
Mosaic Industries Page 1 of 7 Any questions? Call (510) 790 - 8222

Mosaic Industries

Summary
The following explains what an I2C bus protocol is.

Included is the software program showing how the I2C
bus communicates with a Signetics PCR8573
clock/calendar chip.

Description
The I2C bus protocol is a two-way, two-wire

communication format used by the 8088
microcontroller family and many peripheral devices.
One of the two lines (the SDA line) is a bi-directional
serial data line and the other line (the SCL line) is a
master controlled clock line. It is usually necessary to
pull both lines high with resistors. A start signal (a
falling SDA edge while SCL is high) initiates the serial
data transmission, and after each transmission of eight
bits the receiver sends an acknowledge bit to the
transmitter. The stop signal is a rising edge of SDA
while SCL is high. In general the first byte after the
start signal is the slave address of the device being
accessed by the master. The second word is either a

mode word that comprises an instruction, or a data
byte from a slave device. Subsequent words are data
bytes.

The following application uses pins PA6 and PA7
of Port A on the QED board as I2C bus masters to
communicate with a Signetics PCF8573 clock/calendar
chip. Several important operations include reading and
writing the clock/calendar's time and alarm registers,
and setting and resetting various flags. High level
routines such as RESET.CLOCK which sets the clock's
time, and MINUTE.ALARM which sets the
clock/calendar's COMP flag after a minute has
elapsed, demonstrate useful functions that make use
of lower level driver routines that send and receive
bytes and acknowledge signals. Many of the driver
routines, such as GET.WORD, SEND.WORD, and
INIT.COM can be used in communicating with any
device that employs the I2C protocol.

APPLICATION
NOTE

MI-AN-009

I2C Bus

\ I2C DRIVER CODE AND CLOCK/CALENDAR APPLICATION -- MOSAIC INDUSTRIES
7/5/94

HEX
0000 4 DP X! \ Set 32K definitions area on page 4
0000 5 NP X! \ Set 32K name area on page 5.
3000 F VP X! \ 4K variable area on page 15.
4000 F 7FFF F IS.HEAP \ 16K heap on page 15.

ANEW I2CDRIVER
6 WIDTH !
0 TRACE !
HEX
0080 CONSTANT SDA.MASK \ P7 will be the data line. SET.BITS and

\ CLEAR.BITS only use lower byte, but routines
\ like GET.ACKNOWLEDGE do an AND followed
\ by a BOOLEAN, so the high byte has to be 00.

0040 CONSTANT SCL.MASK \ P6 will be the clock line.
PORTA 2CONSTANT I2CPORT \ PORTA will be the I2C port.
PORTA.DIRECTION 2CONSTANT I2CPORT.DIRECTION \ PORTA.DIRECTION will be dir. addr.
0 CONSTANT NOERROR \ No error flag signal.
-1 CONSTANT ISERROR \ Error flag signal.

Mosaic Industries Page 2 of 7 Any questions? Call (510) 790 - 8222

I2C Bus

: MASTER.QUIET.CONFIG (--)\ Configures SDA and SCL as high master outputs.
SDA.MASK I2CPORT.DIRECTION SET.BITS \ Config. SDA as output.
SCL.MASK I2CPORT.DIRECTION SET.BITS \ Config. SCL as output.
SDA.MASK I2CPORT SET.BITS \ Set data line high.
SCL.MASK I2CPORT SET.BITS \ Set clock line high.

;

: SEND.BIT (bit --) \ First, bit is converted to a flag, and then
\ a 0 or 1 is sent out the SDA line.
\ *Assumes SDA is config'd as output.*
\ SDA is output ("master xmitr") at finish.

BOOLEAN \ Convert bit to flag.
IF

SDA.MASK I2CPORT SET.BITS \ Set SDA high if bit was high.
ELSE

SDA.MASK I2CPORT CLEAR.BITS \ Else set SDA low.
ENDIF
SCL.MASK I2CPORT SET.BITS \ Pulse clock on.

\ Reminder: SCL must be high for at least 4us.
SCL.MASK I2CPORT CLEAR.BITS \ Turn clock off.
;

1 CONSTANT LSB.MASK
: READ.BIT (-- [0 OR 1]) \ Master, in receiver mode, reads a bit from

\ the bus. Assumes SDA config. as input.
SCL.MASK I2CPORT SET.BITS \ Pulse clock on.
I2CPORT C@ \ Fetch the byte on the port.
SCL.MASK I2CPORT CLEAR.BITS \ Turn off clock.
SDA.MASK AND \ Isolate the bit of interest (the SDA bit).
BOOLEAN LSB.MASK AND \ Shift bit back down to proper LSB loc.

;

: SEND.ACKNOWLEDGE (--) \ Causes master to send out acknowlege pulse.
\ SDA remains an input (for master) at finish
\ and SCL is low.

SDA.MASK I2CPORT CLEAR.BITS \ Send out low acknowledge pulse.
SDA.MASK I2CPORT.DIRECTION SET.BITS \ Config. SDA as output.
SDA.MASK I2CPORT CLEAR.BITS \ Send out low acknowledge pulse.
SCL.MASK I2CPORT SET.BITS \ Pulse clock on.

