
Mosaic Industries Page 1 of 6 Any questions? Call (510) 790 - 8222

Mosaic Industries

Summary

This program demonstrates how to create a buffered
interrupt-based implementation of the primary serial1
port which is supported by the 68HC11's on-chip
UART.

Description

An interrupt service routine maintains two buffers
(queues) for transmitted and received characters. The
standard serial routines KEY, ?KEY and EMIT are
revectored to get characters from and put characters
into the buffers. This allows multitasking systems to
deal with fast serial I/O without losing characters.

TO USE:
simply compile this code and then execute

USE.Q.SERIAL1
to install the queued serial1 handlers. All high
level code routines such as . F. DUMP etc.
will work as before, but now using the buffered
interrupt-based routines.

To revert to the original serial1 routines, execute:
STANDARD.SERIAL1

© Copyright 1996 Mosaic Industries, Inc. All Rights
Reserved.

Disclaimer: THIS SOFTWARE IS PROVIDED ON AN
"AS IS" BASIS, WITHOUT ANY WARRANTIES OR
REPRESENTATIONS EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

APPLICATION
NOTE

MI-AN-038

Queued Serial

4 USE.PAGE \ you can comment this out if your memory map is already set up.
HEX \ set the numeric base during compilation
A WIDTH ! \ avoid nonunique names

ANEW INTERRUPT.BASED.SERIAL1

\ NOTE: we require that the variable area is in common RAM.
\ This condition is met for all memory maps set by USE.PAGE
\ on the QED-3 Board (kernel versions 3.0 and later).
\ If you are using a V2.xx PROM, make sure to move the
\ variable area to common memory: for example, execute HEX 8E00 0 VP X!

802D CONSTANT SCCR2 \ serial control register 2
802E CONSTANT SCSR \ serial status register
802F CONSTANT SCDR \ serial data register

02 CONSTANT TXD.MASK \ location of TxD pin in portd & portd.direction

80 CONSTANT TDRE.MASK \ transmit data register empty, in SCSR
20 CONSTANT RDRF.MASK \ receive data register full, in SCSR

80 CONSTANT TIE.MASK \ transmit interrupt enable, in SCCR2
20 CONSTANT RIE.MASK \ receive interrupt enable, in SCCR2
08 CONSTANT TE.MASK \ transmitter enable, in SCCR2

Mosaic Industries Page 2 of 6 Any questions? Call (510) 790 - 8222

Queued Serial

BASE @ DECIMAL \ define buffer sizes in decimal base
50 CONSTANT TRANSMIT.BUFFER.SIZE \ you can change this if you want.
50 CONSTANT RECEIVE.BUFFER.SIZE \ you can change this if you want.

BASE ! \ restore original base

VARIABLE RECEIVE.BUFFER
RECEIVE.BUFFER.SIZE 2- VALLOT \ 2- accounts for VARIABLE's 2 allocated bytes

VHERE XCONSTANT RECEIVE.BUFFER.END \ points to end+1 xaddr of receive.buffer

VARIABLE TRANSMIT.BUFFER
TRANSMIT.BUFFER.SIZE 2- VALLOT \ 2- accounts for VARIABLE's 2 allocated bytes

VHERE XCONSTANT TRANSMIT.BUFFER.END \ points to end+1 xaddr of transmit.buffer

VARIABLE TRANSMIT.HEAD \ pointer to most recent char added to buffer
VARIABLE TRANSMIT.TAIL \ pointer to oldest char added to buffer
VARIABLE RECEIVE.HEAD \ pointer to most recent char added to buffer
VARIABLE RECEIVE.TAIL \ pointer to oldest char added to buffer

VARIABLE TRANSMIT.IRQ.COMING
 \ flag; if true, background interrupt will handle next char;
 \ if false, emit routine must initiate the transmit process

