Summary

The following software shows how to find the median value of a bunch of data points.

```
I ********* MEDI AN WI NDOW SMOOTHI NG *********************
I Copyright 1994, Mosaic Industries Inc. Al| rights reserved.
I
I We have found this median smoothing to be a mathematically robust, noi se-
I i mmune and well-behaved way to find the median value of a collection of data
I points. The longer the buffer size you select, the stronger the filtering and
I the longer the l delay in response to changing inputs. This algorithm can be
I i mplemented in fixed point form for faster
I computation. In addition, you may decide to skip the secondary filtering
I associated with the 2ND. BUFFER; this speeds up the algorithm a bit at the
I expense of some more I noise.
I To use: cal| DIM.MEDIAN. BUFFERS to initialize the buffers, then call SMOOTH
I when each data point is taken. SMOOTH returns the most recent median value.
DECIMAL
13 CONSTANT WINDOW. SIZE \ buffer size; MUST BE ODD!
| startup delay >= size/2 sample times
MATRIX: MEDIAN.BUFFER \ row buffer, holds sorted samples
WINDOW.SIZE 2I CONSTANT MEDIAN.INDEX I median is in middle spot in buf
MATRIX: 2ND.BUFFER I row buffer for secondary averaging of median
WINDOW.SIZE 2/ CONSTANT 2ND.BUFFER.SIZE
VARIABLE 2ND. BUFFER.POINTER \ column index
: INIT.MEDIAN.FILTER ( - )
    ' MEDIAN. BUFFER ZERO.MATRIX
    ' 2ND.buFFER ZERO. MATRIX
    2ND. BUFFER.POINTER OFF
    ;
: DIM.MEDIAN.BUFFERS ( .- )
    I dims and inits all to zeros at startup
    1 WINDOW. SIZE, MEDIAN. BUFFER DI MMED
    I Initialize a secondary buffer of size N/2. This buffer maintains the
    l last N/2 medians found so that they can be averaged for output.
    1 2ND.buFFER.SIZE' 2ND.BUFFER DIMMED
    I NIT.MEDIAN. FILTER
```

 ;
    ```
FIND.I NSERTI ON.POI NT ( r - n )
l the input r is the new floating point value to be i nserted in the buffer and
I the output n is the index where it should be inserted. Finds the location to
I insert a number, r, into the buffer so that the buffer values are al ways in
l increasing order.
WI NDOW. SI ZE LOCALS{ &| nsertion.Point } ( r m )
WI NDOW. SI ZE O
DO FDUP I duplicate the number
O I MEDIAN. BUFFER F@ F< I compare it to each buffer entry in turn
                    IF I TO &lnsertion. Point I and leave the loop
                                    LEAVE
                    ENDI F
            LOOP
            FDROP
            &lnsertion. Point
: INSERT ( r | n .. )
I r is the number to be inserted; n is the Insertion.Point |f n <=
I WINDOW.SIZE/2 inserts r into the buffer at n after shifting elements at
I position n and greater up to greater indices. If n > WINDOW. SIZE/2 inserts r
I into the buffer at n-1 after shifting elements at position n-1 and less down
l to lesser indices.
    LOCALS{ &l nsertion. Point } ( r - ) 
    &|nsertion. Point MEDIAN.| NDEX <=
    IF &lnsertion. Point WINDOW. SIZE 2.
        DO O MEDIAN.BUFFER F@ I shift to the right
    -1 +LOOP
    O &lnsertion.Point MEDIAN.BUFFER F! \ emplace new number
    ELSE
        &lnsertion. Point 1- o
        DO O | 1 + MEDIAN.BUFFER F@ \ shift to the left
                            O | MEDIAN. BUFFER F!
            LOOP
        O &Insertion. Point 1- MEDIAN.BUFFER F! \ emplace new number
    ENDI F
```

 ;
    ```
SMOOTH ( r 1 - r 2 )
I I nserts the input rl into the Buffer & fetches the Buffer's middle value,
I an estimate of the running median, for insertion into the 2nd. Buffer,
I and averages al| values of the 2nd. Buffer to yi eld the output r 2.
    FDUP FIND.INSERTION.POINT (r\n .. )
    I NSERT ( - ) \ Insert new number into buffer
| Fetch the center number of the buffer and place it into the second.buffer
    O MEDIAN.INDEX MEDIAN. BUFFER F@ ( estimated.median .. )
I we could stop here if pressed for time, but we add another layer of
l filtering:
    O 2ND.BUFFER.POI NTER @ 2ND.BUFFER F!
    2ND.BUFFER.POINTER @ 1+ 2ND.BUFFER.SIZE MOD
    2ND.BUFFER.POINTER ! \ update pointer to circular 2nd.buffer
        2ND.BUFFER MATRIX.SUM
    2ND.BUFFER.SIZE FLOT F/ ( averaged.median .. )
    ;
```

The information provided herein is believed to be reliable; however, Mosaic Industries assumes no responsibility for inaccuracies or omissions. Mosaic Industries assumes no responsibility for the use of this information and all use of such information shall be entirely at the user's own risk.

M osaic Industries