\ Reminder: SCL must be high for at least 4us.
SCL.MASK I2CPORT CLEAR.BITS \ Turn clock off.
SDA.MASK I2CPORT SET.BITS \ Reset SDA to high.
SDA.MASK I2CPORT.DIRECTION CLEAR.BITS \ Reconfig. SDA as input.

;
: GET.ACKNOWLEDGE (-- flag) \ Retrieves ack. signal from slave receiver.

\ SDA is high output at finish, SCL is low.
SDA.MASK I2CPORT SET.BITS \ SDA goes high.
SDA.MASK I2CPORT.DIRECTION CLEAR.BITS \ Config. SDA as input.

\ SDA should emerge high when reconfig'd
\ as an output at finish.

SCL.MASK I2CPORT SET.BITS \ Pulse clock on.
I2CPORT C@ \ Fetch the byte on the port.
SDA.MASK AND \ Isolate the bit of interest (the SDA bit).
BOOLEAN \ convert value to flag and leave on stack.
SCL.MASK I2CPORT CLEAR.BITS \ Turn clock off.
SDA.MASK I2CPORT.DIRECTION SET.BITS \ Config. SDA as output.

;

Application Note MI-AN-009

Mosaic Industries Page 3 of 7 Any questions? Call (510) 790 - 8222

1 CONSTANT SHIFT.RIGHT
7 CONSTANT BYTE.LENGTH

: SEND.WORD (word -- error) \ Configures SDA and SCL as outputs and sends
\ an 8 bit word and gets and returns the ackn.
\ signal. At finish, SCL is low and SDA is
\ high output.

LOCALS{ &word }
SCL.MASK I2CPORT CLEAR.BITS \ Activate clock (set low).
SDA.MASK I2CPORT.DIRECTION SET.BITS \ Config. SDA as output.
BYTE.LENGTH
FOR

&word I NEGATE SCALE \ Shift right by I bits, so MSB goes out
\ first.

LSB.MASK AND \ Get the bit to send.
SEND.BIT

NEXT
GET.ACKNOWLEDGE (-- flag)

;

: GET.WORD (flag -- word | flag is order to send acknowledge)
\ Configures SDA as input and SCL as output
\ and pulls in a word from the slave xmtr.
\ Leaves master config'd as (i/p) receiver.

LOCALS{ &ack.flag | &word }
SCL.MASK I2CPORT CLEAR.BITS \ Activate clock (set low).
SDA.MASK I2CPORT.DIRECTION CLEAR.BITS \ Configure SDA as input.
0 TO &word \ Initialize &word to 0.
BYTE.LENGTH
FOR

READ.BIT (-- [0 or 1])
I SCALE \ Shift bit in starting with MSB.
&word + \ Use &word as a sum register.
TO &word

NEXT
&word \ Place &word on stack before exit.
&ack.flag
IF \ Acknowledge, if required.

SEND.ACKNOWLEDGE
ELSE \ Else no acknowledge: leave SDA config'd

\ as input, and pull-up resistors will
\ pull the bus high.

ENDIF
;

: SEND.START (--) \ Transmit start signal.
SDA.MASK I2CPORT.DIRECTION SET.BITS \ Config. SDA as output.
SCL.MASK I2CPORT.DIRECTION SET.BITS \ Config. SCL as output.
SCL.MASK I2CPORT SET.BITS \ SCL must be high.
SDA.MASK I2CPORT CLEAR.BITS \ Setting data line low is "start" sig.

;

I2C Bus Application Note MI-AN-009

Mosaic Industries Page 4 of 7 Any questions? Call (510) 790 - 8222

: SEND.STOP (--) \ Transmit stop signal.
SCL.MASK I2CPORT SET.BITS \ Set clock to high.
SDA.MASK I2CPORT SET.BITS \ Set data line high.
SDA.MASK I2CPORT.DIRECTION SET.BITS \ Make sure SDA is an output.

;

00D0 CONSTANT DEV.1.ADDR \ DEV.1.ADDR includes 0=r/w
1 CONSTANT DEV.1
: COMM.INIT (device#\R/W -- error) \ Addresses device, ret. 0 if no err.

\ R/W can be 0 or 1, or a flag.
LOCALS{ &r/w }
&r/w BOOLEAN TO &r/w \ Ensures &r/w is a flag
\ CHECK.BUS \ Normally you would need to wait for the bus

\ to clear before initiating communication.
CASE \ Transform device# to device address.

DEV.1 OF DEV.1.ADDR NOERROR ENDOF
CR ." Invalid device"
DROP
ISERROR

ENDCASE
IF \ If error, set error flag before ending.

ISERROR
ELSE \ Else go ahead and send the word.

&r/w - (device.address -- device.word)
\ The byte sent to the slave needs to have the last
\ bit signal read or write. Since &r/w is a flag
\ (0 or -1) it is subtracted so that 1 is *added*
\ if the flag is set.

