
Mosaic Industries, Inc. Page 1 of 14 Any questions? Call (510) 790 - 8222

Mosaic Industries

Summary

This application note describes how to use the QED
Board and the QED Digital I/O Board to directly
control one or more stepper motors without the need
for expensive indexers. The combination of a QED
Board and one or two QED Digital I/O Boards
delivers the combined capabilities of a controller,
indexer and MOSFET driver for 1 to 5 motors at
speeds to 1000 steps per second!

Description

A single QED Industrial Control System provides an
enclosure for the QED boards, front panel keypad
and display, serial connections for programming the
system, and convenient screw terminals that make it
easy to attach the opto-isolated 3 Amp drive signals
to the stepper motors.

QED-3 Boards shipped with V3.11 or later of the
kernel software contain the software support utilities
as well as the new version of the onboard U1A PAL
required to drive the stepper motors. QED-3 Boards
shipped starting in June 1996 have these new
features. Call Mosaic Industries if you are interested
in upgrading previously purchased QED-3 Boards to
run the stepper motor control code.

This document describes the stepper motor control
software in detail, presents some sample commands,
and includes a "mini-glossary" of pre-coded Forth
and C motion control functions.

Overview of the QED Board's
Stepper Motor Control Capabilities

Steppers are versatile motors that move in discrete
steps and are well suited to digital motion control
systems. The motors typically turn 1.8 degrees per
step, or 200 steps per revolution, although different
motors may have larger or smaller step sizes than
this standard value.

Typical motor control systems involve:
• a computer/controller that issues high level

commands to an indexer to manage the

operation (such as moving an X/Y table,
moving items from one location to another,
controlling a cutting process, etc.);

• an indexer that issues step commands; and
• a driver that responds to the indexer by

applying drive voltage and current to the
motor coils.

These systems span a wide range of complexity and
performance. At the high-performance end of the
spectrum, "microstepping" drivers with high-voltage
pulse-width-modulated drive can attain the ultimate in
smoothness and quietness by driving the motor coils
with analog sine waves as opposed to digital square
waves. Simpler control schemes command the
motor to move in full-step increments. "Halfstepping"
control schemes allow the motor position to be
incremented in half-step units which makes for
greater smoothness and higher positioning precision
compared to full-step control. Many motor control
systems require a separate indexer and motor driver
for each stepper motor in the system; consequently,
the cost of multi-axis motion control systems can
reach many thousands of dollars.

APPLICATION
NOTE

MI-AN-039

Controlling Stepper Motors
with the QED Board

Mosaic Industries, Inc. Page 2 of 14 Any questions? Call (510) 790 - 8222

In most cases, stepper motors cannot instantly go
from a stopped state directly to their maximum
speed. Rather, they must "ramp up" in speed to
attain the maximum speed. Similarly, a motor turning
under load at full speed must be "ramped down" to a
stopped state to maintain a correspondence between
the physical position of the rotor and the number of
applied steps.

The QED solution is ideal for non-microstepping
applications that require 1 to 5 stepper motors at
speeds up to 1000 full- or half-steps per second.
Precoded software running on the QED Board
performs the functions of the application software,
high level motor control, and indexer. The indexer
functions are interrupt-based, so other tasks in the
application (data acquisition, calculation, display
updating, etc.) can be performed while the motors are
stepping. High level motion control functions make it
easy to specify and control the speed and number of
steps to be taken. Smooth ramp-up and ramp-down
speed profiles are performed automatically based on
acceleration and deceleration parameters set by the
programmer for each motor.

The high current drivers on the QED Board and the
QED Digital I/O Board perform the motor driver
functions using MOSFETs to switch a DC voltage
source through the motor coils. A QED Industrial
Control System with a QED Board and two Digital I/O
Boards can control and drive up to 5 stepper motors.
While the 4 MOSFETs on the QED Board itself are
limited to steady-state currents of 150 mA per coil,
the 8 MOSFETs on each QED Digital I/O Board can
control 3 Amps per coil at voltages up to 50 VDC.
These 8 opto-isolated outputs on each QED Digital
I/O Board can control two unipolar 4-coil stepper
motors.

Overview of the Stepper Control
Code

Three functions have been added to the QED V3.11
kernel to support stepper motor control. These QED-
Forth functions are named CREATE.RAMP,
SPEED.TO.DUTY, and STEP.MANAGER. The
Control C versions of the functions are named
CreateRamp(), SpeedToDuty() and StepManager().
A high level source code file (available in both Forth
and C) provides a variety of motor control functions to
manage ramping, speed and step control.
Throughout this document both the Forth and C
versions of the functions and high level commands
will be presented.

The stepper code is explained in more detail in the
Forth and C source code listings which contain the

high level stepper control routines. These documents
are available from Mosaic Industries. The availability
of the high level source code allows you to customize
the stepper control functions for your own application.

A brief overview of the high level source code is
presented here along with the glossary entries for the
three utility functions in the V3.11 PROM. Glossary
entries for key high level stepper control functions are
also included in this document.

Conceptually, the stepper motor control code
comprises the following elements:

1. Two arrays of structures that are accessed
by both the low-level support functions and
the high level code. One array holds a status
structure for each stepper motor, and the
other array defines a speed ramp for each
stepper motor.

2. Three support functions in the V3.11 PROM
that perform the indexer functions and write
the step patterns to specified high-current-
driver output ports.

3. A high level source code file (available in
Forth and C) that defines a set of useful
motion control functions.

Stepper Motor Data Structures

A 1-dimensional array of status structures is called
STATUS.ARRAY in Forth, and status_array in C. For
each motor it specifies the extended address and bit
mask of the port that controls the motor, the state of
the motor (disabled, stopped, in a ramp, at a final
speed, etc.), a signed 32 bit step counter, a direction
flag, a set of bit masks that specify the step patterns,
the default steady speed, the jog/start speed, the
default acceleration and deceleration, additional
parameters used by the utility routines, and a pointer
to the RAMP.ARRAY.

The array that specifies the number of steps to be
taken at each speed for each motor is called the
RAMP.ARRAY (ramp_array in C). Each row
corresponds to one stepper motor, and each entry in
a row contains a two element structure that specifies
a number of steps and a corresponding speed
(represented as a duty cycle as explained below).

