
1

Glossary I

Glossary I: QCard/QScreen/Handheld QED-Forth
Functions

This Glossary provides detailed descriptions of all of the library routines, called “Words” in
FORTH, provided in the QED-Forth firmware on the QCard, QScreen Controller, and QED
Handheld. These products carry a firmware version number of the form V4.4x, where x is a
numeric value. This Glossary contains the following:

A Categorized List of All Functions (Words) in the V4.4x Kernel;

A Description of Stack Symbols, Abbreviations and Naming Conventions;

 A List of Words that Disable Interrupts;

 A Comparison of QED-Forth V4.4x versus Prior V4.08 Firmware;

A Main Glossary of the QED-Forth Library Words;

A Glossary of Assembler Words; and,

A Glossary of C Debugger Words.

2 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Categorized Word List

Word Categories
ARRAY
ASSEMBLER
C DEBUGGING
COMPARISON
CONTROL STRUCTURES
DEBUG, TRACE, AND BENCHMARK
DEFINITION
DEVICE DRIVERS
Analog I/O Drivers
Digital I/O Drivers
Keypad and Display Drivers
Real-Time Clock
Serial I/O Drivers
SPI Drivers
Stepper Motor Drivers
DICTIONARY
FLASH MANAGEMENT
FLOATING POINT COMPARISON
FLOATING POINT CONSTANTS
FLOATING POINT MATH
FLOATING POINT STRING CONVERSION AND I/O
HEADERLESS FUNCTIONS
HEAP
INTERPRETER AND COMPILER
INTERRUPTS
LOGICAL
MASS MEMORY
MATH
MATRIX DIMENSIONING AND ACCESS
MATRIX EDITING
MATRIX I/O
MATRIX MATH
MATRIX ROW/COL OPERATIONS
MEMORY
MEMORY MAP
MULTITASKING AND TIME-KEEPING
NUMERIC CONVERSION
OPERATING SYSTEM
SERIAL I/O ROUTINES (Character, String, and Number I/O)
SOURCE FORM ROUTINES
STACK
STRING

Categorized Word List 3

Word Categories
STRUCTURES
VECTOR

ARRAY
2ARRAY.FETCH COPY.ARRAY MAX#DIMENSIONS
2ARRAY.STORE DELETED PF.STACK.FRAME
?ARRAY.SIZE DIM.CONSTANT.ARRAY: SWAP.ARRAYS
?DIMENSIONS DIMENSIONED ZERO.ARRAY
ARRAY.PF FILL.ARRAY [0]
ARRAY: BLANK.ARRAY []

ASSEMBLER (SEE ASSEMBLER GLOSSARY)
>ASSM BLT DIR LSLA SBCA
>FORTH BMI ELSE, LSLB SBCB
ABA BNE END-CODE LSLD SEC
ABX BPL END.CODE LSR SEI
ABY BRA ENDIF, LSRA SEV
ADCA BRCLR EORA LSRB STAA
ADCB BRN EORB LSRD STAB
ADDA BRSET EQ LT STD
ADDB BSET EXT MI STOP
ADDD BSR FDIV MUL STS
AGAIN, BVC GE NE STX
ALWAYS BVS GT NEG STY
ANDA CALL HI NEGA SUBA
ANDB CBA HS NEGB SUBB
ANY.BITS.CLR CC IDIV NEVER SUBD

ANY.BITS.SET CLC IF, NOP SWI

ASL CLI IMM ORAA TAB
ASLA CLR INC ORAB TAP
ASLB CLRA INCA PL TBA
ASLD CLRB INCB PSHA TEST
ASR CLV IND,X PSHB THEN,
ASRA CMPA IND,Y PSHX TPA
ASRB CMPB INH PSHY TST
ASSEMBLER CODE INS PULA TSTA
BCC COM INX PULB TSTB
BCLR COMA INY PULX TSX
BCS COMB JMP PULY TSY
BEGIN, CPD JSR REL TXS
BEQ CPX LDAA REPEAT, TYS
BGE CPY LDAB ROL UNTIL,
BGT CS LDD ROLA VC
BHI DAA LDS ROLB VS
BHS DEC LDX ROR WAI
BITA DECA LDY RORA WHILE,
BITB DECB LE RORB XGDX
BLE DES LO RTI XGDY