CODE SERVICE.TRANSMITTER (--)
 \ called when a char has just finished transmitting and TDRE bit is set
 \ in SCDR; writes next char to serial port. We disable the
 \ transmitter interrupt when there are no chars left to be sent.
 TRANSMIT.TAIL DROP EXT LDX \ X points to oldest char to transmit
 TRANSMIT.HEAD DROP EXT CPX
 EQ IF, \ if head = tail: no chars left in buffer
 SCCR2 IMM LDX
 TIE.MASK TE.MASK OR 0 IND,X BCLR \ disable the xmit interrupt
 0 IMM LDD
 TRANSMIT.IRQ.COMING DROP EXT STD \ clear the flag
 0D IMM LDAB
 SCDR EXT STAB \ write char -> serial output port to clr irq flag
 RTS \ we're done.
 ENDIF,
 0 IND,X LDAB \ B <- char
 SCDR EXT STAB \ write char -> serial output port
 INX \ increment transmit buffer pointer
 TRANSMIT.BUFFER.END DROP IMM CPX
 HS IF, \ handle rollover
 TRANSMIT.BUFFER DROP IMM LDX
 ENDIF,
 TRANSMIT.TAIL DROP EXT STX \ save updated tail pointer
 FFFF IMM LDD
 TRANSMIT.IRQ.COMING DROP EXT STD \ set the flag: an irq will occur
 RTS
END.CODE

Application Note MI-AN-038

Mosaic Industries Page 3 of 6 Any questions? Call (510) 790 - 8222

CODE SERVICE.RECEIVER (--)
 \ puts received char into buffer and updates pointers
 RECEIVE.HEAD DROP EXT LDX \ X points to spot for newest rcv'd char
 SCDR EXT LDAB \ B <- input char
 0 IND,X STAB \ store input char in buffer
 INX \ increment receive buffer pointer
 RECEIVE.BUFFER.END DROP IMM CPX
 HS IF, \ handle rollover if we're at end
 RECEIVE.BUFFER DROP IMM LDX
 ENDIF,
 RECEIVE.HEAD DROP EXT STX \ save updated head pointer
 RECEIVE.TAIL DROP EXT CPX
 EQ IF, \ if head = tail, we have buffer overrun
 INX
 RECEIVE.BUFFER.END DROP IMM CPX
 HS IF, \ handle rollover
 RECEIVE.BUFFER DROP IMM LDX
 ENDIF,
 RECEIVE.TAIL DROP EXT STX \ bump tail, losing oldest char
 ENDIF,
 RTS
END.CODE

CODE SERIAL1.SERVICE (--)
 \ handles serial interrupt for both transmitter and receiver
 SCSR EXT LDAA
 TDRE.MASK IMM ANDA \ if interrupt was because we just xmitted a char...
 NE IF,
 CALL SERVICE.TRANSMITTER
 ENDIF,
 SCSR EXT LDAA
 RDRF.MASK IMM ANDA \ if interrupt was because we just received a char...
 NE IF,
 CALL SERVICE.RECEIVER
 ENDIF,
 RTS
END.CODE

Queued Serial Application Note MI-AN-038

Mosaic Industries Page 4 of 6 Any questions? Call (510) 790 - 8222

: Q.EMIT1 (char --)
 \ A queued version of emit1. Writes a character into the transmit buffer;
 \ if the transmit interrupt has been disabled, enables it
 \ and explicitly calls SERVICE.TRANSMITTER
 \ If transmit interrupt is already enabled, just lets interrupt routine
 \ take care of the transmission of the character.
 SERIAL1.RESOURCE GET
 TRANSMIT.HEAD @ (C!) (--) \ put char in buffer
 TRANSMIT.HEAD @ 1+ DUP TRANSMIT.BUFFER.END DROP = \ handle rollover
 IF
 DROP \ drop head
 TRANSMIT.BUFFER DROP \ replace with start of buf; drop page
 ENDIF (new.head.pointer --)
 BEGIN (new.head.pointer --)
 DUP TRANSMIT.TAIL @ =
 WHILE \ if new head would = tail, we must wait
 PAUSE \ wait for irq to move tail
 REPEAT
 TRANSMIT.HEAD ! \ update head pointer
 >ASSM
 TPA \ save state of global I bit
 PSHA
 SEI \ disable irqs
 TRANSMIT.IRQ.COMING DROP EXT LDD \ check transmitter status
 EQ IF, \ if no xmitter irq is coming...
 SCCR2 IMM LDX
 TIE.MASK TE.MASK OR 0 IND,X BSET \ enable the xmit interrupt
 CALL SERVICE.TRANSMITTER \ and start the transmission process
 ENDIF,
 PULA
 TAP \ restore prior state of interrupts
 >FORTH
 SERIAL1.RESOURCE RELEASE
 ;

: Q.?KEY1 (-- flag)
 \ flag is true if at least 1 char is in the queued serial1 input buffer;
 \ false if no chars are in the buffer
 SERIAL1.RESOURCE GET
 RECEIVE.HEAD @ RECEIVE.TAIL @ <> \ if not=, chars are present
 SERIAL1.RESOURCE RELEASE
 ;