PROM-Resident Utility Functions

Two of the PROM-resident utility functions are used
to write to the RAMP.ARRAY. SPEED.TO.DUTY
(named SpeedToDuty() in C) converts a specified
speed in steps per second to a "duty cycle" measure
used internally by the motor control code. The

Controlling Stepper Motors with the QED Board Application Note MI-AN039

Mosaic Industries, Inc. Page 3 of 14 Any questions? Call (510) 790 - 8222

CREATE.RAMP function (named CreateRamp() in C)
initializes the RAMP.ARRAY. It expects as input
parameters the starting speed, ending speed, linear
acceleration, ticks per second of the 68HC11's time
base, a starting ramp address, and the number of
entries in the ramp. It uses a linear ramp algorithm to
initialize the appropriate elements in RAMP.ARRAY,
and returns the total number of steps in the resulting
ramp.

The third PROM-resident utility function is named
STEP.MANAGER (StepManager() in C). This
function is designed to be called from a periodic
interrupt service routine; the default time base is once
per millisecond. STEP.MANAGER expects the base
address of the STATUS.ARRAY in the Y register.
For each enabled motor, it writes the appropriate
pattern at the appropriate duty cycle to the motor port
to attain the speed specified in the motor's
RAMP.ARRAY. This assembly coded routine
executes in approximately 120 µs per enabled
stepper motor. Thus running four stepper motors at a
maximum speed of 1000 full- or half-steps per
second requires approximately half of the 68HC11's
available time (480 µs interrupt service time every
1000 µs).

High Level Stepper Motor Control Code

The high level control code declares and allocates
the STATUS.ARRAY and RAMP.ARRAY, sets up the
clock interrupt service routine using output compare 3
(this can be changed by the user), defines routines
that initialize the STATUS.ARRAY, and defines a
versatile set of functions to facilitate motion control.
Sample function names are 1STEP, JOG.STEPS,
STEPS.AT.SPEED, STEPS.AT.STEADY,
CHANGE.SPEED, SOFT.STOP, and ESTOP (the
corresponding names in Control C are similar). The
well commented high level source code file and the
descriptions below present more details regarding
these functions.

How the Software Handles
Stepping and Half Stepping

To "full step" a standard unipolar stepper motor, a
sequence of 4 step patterns is applied in a specified
order. The frequency at which the patterns are
applied is the stepping frequency. In other words,
one step is taken each time a new pattern is written
to the motor port. Advancing through the 4 patterns
in one direction produces clockwise motor rotation,
and advancing through the patterns in the opposite
direction produces counter-clockwise motor rotation.

To "half step" the same motor, a distinct sequence of
8 step patterns is applied in a specified order. Now

each time a new pattern is written to the motor port,
the motor moves through half the angle it would if it
were full stepping.

You can configure any stepper motor for half
stepping or full stepping when runtime initialization
occurs. Half stepping may provide smoother
performance in some applications, but for a given
time base as set by the TICKS/SECOND
(TICKS_PER_SECOND) constant, half stepping
results in a slower attainable speed as expressed in
revolutions per second for a given motor. This is
because the low level utility functions do not
distinguish between half steps and full steps. Thus, if
the software is capable of writing a new step pattern
to a motor 1000 times per second, then a motor
configured for full stepping will take a maximum of
1000 steps per second, while a motor configured for
half stepping will take a maximum of 1000 half steps
per second. If these two motors are identical, the first
will turn at twice the speed of the second.

All speeds, accelerations, decelerations and step
counts are expressed in units of full steps or half
steps, depending on how the stepper motor has been
initialized. The InitSteppers() function at the bottom
of the high level source code file corrects for this
effect by applying a 2X correction factor to the
speeds and accelerations saved in the status array if
half stepping is specified. But the user must still be
aware when specifying the number of steps or half
steps, or when calling functions that take a speed as
a parameter. The following table summarizes the
units for some key parameters:

Parameter
 Units

HalfStep Mode FullStep Mode

Number of steps Half steps Steps
Speed Halfsteps/sec Steps/sec
Acceleration Halfsteps/sec/sec Steps/sec/sec
Deceleration Halfsteps/sec/sec Steps/sec/sec

A Tour of the High Level Stepper
Motor Control File

The high level source code files named
STEPPERS.4TH and STEPPERS.C provide a set of
useful stepper control functions coded in Forth and C,
respectively. You can customize the code for your
own application by making some simple modifications
to a few constants and functions.

Controlling Stepper Motors with the QED Board Application Note MI-AN039

Mosaic Industries, Inc. Page 4 of 14 Any questions? Call (510) 790 - 8222

Specifying the Number of Stepper Motors
and the Speeds Per Ramp

Near the start of the file are some constant
definitions. For maximum efficiency, set the constant
MAX#STEPPERS (named MAX_STEPPERS in C)
equal to the number of stepper motors that you are
controlling. The source code file specifies 5 stepper
motors: one is controlled by the 4 high current drivers
on the QED Board, and each of two QED Digital I/O
Boards controls two additional stepper motors.

There is a trade-off between the number of motors
being controlled and the maximum stepping speed,
limited by the available processing power of the
68HC11. Given that each interrupt-driven step
requires 120 µsec per motor, while all 5 motors are
stepping at their maximum speeds (1000 steps or
halfsteps per second in this application), the 68HC11
processor is busy about 60% of the time managing
the motion via the low-level interrupt-driven utilities.
Thus most applications would either use fewer
motors or would lower the TICKS/SECOND constant
(TICKS_PER_SECOND in C) to decrease the
maximum attainable speed of each motor.
TICKS/SECOND is described in the "Clock Interrupt
Service Routine" section below.

The constant SPEEDS.PER.RAMP
(SPEEDS_PER_RAMP in C) specifies how many
discrete speeds each ramp-up or ramp-down
contains; the default value is 8. If you need smoother
ramps containing more discrete speeds, you can
make this value larger; values smaller than 8 are not
recommended. For each incremental increase in this
constant, the number of bytes in RAMP.ARRAY
(ramp_array) is increased by MAX#STEPPERS * 2.