4 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

ASSEMBLER (SEE ASSEMBLER GLOSSARY)
BLO DEX LS RTS
BLS DEY LSL SBA

 C DEBUGGING (SEE C DEBUGGER GLOSSARY)
=CHAR CHAR FP_QtoC MAIN
=FLOAT CHAR* FPtoString PrintFP
=INT DO[] INT
=LONG FLOAT INT*
C$>COUNTED$ FLOAT* LONG
CALL.CFN FP_CtoQ LONG*

COMPARISON
< 0= DMAX U< XU<
< > 0> DMIN U> XU>
<= D< DRANGE UMAX
= D< > DU< UMIN
> D= DU> URANGE
>= D> MAX X< >
0< D0< > MIN X=
0< > D0= RANGE XRANGE

CONTROL STRUCTURES
+LOOP ENDIFTRUE I+ J\I REPEAT
AGAIN ENDOF IF K THEN
BEGIN EXIT IFTRUE LEAVE UNLOOP
CASE FOR IXN- LOOP UNTIL
DO I IXN+ NEXT URANGE.OF
ELSE I' IXU- OF WHILE
ENDCASE I- IXU+ OTHERWISE
ENDIF I\J J RANGE.OF

DEBUG, TRACE, AND BENCHMARK
(BENCHMARK:) DEFAULT.TRACE.ACTION IS.TRACE.ACTION
BENCHMARK: DUMP.REGISTERS SINGLE.STEP
BREAK F*/COUNTER TRACE
DEBUG F+COUNTER

DEFINITION
: CODE INTEGER: VARIABLE
; CONSTANT LOCALS{ XADDR:
<DBUILDS DOES> MATRIX: XCONSTANT
<VBUILDS DOUBLE: NO.OP XVARIABLE
2CONSTANT END.CODE REAL:
2VARIABLE END-CODE REDEFINE
ADDR: FCONSTANT REGISTER:
ARRAY: FVARIABLE USER

Categorized Word List 5

DEVICE DRIVERS : Analog I/O Drivers
(A/D8.MULTIPLE) A/D8.OFF A/D8.SAMPLE
(A/D8.SAMPLE) A/D8.ON
A/D8.MULTIPLE A/D8.RESOURCE

DEVICE DRIVERS : Digital I/O Drivers
PORTA PORTD PORTE
PORTA.DIRECTION PORTD.DIRECTION

DEVICE DRIVERS : High Current Drivers
CLEAR.HIGH.CURRENT SET.HIGH.CURRENT

DEVICE DRIVERS : Keypad and Display Drivers
$>DISPLAY CLEAR.DISPLAY IS.DISPLAY.ADDRESS
(UPDATE.DISPLAY) COMMAND>DISPLAY KEYPAD
?KEYPAD DISPLAY.BUFFER LINES/DISPLAY
?KEYPRESS DISPLAY.HEAP PUT.CURSOR
BUFFER.POSITION DISPLAY.OPTIONS UPDATE.DISPLAY
BYTES>DISPLAY GARRAY.XPFA UPDATE.DISPLAY.LINE
CHAR>DISPLAY INIT.DISPLAY
CHARS/DISPLAY.LINE IS.DISPLAY

DEVICE DRIVERS : Real-Time Clock
READ.WATCH SET.WATCH

DEVICE DRIVERS : Serial I/O Drivers (See also SERIAL I/O ROUTINES)
#INPUT.CHARS INIT.RS485 SERIAL1.AT.STARTUP
#OUTPUT.CHARS INIT.SERIAL2 SERIAL1.RESOURCE
?KEY1 KEY1 SERIAL2.AT.STARTUP
?KEY2 KEY2 SERIAL2.RESOURCE
BAUD1.AT.STARTUP PARITY TRANSMITTING
BAUD2 PARITY.IN USE.SERIAL1
DISABLE.SERIAL2 PARITY.OUT USE.SERIAL2
EMIT1 RS485.RECEIVE
EMIT2 RS485.TRANSMIT