SEND.START
SEND.WORD \ Sends device word, which is on the top of the stack.
IF \ If error ocurred in SEND.WORD,

ISERROR \ Put the error flag on the stack before ending
ELSE

NOERROR \ Clear error flag if no error.
ENDIF

ENDIF
;

1 CONSTANT RD.MODE \ RD.MODE is not a flag (i.e. it should not be -1)
0 CONSTANT WR.MODE
00 CONSTANT ACC.TIME.MODE.WORD \ Mode word used to access time register.
04 CONSTANT ACC.ALRM.MODE.WORD \ Mode word used to access alarm register.
: SET.CLK.REGISTER (months\days\minutes\hours\mode.word\device# -- error)

\ Writes to either the alarm register or the time
\ register, depending on the mode.word.

WR.MODE \ Set write mode.
COMM.INIT

I2C Bus Application Note MI-AN-009

Mosaic Industries Page 5 of 7 Any questions? Call (510) 790 - 8222

IF \ If there is an error,
ISERROR \ Put error flag on the stack before finish.

ELSE \ Else continue.
SEND.WORD \ The mode word is the next word on the stack.
IF \ If error,

ISERROR \ Set error flag
ELSE

SEND.STOP
&device.num
RD.MODE
COMM.INIT
IF

ISERROR
ELSE

ACK.SET.FLG \ Flag tells GET.WORD to send ack. to slave xmtr.
GET.WORD
ACK.SET.FLG
GET.WORD
ACK.SET.FLG
GET.WORD
ACK.CLR.FLG
GET.WORD
NOERROR

ENDIF
ENDIF

ENDIF
SEND.STOP

;

20 CONSTANT RST.PRES.MODE.WORD
30 CONSTANT TIM.ADJS.MODE.WORD
40 CONSTANT RST.NODA.MODE.WORD
50 CONSTANT SET.NODA.MODE.WORD
60 CONSTANT CLR.COMP.MODE.WORD
: ONE.WORD.INSTR (modeword\device# -- err) \ Many different commands can

\ be issued with one mode word. ONE.WORD.INSTR
\ is a general Forth word that executes such
\ commands, such as clearing the COMP flag,
\ for example.

WR.MODE \ Set write mode.
COMM.INIT
IF \ If there is an error,

ISERROR \ Put error flag on the stack before finish.
ELSE \ Else continue.

SEND.WORD
IF

ISERROR
ELSE

NOERROR
ENDIF

ENDIF
SEND.STOP

;

I2C Bus Application Note MI-AN-009

Mosaic Industries Page 6 of 7 Any questions? Call (510) 790 - 8222

: SHOW.TIME (hours\minutes\days\months\error --) \ Calendar outputs
\ are in binary coded decimal, so the desired
\ decimal time appears when they are displayed
\ in hex.

IF
CR ." Error found."

ELSE
CR ." Time is: "
. ." months: "
. ." days: "
SWAP
. ." hours: "
. ." minutes"

ENDIF
;

MASTER.QUIET.CONFIG \ Set up a quiet (non-busy) bus.

7 CONSTANT MONTHS
5 CONSTANT DAYS
31 CONSTANT MINUTES
11 CONSTANT HOURS
: RESET.CLOCK (-- error) \ Loads in MONTHS:DAYS:MINUTES:HOURS as the time.
MONTHS
DAYS
MINUTES
HOURS
ACC.TIME.MODE.WORD
DEV.1
SET.CLK.REGISTER
;

ANEW TST.ROUTINES

: REVERSE.STACK.TIME (r1\r2\r3\r4 -- r4\r3\r2\r1)
SWAP
ROT
3 ROLL

;

I2C Bus Application Note MI-AN-009

Mosaic Industries Page 7 of 7 Any questions? Call (510) 790 - 8222

Mosaic Industries
5437 Central Ave Suite 1, Newark, CA 94560 Telephone: (510) 790-8222 Fax: (510) 790-0925

The information provided herein is believed to be reliable; however, Mosaic Industries assumes no responsibility for inaccuracies or omissions.
Mosaic Industries assumes no responsibility for the use of this information and all use of such information shall be entirely at the user's own risk.

1 CONSTANT MINUTES
: MINUTE.ALARM (-- error) \ Proper carries for incrementing

\ time not implemented.
CLR.COMP.MODE.WORD
DEV.1
ONE.WORD.INSTR \ Clear the COMP flag.
IF

ISERROR
ELSE

RST.PRES.MODE.WORD
DEV.1
ONE.WORD.INSTR \ Reset the seconds.
IF

ISERROR
ELSE

ACC.TIME.MODE.WORD
DEV.1
GET.CLK.REGISTER \ Get the time.
IF

ISERROR
CR ." Cannot get time."

ELSE
ROT \
MINUTES + \ Increment minutes counter
-ROT \
REVERSE.STACK.TIME
ACC.ALRM.MODE.WORD
DEV.1
SET.CLK.REGISTER \ Set the alarm.

ENDIF
ENDIF

ENDIF
;

I2C Bus Application Note MI-AN-009

