable Average.PWM must directly follow the variable Target.PWM
\ in memory.

\ VARIABLE Target.PWM \ Holds the target PWM as an 8-bit number in the high order
\ byte. The contents of the low order byte are irrelevant. Fetch or store to
\ this variable using C@ and C!.

\ VARIABLE Average.PWM \ Used internally by the algorithm; holds a running
\ average PWM. To update the PWM immediately set both Target.PWM and Average.PWM
\ to the new value. To update the 256-bit long integral of the output most
\ quickly do not modify Average.PWM when Target.PWM is reset. The Average.PWM
\ is set by setting its high order byte to the desired PWM (0-255) and setting
\ its low order byte to 255.

\ The following is a high level version of the corresponding assembly language
\ routine. It is provided here for documentary purposes only:

\ : ?Update.DAC.PWM (xaddr -- Flag)
\ \ This word implements as PWM routine that optimally averages.
\ \ xaddr is the address of Target.PWM and xaddr+2 is the address of
\ \ Average.PWM, both as 16-bit unsigned integers.
\ \ Flag is the bit to be outputted, either true for high or false for low.
\ \ Each time Update.PWM is called Flag is set to either true or false
\ \ to maintain the proper average value for the PWM output.
\ [BASE @ HEX]
\ XDUP 2 XN+
\ Locals{ x&Average.addr x&Target.addr }
\ x&Target.addr @ FF00 AND x&Average.addr @ U>
\ IF
\ x&Average.addr @ x&Average.addr C@ - 00FF + x&Average.addr !
\ TRUE
\ ELSE
\ x&Average.addr @ x&Average.addr C@ - x&Average.addr !
\ FALSE
\ ENDIF
\ [BASE !]
\ ;

\ The following code is an assembly language version of the above high level
\ routine.
CODE ?Update.DAC.PWM (xaddr -- Flag)
 \ xaddr is the address of Target.PWM and xaddr+2 is the address of
 \ Average.PWM, both as 16-bit unsigned integers.
 \ Flag is the bit to be outputted.
 \ Each time Update.PWM is called Flag is set to either true or false
 \ to maintain the proper average value for the PWM output.
 BASE @ HEX
 02 IND,Y LDD \ Get the Target.PWM address
 02 IMM ADDD \ and increment by 2 and push it on the stack
 DEY DEY 00 IND,Y STD \ as the Average.PWM address.
 02 IND,Y LDD \ Fetch,
 DEY DEY 00 IND,Y STD \ and push the page too.
 02 IND,Y LDD \ Then XDUP the Average.PWM xaddress
 DEY DEY 00 IND,Y STD

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

Mosaic Industries Page 8 of 12 Any questions? Call (510) 790 - 8222

02 IND,Y LDD
 DEY DEY 00 IND,Y STD
 CALL @ \ @ Average.PWM and push it
 00 IND,Y LDAB CLRA \ get Average.PWM/256
 DEY DEY 00 IND,Y STD \ push Average.PWM/256
 02 IND,Y LDD 00 IND,Y SUBD \ replace Average.PWM/256 on tos with
 00 IND,Y STD \ Average.PWM - Average.PWM/256
 0A IND,Y LDD DEY DEY 00 IND,Y STD \ put Target address on tos
 0A IND,Y LDD DEY DEY 00 IND,Y STD \ put Target page on tos
 CALL @ \ @ Target.PWM and push it
 00 IND,Y LDD \ get target from stack
 CLRB \ zero out the low order byte
 04 IND,Y CPD \ Target.PWM - Average.PWM
 HI IF, \ if Target.PWM > Average.PWM
 TRUE IMM LDD 0C IND,Y STD \ set output to true and store it in place
 \ of target.addr on stack
 CLRA 02 IND,Y ADDD \ add 255 to Average.PWM - Average.PWM/256
 0A IND,Y STD \ and store it in place of the target page on
 \ the stack
 ELSE,
 FALSE IMM LDD 0C IND,Y STD \ else just set output false
 02 IND,Y LDD 0A IND,Y STD \ and store Average.PWM - Average.PWM/256
 \ in place of the target page on the stack
 ENDIF,
 06 IMM LDAB ABY \ drop top three stack cells
 \ we now have (flag\new.avg\avg.xaddr)
 CALL ! \ store to Average.PWM
 RTS
 BASE !
 END.CODE

\ This high level code is provided to help document the following assembly
\ language version:

\ : Update.DAC.Values \ takes 2.36 msec
\ \ Steps through the DAC channels, calling ?Update.DAC.PWM to determine
\ \ which value to send to the DAC, and sends it.
\ 8 0
\ DO
\ \ Call ?Update.DAC.PWM for a channel:
\ DAC.Info DAC.Channel.Record I * XN+ XDUP +Target.PWM ?Update.DAC.PWM
\ \ Depending on flag returned by ?Update.DAC.PWM send either the DAC's
\ \ eight bit value or a value one greater:
\ IF +Greater.DAC.Value ELSE +DAC.Value ENDIF
\ C@ I 1+ (>DAC)
\ LOOP
\ ;

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

Mosaic Industries Page 9 of 12 Any questions? Call (510) 790 - 8222

CODE Update.DAC.Values (--) \ This version takes 1.6 milliseconds.
 \ Steps through the DAC channels, calling ?Update.DAC.PWM to determine
 \ which value to send to the DAC, and sends it.
 CLRA
 01 IMM LDAB \ load counter value into B
 DEY DEY 00 IND,Y STD \ and put counter on stack (counter)
 DAC.Info +Target.PWM SWAP \ get xaddress of first target.pwm
 IMM LDD DEY DEY 00 IND,Y STD \ put address on the stack
 IMM LDD DEY DEY 00 IND,Y STD \ put page on the stack (counter\xaddr)
 BEGIN, \ (counter\xaddr)
 02 IND,Y LDD \ XDUP the xaddress
 DEY DEY 00 IND,Y STD
 02 IND,Y LDD
 DEY DEY 00 IND,Y STD
 02 IND,Y LDD \ XDUP the xaddress
 DEY DEY 00 IND,Y STD
 02 IND,Y LDD
 DEY DEY 00 IND,Y STD \ (counter\xaddr\xaddr\xaddr)
 CALL ?Update.DAC.PWM \ (counter\xaddr\xaddr\flag)
 00 IND,Y LDD \ test the flag
 EQ IF,
 04 IND,Y LDD \ modify address to point to +DAC.Value
 01 IMM SUBD
 04 IND,Y STD
 ELSE,
 04 IND,Y LDD \ modify address to point to +Greater.DAC.Value
 04 IMM ADDD
 04 IND,Y STD
 ENDIF,
 02 IMM LDAB ABY \ drop the flag
 CALL C@ \ (counter\xaddr\value)
 06 IND,Y LDD \ get the channel#, the counter
 DEY DEY 00 IND,Y STD \ and push it and call (>DAC)
 CALL (>DAC) \ (counter\xaddr)
 02 IND,Y LDD \ increment the target address
 06 IMM ADDD \ to point to next DAC channel record
 02 IND,Y STD
 05 IND,Y INC \ increment the counter
 09 IMM LDAA \ load terminal count into A
 05 IND,Y CMPA \ and compare it to the counter
 EQ UNTIL, \ to see if we're done
 06 IMM LDAB ABY \ drop the stack
 RTS
END.CODE

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

Mosaic Industries Page 10 of 12 Any questions? Call (510) 790 - 8222

: >Hi.Res.DAC (u\n --)
 \ u is an unsigned 16-bit value to send to the DAC and 1 <= n <= 8 is
 \ the channel number. The minimum value for u is 0000 hex, and
 \ the maximum is FF00, with all codes in between represented. Note
 \ that codes between FF00 and FFFF all result in the maximum output.
 \ There are 255*256 = 65280 possible inputs/outputs. To produce an output
 \ voltage, V, given a full scale output, Vmax, the unsigned value that must
 \ be sent to >Hi.Res.DAC would be u = 65280 * V / Vmax.
 1- \ convert channel number to 0...7 range
 Locals{ &channel &value }

 \ First store zero to the Target.PWM and Average.PWM
 0\0 DAC.Info DAC.Channel.Record &channel * XN+ +Target.PWM 2!

 \ Store the full 16-bit value in the DAC.Info data structure
 \ This puts the MSB in the +DAC.Value location and the LSB in
 \ the +Target.PWM location
 &value
 DAC.Info DAC.Channel.Record &channel * XN+ +DAC.Value !

 \ Store the lower byte in the Average.PWM
 &value
 DAC.Info DAC.Channel.Record &channel * XN+ +Target.PWM 2XN+ C!