The Stepper Status Data Structure

The source code defines the STEPPER.STATUS
(stepper_status in C) arrays of structures that hold all
of the stepper motor control parameters that are
described in the "Stepper Motor Data Structures"
section above. The stepper status structure contains
parameters that are used by the low level utility
functions as well as useful high level information.
The initialization functions that set up these
parameters for each motor in use are located at the
end of the source code file and are described later in
this document. They are named INIT.STATUS and
INIT.STEPPERS (InitStatus() and InitSteppers() in
C).

Step Counter

One useful parameter in the stepper status structure
is the signed 32-bit step counter that keeps track of
the step count over a range of +/- 2,147,483,647
counts. Positive values represent clockwise rotation,
and negative values represent counter-clockwise
rotation. The following code fragments reference the
32-bit step count for motor 2.

In Forth:
2 STATUS.ARRAY +STEP.COUNTER 2@(-- d)

which leaves the value on the data stack.

In C:
Long current_step_counter =
 status_array[2].stepCounter;

which assigns the stepCounter to a variable.

You can set the step counter to any value you want
as long as the motor is not moving. For example, if
you perform a "HOME" operation in which a
microswitch is used to detect the "home" position of
stepper motor 2, you could then set the motor's step
count to zero with the following code:

In Forth:
DIN 0 2 STATUS.ARRAY +STEP.COUNTER 2!

In C:
status_array[2].stepCounter = 0;

If the motor is configured for full stepping, the count
indicates the number of full steps that have been
taken since the status array was initialized or since
the step counter was last zeroed (for example, during
a "HOME" operation in which a microswitch is used
to detect the stepper's "home" position, and the step
count is set to zero when the switch is depressed). If
the motor is configured for half stepping, the count
indicates the number of halfsteps that have been
taken. In each case the counter is a signed 32-bit
value. To calculate the total number of revolutions,
simply divide the step counter by the number of steps
(or half steps) per revolution for your motor.

For example, if a particular motor is configured for full
stepping and moves 1.8 degrees per step (a common
value), then the motor has 200 steps per 360-degree
revolution. Assume that we initialize the motor, set
its step counter to zero at the motor's "home"
location, and then command the motor to step 450
clockwise steps and 250 counter-clockwise steps.
Reading the step counter using the code fragment
above will return a value of +200 steps which is
equivalent to exactly one clockwise revolution.

Controlling Stepper Motors with the QED Board Application Note MI-AN039

Mosaic Industries, Inc. Page 5 of 14 Any questions? Call (510) 790 - 8222

Number of Steps In Ramp Parameter

Another parameter maintained in the status structure
array is an unsigned 16-bit step counter that is
zeroed at the start of each ramp and incremented
once for each step or half step taken. The high level
application program may read but not write to this
parameter, as it is used by the low level stepper
motor control utilities. Its value for stepper motor
number 3 can be obtained as follows:

In Forth:
3 STATUS.ARRAY +ELAPSED.STEPS.IN.RAMP @

(-- u)
which leaves the value on the data stack.

In C:
uint current_steps_in_ramp =
 status_array[3].elapsedStepsInRamp;

which assigns the value to a variable.

The Jog/Start Speed

You may specify several default speeds and
accelerations for each motor at initialization time.
One user-specified speed parameter is called the
jog/start speed; it should be chosen as a speed in
the "safe starting" region of the motor's speed/torque
characteristic. In other words, the motor should be
able to abruptly move from a stopped state to a
steady motion at the jog/start speed without losing
any steps. The jog/start speed is used by the stepper
control software for several purposes. First, when
ramping up from a stopped state, the
CREATE.RAMP function (which is called by all of the
high level speed control functions) hops the motor
speed right up to the jog/start speed, and then
linearly increases speed (using the specified
acceleration) to attain the specified final speed.
Second, the jog/start speed is the default speed used
by the JOG.STEPS function (named JogSteps() in C)
to move from one position to another. Customize the
INIT.STEPPERS (InitSteppers() in C) function at the
end of the source code file to set the jog/start speed
for each motor in your system.

The Steady Speed

Another user-specified speed parameter is called the
steady speed; this is typically specified as the fastest
speed that the motor can operate at smoothly under
load without losing steps. The RAMP.TO.STEADY
and STEPS.AT.STEADY functions (named
RampToSteady() and StepsAtSteady() in C) use this
speed as the final/maximum speed. Customize the
INIT.STEPPERS (InitSteppers() in C) function at the
end of the source code file to set the steady speed
for each motor in your system.

The Acceleration and Deceleration

The other user-specified motion parameters are the
acceleration (used during ramp-up to higher speeds)
and the deceleration (used during ramp-down to
lower speeds). These are used by the high level
motion control functions to generate ramps during
speed changes. For example, if a motor is full-
stepping at 500 steps per second and its deceleration
parameter is 2500 steps per second per second, a
linear ramp-down to a stopped state will take
500/2500 = 0.2 seconds. A slower deceleration rate
would result in a longer ramp-down period, and a
faster deceleration rate would result in a shorter
ramp-down period. Typically, lower
acceleration/deceleration values are required for
motors and loads with high inertia; the resulting
slower ramp-up and ramp-down profiles avoid loss of
steps during speed changes. Lightly loaded motors
with low inertia can use higher accelerations and
decelerations without losing steps. Customize the
INIT.STEPPERS (InitSteppers() in C) function at the
end of the source code file to set the acceleration and
deceleration for each motor in your system.

Motor Port, Mask and Shadow RAM
Parameters

The status structure array contains the 32-bit
extended motor port address and a mask (typically
the mask has 4 bits set and 4 bits clear) that specifies
which bits of the port control the motor. These are
set by the INIT.STATUS function (named InitStatus()
in C). For efficiency reasons, the mask is actually the
"non-motor mask": the 0s in the mask indicate the
bits associated with the stepper motor, and the 1s
indicate the non-motor bits.

Some output ports (such as those on the QED Digital
I/O Board) are write-only ports. To keep track of the
prior contents of the port, each port xaddress is
associated with a "shadow RAM" address. This
makes it possible to perform "read/modify/write"
operations on the port that modify certain port bits
while preserving the prior state of other bits.