DEVICE DRIVERS : SPI Drivers
BUFFER>SPI SPI.OFF
INIT.SPI SPI.RESOURCE

DEVICE DRIVERS : Stepper Motor Drivers
CREATE.RAMP SPEED.TO.DUTY STEP.MANAGER

6 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

DICTIONARY

' CFA.PTR FORTH NP VOCABULARY
(HERE) CFA>NAME HERE NPAGE VP
, CFA>NFA ID. ON.FORGET WIDTH
?HAS.PFA CFA>PFA LATEST PFA>NAME WORDS
ALLOT CONTEXT LINK PFA>NFA
ANEW CURRENT NFA.FOR V,
ASSEMBLER DEFINITIONS NFA>CFA VALLOT
AXE DP NFA>LFA VC,
C, DPAGE NFA>PFA VFORTH
CFA.FOR FORGET NHERE VHERE

FLASH MANAGEMENT
ALL.TO.FLASH PAGE.TO.FLASH TO.FLASH
DOWNLOAD.MAP PAGE.TO.RAM WHICH.MAP
ENABLE.DOWNLOAD STANDARD.MAP

FLOATING POINT COMPARISON
F< F= F0< > F0> FMIN
F< > F> F0<= F0>=
F<= F0< F0= FMAX

FLOATING POINT CONSTANTS
1/INFINITY 1/PI 360/2PI LOG10(2) SQRT(2)
-1/INFINITY 1/SQRT(2) INFINITY ONE TEN
1/LN(2) 1/TEN -INFINITY PI ZERO
1/LOG10(2) 2PI/360 LN(2) PI/2

FLOATING POINT MATH
>DEGREES F** FALOG2 FLOT FTAN
>RADIANS F/ FASIN FNEGATE INT.FLOOR
1/F F^N FATAN FP.ERROR INT.PART
10^N F+ FCOS FP.POP OVERFLOW
DFIXX F2* FINT FP.PUSH RANDOM#
DFLOT F2/ FIXX FRANDOM RANDOM.GAUSSIAN
DINT FABS FLN FRTI UFIXX
DINT.FLOOR FACOS FLOG10 FSCALE UFLOT
F- FALN FLOG2 FSIN UNDERFLOW
F* FALOG10 FLOOR FSQRT

FLOATING POINT STRING CONVERSION AND I/O
$>F FILL.FIELD FP&STRING.POP NO.SPACES
ASK.FNUMBER FIXED FP&STRING.PUSH RIGHT.PLACES
F. FIXED. FP.DEFAULTS SCIENTIFIC
F>FIXED$ FLOATING LEFT.PLACES SCIENTIFIC.
F>FLOATING$ FLOATING. MANTISSA.PLACES TRAILING.ZEROS
F>SCIENTIFIC$ FNUMBER NEXT.NUMBER

Categorized Word List 7

HEADERLESS FUNCTIONS : (See their glossary entries for details)
BUFFER>SPI CALC.CHECKSUM

HEAP
.HANDLES CURRENT.HEAP HANDLE.PTR ROOM
?HANDLE.SIZE DEALLOCATED HEAP.PTR START.HEAP
+CURRENT.HEAP DUP.HEAP.ITEM HEAP.STRUCTURE.PF TO.HEAP
+HEAP.HANDLE FREE.HANDLE IS.HEAP TRANSFER.HEAP.ITEM

+HEAP.PAGE FROM.HEAP RECOVER.HANDLE
ALLOCATED H.INSTANCE: RESIZE.HANDLE

INTERPRETER AND COMPILER
#FIND ; 2LITERAL EXECUTE QUERY
#TIB ?IMMEDIATE ASCII FIND QUIT
([BACKTRACK HAS.PFA RECURSE
(#FIND) [COMPILE] BLK IMMEDIATE SMUDGE
(COMPILE.CALL) \ CALL INTERPRET TIB