 \ Store the MSB+1 to the +Greater.DAC.Value
 &value -8 SCALE \ shift value over 8 places to get high order byte
 255 AND \ blank out new top byte
 254 MIN 1+ \ increment by one but don't allow rollover from 255 to 256
 DAC.Info DAC.Channel.Record &channel * XN+ +Greater.DAC.Value C!
 ;

: >PERIOD (n --)
 \ n is the number of 2 microsecond clock ticks of TCNT between updates of
 \ the PWMed D/A outputs. A period of 1/2 millisecond or 500 microseconds
 \ would require n = 250
 PERIOD !
 ;
: D/A.Update.Interrupt.Service
 OC3.MASK TFLG1 C! \ Reset the OC3 interrupt flag so that new
 \ OC3 interrupts will be recognized. Because the flag is cleared by writing
 \ a one to it we can use a C! command without affecting the other bits.
 PERIOD @ TOC3 +! \ Add the PERIOD to TOC3 to set the time at which
 \ the next interrupt occurrs.
 Update.DAC.Values \ Update the 8 DAC channels
 ;

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

Mosaic Industries Page 11 of 12 Any questions? Call (510) 790 - 8222

: Install.D/A.Update.Interrupt.Service
 OC3.MASK TMSK1 CLEAR.BITS \ First we disable OC3 interrupts.
 OC3.MODE.MASK TCTL1 CLEAR.BITS \ Set the OC3 mode and level bits so that
 OC3.LEVEL.MASK TCTL1 CLEAR.BITS \ the timer is disconnected from output pin.
 CFA.FOR D/A.Update.Interrupt.Service \ Attach the service routine.
 OC3.ID ATTACH
 OC3.MASK TFLG1 C! \ Clear the OC3 interrupt flag.
 \ We clear the OC3 interrupt flag by writing a one to it. This seems counter-
 \ intuitive but that's the way the hardware works! It makes sense when
 \ we realize that we can just use a C! and not affect the other bits.
 \ OC3.MASK TMSK1 SET.BITS \ Finally, we enable OC3 interrupts.
 \ Interrupts won't start until interrupts are also globally enabled by
 \ ENABLE.INTERRUPTS. Locally enabling the interrupts here is commented out
 \ because, although it's a good idea for some applications, for this
 \ application we don't want the interrupts starting until a separate
 \ word, called Start.Periodic.D/A.Update, is executed.
 ;

: Stop.DAC (--)
 OC3.MASK TMSK1 CLEAR.BITS \ Disables the OC3 interrupts.
 ;

: Start.Periodic.D/A.Update
 Install.D/A.Update.Interrupt.Service
 2500 >PERIOD
 OC3.MASK TMSK1 SET.BITS \ Enables the OC3 interrupts
 ENABLE.INTERRUPTS \ and globally enables interrupts.
 ;

: Start.DAC (--)
 9 1
 DO
 0 I >Hi.Res.DAC
 LOOP
 Init.A/D12&DAC
 Start.Periodic.D/A.Update
 ;

: ReStart.DAC (--)
 Start.Periodic.D/A.Update
 ;

\ AXE out all words that the user doesn't need:

AXE DAC.Channel.Record AXE +DAC.Value AXE +Target.PWM
AXE +Greater.DAC.Value AXE All.DAC.Info AXE +DAC.Info.Start
AXE DAC.Info AXE ?Update.DAC.PWM AXE Update.DAC.Values
AXE PERIOD AXE D/A.Update.Interrupt.Service
AXE TOC3 AXE TCTL1 AXE TMSK1 AXE TFLG1
AXE OC3.MASK AXE OC3.LEVEL.MASK AXE OC3.MODE.MASK
AXE Install.D/A.Update.Interrupt.Service
AXE Start.Periodic.D/A.Update

\ ***
\ ********** **********
\ ********** End of Code **********
\ ********** **********
\ ***

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

Mosaic Industries Page 12 of 12 Any questions? Call (510) 790 - 8222

Mosaic Industries
5437 Central Ave Suite 1, Newark, CA 94560 Telephone: (510) 790-8222 Fax: (510) 790-0925

This application note is intended to assist developers in using the QED Board. The information provided is believed to be
reliable; however, Mosaic Industries assumes no responsibility for its use or misuse, and its use shall be entirely at the user's
own risk. Any computer code included in this application note is provided to customers of the QED Board for use only on the
QED Board. The provision of this code is governed by the applicable QED software license. For further information about
this application note contact: Paul Clifford at Mosaic Industries, Inc., (510) 790-1255.

Greater Resolution for the QED 8-bit DAC Application Note MI-AN-057