The driver code for the Digital I/O Board defines
shadow ram locations, and the high level stepper
motor code also allows you to define shadow
locations. Note that there must be only 1 shadow
RAM byte per port! For example, if you are using the
driver code for the QED Digital I/O Board as well as
this stepper motor source code, you should use the
appropriate reference to the OUTPUT.SHADOW
(Output_Shadow in C) array as the shadow RAM
addresses.

Controlling Stepper Motors with the QED Board Application Note MI-AN039

Mosaic Industries, Inc. Page 6 of 14 Any questions? Call (510) 790 - 8222

Some output ports (such as PPB on the QED Board)
have built-in read-back capability. In this case the
16-bit shadow address must be set equal to the least
significant 16 bits of the port xaddress. The source
code file shows how to specify the correct port
xaddress, non-motor mask and shadow address to
interface a stepper motor to the QED Board's
onboard high current drivers which are controlled by
PPB.

Customize the INIT.STEPPERS (InitSteppers() in C)
function at the end of the source code file to set the
address, shadow, and mask information for each
motor in your system. The default values presented
at the end of the source code file provide a useful
template.

Other Parameters in Stepper Status

The INIT.STATUS (InitStatus() in C) function
described below initializes all of the elements in the
stepper status structure array, and is described in
more detail below. Other key parameters include the
step patterns and number of step patterns, the
specified direction (1 = clockwise, -1 = counter-
clockwise), pointers to the ramp array, various low-
level parameters, and the state variable. The state
variable indicates whether the motor is disabled,
stopped, at its final speed, in a ramp, about to enter a
ramp, or about to exit a ramp. The source code
defines named numeric constants to represent each
state.

The Ramp Array

The RAMP.ARRAY (ramp_array in C) is a two-
dimensional array of structures. Each row
corresponds to one stepper motor. Each element in
the row is a 4-byte structure comprising an integer
"step limit" followed by an integer "target duty cycle".
The step limit specifies how many steps are to be
taken at each speed in the ramp, and the duty cycle
is directly related to the speed. The CREATE.RAMP
(CreateRamp() in C) function writes these
parameters based on the specified start speed,
steady speed and end speed, and acceleration for
the motor. The low level STEP.MANAGER
(StepManager() in C) function reads these ramp
parameters to control the motor speed and step
count.

The number of columns in the ramp array equals
((1+SPEEDS.PER.RAMP)*2); the
SPEEDS.PER.RAMP constant is discussed in an
earlier section. Each column can accommodate a
ramp-up to a steady speed followed by a ramp-down
to a terminal speed.

Clock Interrupt Service Routine

A periodic interrupt generated by an output compare
(OC) is used to call the STEP.MANAGER function to
control the motor speed. The frequency at which the
service routine is called is set by the following related
constants:

In Forth:
TICKS/SECOND TCNTS/TICK

In C:
TICKS_PER_SECOND TCNTS_PER_TICK

The default value of TICKS/SECOND is 1000; this
limits the maximum motor speed to 1000 full- or half-
steps per second. The related constant TCNTS/TICK
specifies the number of counts of the processor's
TCNT register per "tick" of the stepper interrupt. The
TCNT register increments every 2 µsec, so for the
default case there are 500 TCNTS per TICK. In
general, the product of TICKS/SECOND times
TCNTS/TICK should equal 500,000.

As described in the "Specifying the Number of
Stepper Motors and the Speeds Per Ramp" section
above, there is a trade-off between the number of
motors being controlled and the maximum stepping
speed, limited by the available processing power of
the 68HC11. Each interrupt-driven step requires 120
µsec per motor, and it is generally a good idea to use
less than 50% of the processor's time for a single
interrupt function such as stepper motor speed
control. Thus a typical application should use 4 or
fewer stepper motors if TICKS/SECOND is set to
1000. When designing the application software, it is
also important to make sure that competing interrupts
do not disrupt each other. For example, interrupt-
based control of several stepper motors might not be
compatible with operation of the optional interrupt-
driven secondary serial port at certain baud rates.
The source code file includes a discussion of this
point just before the definitions of the
TICKS/SECOND constant.

The source code file uses OC3 (output compare 3) to
generate the periodic stepper control interrupt. You
may select a different output compare channel if you
wish, but recall that OC2 is used for the multitasking
executive's timeslicer, and OC4 is used to support
the optional secondary serial port. The interrupt
service routine simply loads the Y register with a
pointer to the base of the ramp array, calls
STEP.MANAGER (StepManager() in C), updates the
TOC3 register, clears the interrupt flag bit, and
returns. As described earlier, STEP.MANAGER
performs the motor control functions based on the
contents of the status array and the ramp array.

Controlling Stepper Motors with the QED Board Application Note MI-AN039

Mosaic Industries, Inc. Page 7 of 14 Any questions? Call (510) 790 - 8222

Step Pattern Sequences

The next section of the source code defines the step
patterns for full stepping and half stepping. We
assume that the stepper motor is interfaced either to
the bottom 4 bits of a port (bits 0-3, called the "lower
nibble") or the top 4 bits of a port (bits 4-7, called the
"upper nibble"). Distinct constants are defined for the
lower nibble and upper nibble patterns. The
functions FULL.STEPS and HALF.STEPS
(FullSteps() and HalfSteps() in C) are called by the
INIT.STATUS (InitStatus()) function to initialize the
step patterns in the stepper status array.

The step patterns required may vary according to the
type of stepper motor used. You can edit the
patterns according to the manufacturer's instructions
for your stepper motor. For example, if a motor's
sense of "clockwise" and "counter-clockwise" is
wrong, you can reverse the order of the step patterns
in the source code file to fix the problem.

Diagnostic Functions

The functions PRINT.1.RAMP and
SHOW.STEPPER.STATUS (PrintRamp() and
ShowStepperStatus() in C) are for diagnostic
purposes only. Each function expects the motor
index as the input parameter. The former function
prints one row of the ramp array, and the latter
function prints a summary of the stepper status
structure for the specified motor. Calling these
routines after executing various motor control
functions may interest the curious user.