(CREATE)] COMPILE LITERAL UNIQUE.MSG
(EXECUTE) >ASSM COMPILE.CALL LOCALS{ WORD

(FIND) >FORTH CREATE PARSE
: >IN EVALUATE POCKET

INTERRUPTS
ATTACH IC1.ID OC4.ID
CLOCK.MONITOR.ID IC2.ID PULSE.EDGE.ID
COP.ID IC3.ID PULSE.OVERFLOW.ID
DISABLE.INTERRUPTS IC4/OC5.ID RTI.ID
ENABLE.INTERRUPTS ILLEGAL.OPCODE.ID SCI.ID
FP&STRING.POP IRQ.ID SPI.ID
FP&STRING.PUSH OC1.ID SWI.ID
FP.POP OC2.ID TIMER.OVERFLOW.ID
FP.PUSH OC3.ID XIRQ.ID

LOGICAL
AND COMPLEMENT NOT TRUE
BOOLEAN FALSE OR XOR

MASS MEMORY
BLOCK LIMIT PREV UFIRST UREAD/WRITE
BUFFER LINK_FILE_IO READ/WRITE ULIMIT USE

FIRST OFFSET SCR UPDATE

8 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

MATH
- 1XN+ 4XN- DABS SIGNED.D>S XALIGN

* 2- 4XN+ DNEGATE U*/MOD XD-
/ 2 8* DSCALE U/ XD+
*/MOD 2/ 8/ LOG2 U/MOD XN-
/ 2+ 8XN+ M* U>D XN+
/MOD 2XN- ABS M/MOD U2/ XU-
|X1-X2|>U 2XN+ D- MOD UD*S XU+
+ 3* D+ NEGATE UM*
1- 4- D>S RANDOM UM/MOD
1+ 4* D>S? RANDOM# UMOD
10* 4/ D2* S>D X1-X2>D
1XN- 4+ D2/ SCALE X1-X2>N

MATRIX DIMENSIONING AND ACCESS
?DIM.MATRIX M[] MATRIX->V
?MATRIX.SIZE M[]! PF.STACK.FRAME
DELETED M[]@ REDIMMED
DIM.CONSTANT.MATRIX: MATRIX.PF
DIMMED MATRIX:

MATRIX EDITING
COLUMN.CONCATENATE ROW.CONCATENATE ROW/COL.INSERTED
COLUMN.TRUNCATE ROW/COL.DELETED SELECT.COLUMNS

MATRIX I/O
LOAD.MATRIX M.. MATRIX
M. M.PARTIAL

MATRIX MATH
?DETERMINANT M*MT S*MATRIX
ALL.COLUMNS.SCALED MATRIX- S/MATRIX
ALL.ROWS.SCALED MATRIX* S+MATRIX
COPY.MATRIX MATRIX.ELEMENT* S-MATRIX
FFT MATRIX.ELEMENT/ SOLVE.EQUATIONS
IFFT MATRIX.MAX SWAP.MATRIX
INVERTED MATRIX.MIN TRANSFORM.MATRIX
IS.IDENTITY MATRIX.SUM TRANSPOSED
L.INVERTED MATRIX.VARIANCE U.INVERTED
LEAST.SQUARES MATRIX+ ZERO.MATRIX
LU.BACKSUBSTITUTION MT*M
LU.DECOMPOSITION RANDOMIZED

Categorized Word List 9

MATRIX ROW/COL OPERATIONS
ROW/COL- ROW/COL.FILL ROW/COL/
ROW/COL* ROW/COL.INSERTED ROW/COL+
ROW/COL*+ ROW/COL.IS.UNITY.LENGTH ROW/COL->V

ROW/COL.ALL= ROW/COL.MAX S.ROW/COL-
ROW/COL.ANY= ROW/COL.MIN S.ROW/COL*
ROW/COL.CENTERED ROW/COL.SUM S.ROW/COL/
ROW/COL.COPY ROW/COL.SWAP S.ROW/COL+
ROW/COL.DELETED ROW/COL.TRANSFORMED S.ROW/COL<
ROW/COL.DOT.PRODUCT ROW/COL.VARIANCE S.ROW/COL>