Queued Serial Application Note MI-AN-038

Mosaic Industries Page 5 of 6 Any questions? Call (510) 790 - 8222

Queued Serial Application Note MI-AN-038

: Q.KEY1 (-- char)
 \ waits (if necessary) for receipt of char from queued serial1
 \ and places char on data stack.
 SERIAL1.RESOURCE GET
 BEGIN
 RECEIVE.HEAD @ RECEIVE.TAIL @ = \ if =, no chars are present
 WHILE
 PAUSE \ wait and pause until chars come in
 REPEAT
 RECEIVE.TAIL @ DUP (C@) SWAP (-- char\tail.ptr)
 1+ \ inc buffer pointer
 DUP RECEIVE.BUFFER.END DROP = \ handle rollover
 IF DROP \ drop prior pointer
 RECEIVE.BUFFER DROP \ replace with buf start; drop page
 ENDIF
 RECEIVE.TAIL ! \ save updated pointer
 SERIAL1.RESOURCE RELEASE
 ;

\ ********************* SET IT ALL UP *********************************

: INIT.SERIAL1.BUFFERS (--)
 TRANSMIT.BUFFER DROP TRANSMIT.HEAD ! \ pointer to most recent char added
 TRANSMIT.BUFFER DROP TRANSMIT.TAIL ! \ pointer to oldest char added
 RECEIVE.BUFFER DROP RECEIVE.HEAD ! \ pointer to most recent char added
 RECEIVE.BUFFER DROP RECEIVE.TAIL ! \ pointer to oldest char added
;

: USE.Q.SERIAL1 (--)
 \ revectors KEY, EMIT, and ?KEY in the currently active task
 \ to use the queued serial1 routines.
 \ Initializes the queued serial1 buffers and pointers.
 \ enables the serial receiver interrupt; the transmitter interrupt
 \ will be enabled when the first character is sent.
 \ This routine GLOABALLY ENABLES INTERRUPTS!
 \ Use the standard BAUD1.AT.STARTUP routine to set the baud rate;
 \ the default is 9600 baud.
 INIT.SERIAL1.BUFFERS
 0\0 SERIAL1.RESOURCE X! \ init resource variable
 TRANSMIT.IRQ.COMING OFF \ transmitter is initially off
 TXD.MASK PORTD SET.BITS
 TXD.MASK PORTD.DIRECTION SET.BITS \ default for txd = output high
 CFA.FOR Q.EMIT1 UEMIT X! \ now revector serial routines
 CFA.FOR Q.KEY1 UKEY X!
 CFA.FOR Q.?KEY1 U?KEY X!
 CFA.FOR SERIAL1.SERVICE SCI.ID ATTACH \ set up interrupt service routine
 TIE.MASK SCCR2 (CLEAR.BITS) \ disable transmit interrupt
 RIE.MASK SCCR2 (SET.BITS) \ enable receive interrupt
 ENABLE.INTERRUPTS \ globally enable irqs
 ;

Mosaic Industries Page 6 of 6 Any questions? Call (510) 790 - 8222

Queued Serial Application Note MI-AN-038

: STANDARD.SERIAL1 (--)
 \ reverts to standard non-buffered serial1
 RIE.MASK TIE.MASK OR SCCR2 (CLEAR.BITS) \ disable receive & xmit interrupts
 TE.MASK SCCR2 (SET.BITS) \ enable transmitter
 0\0 SERIAL1.RESOURCE X! \ init resource variable
 CFA.FOR EMIT1 UEMIT X! \ now revector serial routines
 CFA.FOR KEY1 UKEY X!
 CFA.FOR ?KEY1 U?KEY X!
 ;

: .STATUS (--) \ debug only
 TRANSMIT.HEAD 8 DUMP \ xmit.head xmit.tail rcv.head rcv.tail
 RECEIVE.BUFFER 40 DUMP
 TRANSMIT.BUFFER 40 DUMP
 ;

Mosaic Industries
5437 Central Ave Suite 1, Newark, CA 94560 Telephone: (510) 790-8222 Fax: (510) 790-0925

The information provided herein is believed to be reliable; however, Mosaic Industries assumes no responsibility for inaccuracies or omissions.
Mosaic Industries assumes no responsibility for the use of this information and all use of such information shall be entirely at the user's own risk.