Speed Control Functions That Assume a
Known Starting State

In this section we discuss some functions that control
the motor speed assuming a known starting state
(either stopped, or rotating at a known speed).
Additional subsidiary functions are defined in the
source code and may prove useful in some
applications. The next section discusses higher level
functions that are more flexible as well as functions
that also control the number of steps taken.

Many of the motor control functions expect as input
parameters a direction specifier and a motor index.
The direction parameter is +1 to indicate clockwise
rotation, and -1 to indicate counter-clockwise rotation.
The CW and CCW constants are defined in the
source code as +1 and -1, respectively. The motor
index ranges from 0 to (MAX#STEPPERS - 1).

RAMP.TO.SPEED (RampToSpeed() in C) assumes
that the motor is initially stopped. It expects the

direction, target speed, and motor index as input
parameters, and returns the number of full or half
steps taken during the ramp-up. The motor is left
running at the specified final speed. This function is
used to ramp up from a stopped state to a final
specified speed using the acceleration specified in
the status array. As always, speeds are expressed in
steps per second if the motor is configured for full
stepping, and halfsteps per second if the motor is
configured for half stepping.

For example, if motor 0 has been configured for full
stepping using INIT.STEPPERS and is currently
stopped, the following Forth command causes the
motor to accelerate up to a speed of 420 steps per
second in the counter-clockwise direction:

CCW 420 0 RAMP.TO.SPEED

The following statement has the same effect in C if
InitSteppers() has been executed in main or
elsewhere:

RampToSpeed(CCW, 420, 0);

(Note: if you are using Control C and are interactively
calling a motor control function from the terminal, you
must type the numeric direction indicators 1 or -1
instead of CW or CCW.)

RAMP.TO.STEADY (RampToSteady() in C) simply
calls RAMP.TO.SPEED, specifying the motor's
"steady speed" as defined in the status array as the
target speed. (You specify the steady speed for each
motor by customizing and executing
INIT.STEPPERS.) RAMP.TO.STEADY expects the
direction and motor index as input parameters, and
returns the number of full or half steps taken during
the ramp-up. This function is used to ramp up from a
stopped state to the default steady speed.

FROM.SPEED.TO.STOP (FromSpeedToStop() in C)
assumes that the motor is initially moving at a known
speed. It expects the starting speed and motor index
as input parameters, and returns the number of full or
half steps taken during the ramp-down. The motor is
left in a stopped, energized state with holding torque.

Highest Level Motion Control Functions

The section of the source code file titled "High Level
Speed and Step Control" contains the most versatile
motion control routines. Each of these functions is
described in turn.

SOFT.STOP (SoftStop() in C) is the most versatile
and safest way to stop without losing track of the step
count. If the motor is already stopped or disabled,
this function does nothing and returns a 0 to indicate
that no steps were taken. If the motor is moving
(either at steady speed or in a ramp), this routine

Application Note MI-AN039Controlling Stepper Motors with the QED Board

Mosaic Industries, Inc. Page 8 of 14 Any questions? Call (510) 790 - 8222

smoothly ramps it down to a stopped condition and
returns the number of steps (if full stepping) or
halfsteps (if halfstepping) that occurred during the
ramp down.

ESTOP (EStop() in C) causes an abrupt "emergency
stop" within 1 tick of the timebase interrupt, without a
ramp down. It can be safely used to stop when
stepping at jog speed, but at faster speeds,
uncounted steps may occur due to motor inertia.
ESTOP leaves the motor stopped with a step pattern
applied so that the motor still has holding torque. It
can also be used to undo the effect of disable_motor
by energizing the motor coils (but note that before
first using a motor, you must call INIT.STATUS and
clear the motor port as done in INIT.STEPPERS).

CHANGE.SPEED (ChangeSpeed() in C) is the most
versatile and safest way to attain any target speed
regardless of the initial speed or state (i.e.,
STOPPED, IN_RAMP, etc.) of the motor. This
routine can be used to ramp up to a specified speed
from a stopped state, or ramp up or down to a new
speed from a speed that is now in effect. It can even
be called while the motor is in the middle of a ramp
up or ramp down; this smart routine carefully avoids
writing over a ramp that is currently in use by the
background interrupt routine.

The remaining high level routines assume that the
motor is stopped when the function is called:
• STEPS.AT.SPEED (StepsAtSpeed() in C) ramps

up, steps at the user-specified speed, and ramps
down for the total specified number of steps (if
full stepping) or halfsteps (if halfstepping).

• STEPS.AT.STEADY (StepsAtSteady() in C) is
very similar, except it uses the "steady speed"
parameter that is stored in the motor's status
structure as the stepping speed between the
ramp up and ramp down.

• JOG.STEPS (JogSteps() in C) performs the
specified number of steps at the jog/start_speed
that is stored in the motor's status structure; no
ramp-up or ramp down is performed because the
jog speed is typically specified in the safe
start/stop operating region of the motor.

• 1STEP (Step1() in C) simply performs 1 step in
the specified direction.

Examples of High Level Motion Control
Commands

For example, if motor 0 is configured for full stepping
using INIT.STEPPERS, the following Forth command
causes the motor to set up and execute a ramp to
establish a speed of 420 steps per second in the
current direction:

420 0 CHANGE.SPEED

The following statement has the same effect in C if
InitSteppers() has been executed in main or
elsewhere:

ChangeSpeed(420, 0);

This command works whether the motor is stepping
at a steady speed, ramping up, or ramping down. It
even works if the motor is stopped (as long as it is
not disabled and has taken at least one step since
initialization); in this case the direction is the last
direction that the motor was turning. The function
returns the number of full- or half-steps that were
performed during the transition ramp to the new
speed.

To safely ramp down motor 3 to a stop from any
speed, simply execute the Forth command:

3 SOFT.STOP
or the C command:

SoftStop(3);
The command uses the deceleration rate specified in
the motor's status array, and the function returns the
number of full- or half-steps that were performed
during the ramp down.

As another example, if motor 2 is configured for half
stepping, the following Forth command dictates a
total of 10,000 halfsteps at a top speed of 900
halfsteps per second in the clockwise direction:

CW 10000 900 2 CHANGE.SPEED

The following statement has the same effect in C:

ChangeSpeed(CW, 10000, 900, 2);

Finally, if motor 1 is configured for full stepping, the
following Forth command dictates 1,000 full steps in
the clockwise direction at the jog/start speed
specified in the motor's status structure:

CW 1000 1 JOG.STEPS

The following statement has the same effect in C:
JogSteps(CW, 1000, 1);

Recall that if you are using Control C and are
interactively calling a motor control function from the
terminal, you must type the numeric direction
indicators 1 or -1 instead of CW or CCW.

Controlling Stepper Motors with the QED Board Application Note MI-AN039

Mosaic Industries, Inc. Page 9 of 14 Any questions? Call (510) 790 - 8222

Initialization Utilities

This final section of the source code allows you to
define constants that specify your unique system
configuration, including the port addresses that
control the motors, the jog and steady speeds and
acceleration parameters that are appropriate for each
stepper motor. All initialization functions are
performed by the function named INIT.STEPPERS
(InitSteppers() in C). Let's examine some constant
definitions and then step through the code for this
initialization function.

System Configuration Port Addresses,
Shadows, and Bit Masks

The system configured in the source code controls 5
stepper motors using a QED Board and 2 QED
Digital I/O Boards. The 4 high current drivers on the
QED Board control 1 motor, and each of the Digital
I/O Boards' 8 high current driver ports controls 2
additional stepper motors. Thus the constant
MAX#STEPPERS (MAX_STEPPERS in C) described
above is set equal to 5. Many systems will involve
fewer motors, and in these systems
MAX#STEPPERS should be set to the appropriate
value to avoid wasting time servicing motors that are
not present.

One static variable is declared for each Digital I/O
Board to serve as a "shadow" ram location for the
write-only high current output port. Use of a shadow
ram location allows the software to perform
"read/modify/write" operations on the port; this means
that we can modify some specified bits in the port
while leaving others unchanged. The shadow
variable for the first Digital I/O Board which controls
motors number 0 and 1 is called
MOTOR0&1.SHADOW in Forth, and
motor0_1_shadow in C. The shadow variable for the
second Digital I/O Board which controls motors
number 2 and 3 is called MOTOR2&3.SHADOW in
Forth, and motor2_3_shadow in C.

For proper operation, there must be one and only one
shadow variable per output port. Note that the pre-
coded driver software supplied by Mosaic Industries
to run the Digital I/O Board defines shadow locations
for each high-current output port, and the stepper
motor source code file also defines shadow locations
for each Digital I/O Board's high-current output port.
If both of these source code files are loaded, at least
one of them must be edited so that there is only one
shadow variable per output port.

The stepper motor source code file next defines a
series of constants that specify the extended address
(address and page) and the bit mask that maps each

stepper motor onto its associated output port. To
maximize runtime efficiency, the bit mask is the "non-
motor mask" with 0s indicating the motor bits and 1s
indicating the non-motor bits. The QED Digital I/O
Board's high current output port is accessed by
writing to address 0003, and motors 0 and 1 are
controlled by a Digital I/O Board mapped onto page
DF (hex). Motor 0 occupies bits 0-3 and has a non-
motor mask of hex F0, and motor 1 occupies bits 4-7
and has a non-motor mask of hex 0F. Motors 2 and
3 are controlled by another Digital I/O Board mapped
onto page DE (hex).

Motor 5 is controlled by the 4 high-current drivers on
the QED Board itself; these outputs are controlled by
port PPB and the PAL, and are brought out to the
keypad/display connector. The extended port
address is hex 008081, and a separate shadow
address is not needed, so the shadow address is
also hex 8081. The correct non-motor mask for the
QED Board's high current driver port is hex 1F. If
these values for the port address, shadow, and non-
motor mask are used, the driver software will
correctly control the onboard high current drivers.

The appropriate constants for all of these parameters
are defined in the source code file.

Specifying Default Speeds and Accelerations

As described above, each motor's stepper status
structure includes a default jog/start speed, steady
speed, acceleration, and deceleration. You can
specify these parameters for each motor at the time
of initialization.

The "jog/start speed" should be chosen as a speed
within the "safe starting" region of the motor's
speed/torque characteristic. This means that the
motor must be able to directly transition from a
stopped state to the jog/start speed without losing
any steps. This speed is used by the JOG.STEPS
(JogSteps() in C) function, and is also used as the
starting speed in a ramp-up from a stopped state. Its
units are steps per second if the motor is configured
for full stepping, and halfsteps per second if the
motor is configured for half stepping.

The "steady speed" is typically set equal to the
maximum speed at which the motor can turn under
load without losing any steps. It is used by the
functions RAMP.TO.STEADY and
STEPS.AT.STEADY (RampToSteady() and
StepsAtSteady() in C). Its units are steps per second
if the motor is configured for full stepping, and
halfsteps per second if the motor is configured for
half stepping.

Application Note MI-AN039Controlling Stepper Motors with the QED Board

Mosaic Industries, Inc. Page 10 of 14 Any questions? Call (510) 790 - 8222

The "acceleration" specifies the rate of change in
speed used during a ramp up from a low speed to a
higher speed. The "deceleration" specifies the rate of
change in speed used during a ramp down from a
high speed to a lower speed. The units are steps per
second per second if the motor is configured for full
stepping, and halfsteps per second per second if the
motor is configured for half stepping.

The source code file defines named constants for
each of these parameters that are used in the
INIT.STEPPERS (InitSteppers() in C) function. In the
source code example, motors 0, 1, 2, and 3 share the
same parameters, while motor 4 has a different
steady speed. Of course you can specify different
parameters for each motor in your system.

The Initialization Function

The overall initialization function is named
INIT.STEPPERS in Forth, and InitSteppers() in C.
An examination of this routine illuminates all of the
elements required for proper initialization of the
stepper motor software.

In the source code example, the function expects a
single flag that determines whether all of the motors
are configured for full or half stepping. You may edit
the routine to individually configure some motors for
full stepping and others for half stepping. The local
variable declaration at the top of the function defines
a halfstep flag and a speedfactor which equals 1 for
full stepping and 2 for half stepping. The speed
factor converts all speeds used in the function to
units of full steps per second, and all accelerations to
full steps per second per second, whether or not the
motor is configured for half stepping.

The function first calls DISABLE.STEPPER.IRQ
(DisableStepperInterrupt() in C) to ensure that the
stepper motor interrupt is not running while we write
over all the control arrays and structures. Next it
calls ZERO.RAMP&STATUS.ARRAYS
(ZeroRampAndStatusArrays() in C) to start out with a
known initialized condition in all of the arrays and
structures.

The function then calls the INIT.STATUS (InitStatus()
in C) routine five times, once for each motor in use.
INIT.STATUS expects a set of input parameters and
initializes the motor's stepper status structure
accordingly. The input parameters are the jog/start
speed, steady speed, acceleration, deceleration, port
address and page, extended shadow address, non-
motor mask, halfsteps flag, and the motor index.
Note that all speeds and accelerations are multiplied
by the speedfactor before being passed to
INIT.STATUS.

After the final call to INIT.STATUS, INIT.STEPPERS
(InitSteppers() in C) enters a loop that calls
CLEAR.MOTOR.PORT (ClearMotorPort() in C) once
for each motor. This is required to initialize the port
and its shadow to a know state before attempting
read/modify/write operations. If your system involves
a motor that shares a port with active-low signals
(that is, signals that must be initialized to the inactive
high state), you can modify the source code to
accomplish this. The important point is that the port
and the shadow ram location must be written to
ensure that they contain the same values at startup.

Only after all the motor ports have been initialized
does the INIT.STEPPERS function enter a loop to
call ENERGIZE.STEPPERS (EnergizeSteppers) for
each motor. This applies a step pattern and confers
holding torque on the motor. If you wish to initialize
all of the stepper data structures but leave the motors
un-energized, you can comment out this final loop.
Be aware, however, that the first step command
issued to an un-energized motor will simply energize
the motor rather than cause a step; the second and
subsequent step commands will result in motion.

The final command line in INIT.STEPPERS is a call
to INIT.STEPPER.IRQ (InitStepperInterrupt() in C)
which locally enables the stepper motor interrupt
(OC3 in this example) and globally enables
interrupts.

You're Ready to Go!
After interfacing your motors, customizing the system
configuration and speed parameters for your system,
and executing INIT.STEPPERS (InitSteppers() in C),
you can try the motion commands listed above in the
"Examples of High Level Motion Control Commands"
section.

Stepper Motor Control Function
Lists
The following lists summarize some of the key motion
control functions available in the kernel and the high
level source code, and present a very brief summary
of the function's action. Not all functions and
constants are summarized here. For more details
consult the well documented source code file.
Separate lists are presented for Forth and C.

In the Forth mini-glossary, the stack picture in
parentheses describes the input and output
parameters. All parameters are integers except
those parameters that have the letters "addr" in their
name, such as "xaddr" (an extended 32 bit address)
or "start_ramp_addr" (a 16 bit address). The "#"
symbol is pronounced "number".

Controlling Stepper Motors with the QED Board Application Note MI-AN039

Mosaic Industries, Inc. Page 11 of 14 Any questions? Call (510) 790 - 8222

Motor Control Functions: QED-Forth Mini-Glossary

+STEP.COUNTER (xaddr1 -- xaddr2)
32-bit signed integer (Long) number of steps in status array; can be read or written.

1STEP (direction\motor# --)
Assumes motor is stopped, takes 1 step.

CCW (-- -1)
A constant that indicates the counter-clockwise direction.

CHANGE.SPEED (target_speed\motor# -- #steps_in_ramp)
Most versatile speed control function, ramps up or down to the specified speed in the current direction.

CLEAR.MOTOR.PORT (motor# --)
Writes 00 to the output port and associated shadow ram byte that control the stepper motor.

CREATE.RAMP (start_speed\end_speed\accel\ticks/sec\start_ramp_addr\speeds/ramp -- #steps_in_ramp)
In PROM; writes speed parameters into motor's ramp array based on input parameters.

CW (-- +1)
A constant that indicates the clockwise direction.

DISABLE.MOTOR (motor# --)
Disables and de-energizes motor; calling this function boosts processor efficiency if the motor is not in use.

DISABLE.STEPPER.IRQ (--)
Locally disables the stepper service interrupt (OC3).

ENERGIZE.STEPPER (motor# --)
Writes step pattern to motor port, thereby applying holding torque.

ESTOP (motor# --)
"Emergency stop"; stops motor without ramp-down and leaves motor energized.

FROM.SPEED.TO.STOP (initial_speed\motor# -- #steps_in_ramp)
Ramps the motor from a constant speed down to a stopped (0 speed) state.

FULL.STEPS (non_motor_mask\motor# --)
Configures STATUS.ARRAY for full stepping based on user-specified step patterns.

HALF.STEPS (non_motor_mask\motor# --)
Configures STATUS.ARRAY for half stepping based on user-specified step patterns.

INIT.STATUS (jog_speed\steady_speed\accel\decel\port_addr\port_page\shadow_xaddr\nonmotor_mask\half\motor--)
Writes specified speed, acceleration, and step pattern information into STATUS.ARRAY.

INIT.STEPPER.IRQ (--)
Attaches and enables stepper service interrupt (OC3); globally enables interrupts.

INIT.STEPPERS (halfsteps? -- | note: stack picture depends on user customization)
Highest level initialization routine, should be customized by user for a given system.

JOG.STEPS (direction\#steps\motor# --)
Assumes motor is stopped, takes specified number of steps at jog/start speed.

MAX#STEPPERS (-- N)
A constant that specifies the number of stepper motors in use. Should be correctly set before compiling.

RAMP.ARRAY (motor#\ramp_index -- xaddr)
2-dimensional array of RAMP.ELEMENT structures, set by CREATE.RAMP, used by STEP.MANAGER.

RAMP.TO.SPEED (direction\target_speed\motor# -- #steps_in_ramp)
Ramps the motor from a stopped state to a specified speed.

RAMP.TO.STEADY (direction\motor# -- #steps_in_ramp)
Ramps the motor from a stopped state to the steady speed stored in STATUS.ARRAY.

SET.DIRECTION (direction\motor# --)
Writes to +DIRECTION element in STATUS.ARRAY. CW = +1; CCW = -1.

SOFT.STOP (motor# -- #steps_in_ramp)
Most versatile stopping function, ramps the motor down to a stopped (0 speed) state.

SPEED.TO.DUTY (steps_per_sec\ticks_per_sec -- duty_cycle)
In PROM; converts speed to the duty cycle representation used by STEP.MANAGER.

Application Note MI-AN039Controlling Stepper Motors with the QED Board

Mosaic Industries, Inc. Page 12 of 14 Any questions? Call (510) 790 - 8222

START.RAMP (direction\motor# --)
Called by higher level functions to start a ramp that has already been set up.

STATUS.ARRAY (motor# -- xaddr)
1-dimensional array of STEPPER.STATUS structures, initialized by INIT.STEPPERS.

STEP.MANAGER (--)
In PROM; core of interrupt service routine to service steppers; worst case execution time is appx. 120µs/motor.

STEPS.AT.SPEED (direction\#steps\speed\motor# --)
Assumes motor is stopped, ramps to specified speed and back to zero to achieve specified number of total steps.

STEPS.AT.STEADY (direction\#steps\motor# --)
Assumes motor is stopped, ramps to "steady" speed and back to zero to achieve specified number of total steps.

TICKS/SECOND (-- N)
Constant that sets stepper timebase and sets maximum number of steps or halfsteps/sec.

Application Note MI-AN039Controlling Stepper Motors with the QED Board

Mosaic Industries, Inc. Page 13 of 14 Any questions? Call (510) 790 - 8222

Motor Control Functions: Control C Mini-Glossary
int CCW

A constant equal to -1 that indicates the counter-clockwise direction.
uint ChangeSpeed(uint target_speed, int motor)

Most versatile speed function, ramps up or down to the specified speed in the current direction; returns #steps.
void ClearMotorPort(int motor)

Writes 00 to the output port and associated shadow ram byte that control the stepper motor.
uint CreateRamp(uint start_speed,uint end_speed,uint accel,uint ticks_per_sec, RAMP_ELEMENT* start_ramp_addr,

uint speeds_per_ramp)
In PROM; writes speed parameters into motor's ramp array based on input parameters.

int CW
A constant equal to +1 that indicates the clockwise direction.

void DisableMotor(int motor)
Disables and de-energizes motor; calling this function boosts processor efficiency if the motor is not in use.

void DisableStepperInterrupt(void)
Locally disables the stepper service interrupt (OC3).

void EnergizeStepper(int motor)
Writes step pattern to motor port, thereby applying holding torque.

void EStop(int motor)
"Emergency stop"; stops motor without ramp-down and leaves motor energized.

uint FromSpeedToStop(uint starting_speed, int motor)
Ramps the motor from a constant speed down to a stopped (0 speed) state; returns number of steps in ramp.

void FullSteps(uchar non_motor_mask,int motor)
Configures STATUS.ARRAY for full stepping based on user-specified step patterns.

void HalfSteps(uchar non_motor_mask,int motor)
Configures STATUS.ARRAY for half stepping based on user-specified step patterns.

void InitStatus(uint jog_speed,uint steady_speed,uint accel,uint decel,xaddr port_xaddr,char* shadow,\
 uchar nonmotor_mask,int half_steps,int motor)

Writes specified speed, acceleration, and step pattern information into STATUS.ARRAY.
void InitStepperInterrupt(void)

Attaches and enables stepper service interrupt (OC3); globally enables interrupts.
void InitSteppers(int halfstep) // note: stack picture depends on user customization

Highest level initialization routine, should be customized by user for a given system.
void JogSteps(int direction, uint numsteps, int motor)

Assumes motor is stopped, takes specified number of steps at jog/start speed.
int MAX_STEPPERS

A constant that specifies the number of stepper motors in use. Should be correctly set before compiling.
uint RampToSpeed(int direction, uint target_speed, int motor)

Ramps the motor from a stopped state to a specified speed, and returns number of steps in ramp.
uint RampToSteady(int direction, int motor)

Ramps the motor from a stopped state to the steady speed stored in STATUS.ARRAY; returns number of steps.
RAMP_ELEMENT ramp_array[][]

2-dimensional array of RAMP.ELEMENT structures, set by CREATE.RAMP, used by STEP.MANAGER.
void SetDirection(int direction,int motor)

Writes to +DIRECTION element in STATUS.ARRAY. CW = +1; CCW = -1.
uint SoftStop(int motor)

Most versatile stopping function, ramps the motor down to a stopped state; returns number of steps in ramp.
uint SpeedToDuty(uint steps_per_sec, uint ticks_per_sec)

In PROM; converts speed to the duty cycle representation used by STEP.MANAGER.
void StartRamp(int direction, int motor)

Called by higher level functions to start a ramp that has already been set up.
struct stepperStatus status_array[MAX_STEPPERS]

1-dimensional array of STEPPER.STATUS structures, initialized by INIT.STEPPERS.
void Step1(int direction, int motor)

Assumes motor is stopped, takes 1 step.
long stepCounter

32-bit signed integer (Long) number of steps in step_status struct in status_array; can be read or written.

Application Note MI-AN039Controlling Stepper Motors with the QED Board

Mosaic Industries, Inc. Page 14 of 14 Any questions? Call (510) 790 - 8222

void StepManager (void)
In PROM; core of interrupt service routine to service steppers; worst case execution time is appx. 120µs/motor.

void StepsAtSpeed(int direction, uint numsteps,uint target_speed, int motor)
Assumes motor is stopped, ramps to specified speed and back to zero to achieve specified number of total steps.

void StepsAtSteady(int direction, uint numsteps, int motor)
Assumes motor is stopped, ramps to "steady" speed and back to zero to achieve specified number of total steps.

int TICKS_PER_SECOND
Constant that sets stepper timebase and sets maximum number of

Application Note MI-AN039Controlling Stepper Motors with the QED Board

Mosaic Industries
5437 Central Ave Suite 1, Newark, CA 94560 Telephone: (510) 790-8222 Fax: (510) 790-0925

The information provided herein is believed to be reliable; however, Mosaic Industries assumes no responsibility for inaccuracies or omissions.
Mosaic Industries assumes no responsibility for the use of this information and all use of such information shall be entirely at the user's own risk.