MEMORY
! (EE2!) |2!| CHANGE.BITS MOVE.MANY
(!) (EEC!) |2@| CLEAR.BITS OFF
(@) (EEF!) |F!| CMOVE ON
(+!) (EEX!) |F@| CMOVE.IN.PAGE SET.BITS
(+C!) (F!) |X!| CMOVE.MANY THIS.PAGE
(2!) (F@) |X@| DEFAULT.PAGE TO
(2@) (MOVE) +! ERASE TOGGLE.BITS
(C!) (PAGE.LATCH) +C! F! X!
(C@) (SET.BITS) 2! F@ X@
(CHANGE.BITS) (TOGGLE.BITS) 2@ FILL
(CLEAR.BITS) (X!) BLANK FILL.MANY
(CMOVE) (X@) C! MOVE
(EE!) @ C@ MOVE.IN.PAGE

MEMORY MAP
DP S0 USE.PAGE
NP UPAD UTIB
R0 UPOCKET VP

MULTITASKING AND TIME-KEEPING
(STATUS) INSTALL.MULTITASKER RESOURCE.VARIABLE:
*100US=TIMESLICE.PERIOD KILL SEND

?GET MAILBOX: SERIAL
?RECEIVE MICROSEC.DELAY SERIAL.ACCESS
?SEND NEXT.TASK SET.WATCH
ACTIVATE PAUSE START.TIMESLICER
ASLEEP READ.ELAPSED.SECONDS STATUS
AWAKE READ.ELAPSED.TIME STOP.TIMESLICER
BUILD.STANDARD.TASK READ.WATCH TASK:
BUILD.TASK RECEIVE TASK'S.USER.VAR
DISK.RESOURCE RELEASE TIMESLICE.COUNT
GET RELEASE.AFTER.LINE UP
HALT RELEASE.ALWAYS
INIT.ELAPSED.TIME RELEASE.NEVER

10 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

NUMERIC CONVERSION
BASE FP&STRING.PUSH PAD
#> CONVERT HEX SIGN
#S DECIMAL HOLD
<# DIGIT NEXT.NUMBER
ASK.NUMBER FP&STRING.POP NUMBER

OPERATING SYSTEM
#USER.BYTES COLD.ON.RESET RESTORE
((ERROR)) CR.BEFORE.MSG RP!
(ABORT) CUSTOM.ABORT SAVE
(ERROR) CUSTOM.ERROR SET.BOOT.VECTOR
(RP) DEFAULT.REGISTER.INITS STANDARD.RESET
ABORT INIT.VITAL.IRQS.ON.COLD STATE
ABORT" INSTALL.REGISTER.INITS UABORT
AUTOSTART NO.AUTOSTART UERROR
CALC.CHECKSUM NO.VITAL.IRQ.INIT WARM
CLEAR.BOOT.VECTOR PRIORITY.AUTOSTART
COLD R0

SERIAL I/O ROUTINES: Character, String, and Number I/O
(see also Serial I/O Drivers in the DEVICE DRIVERS Section)
. D.R QUIET
." DIN RECEIVE.HEX
.R DUMP SPACE
.S DUMP.INTEL SPACES
? DUMP.S1 SPAN
?KEY DUMP.S2 TAB.WIDTH
ASK.FNUMBER EMIT TYPE
ASK.NUMBER EXPECT U.
BEEP ID. U?KEY
CFA>NAME INPUT.STRING UD.R
CHARS/LINE KEY UEMIT
COUNT.TYPE NEXT.WORD UKEY
CR PAUSE.ON.KEY XMIT.DISABLE
D. PFA>NAME

SOURCE FORM ROUTINES (SEE SOURCE FORM GLOSSARY)
(These utilities are provided as source code on diskette)
.LINE EMPTY.BUFFERS LOAD
--> FLUSH SAVE.BUFFERS
>L INIT.UREAD/WRITE SUBSTRING
2xN.MATRIX* IS.RAMDISK THRU
3xN.MATRIX* LINE>$
BLOCK.BUFFERS LIST

11

STACK
(SP) 2SWAP DUP>R NDROP SWAP
.S 3 F.OVER.N NEEDED TUCK
?DUP 3DROP F>R NIP X.OVER.N
> < 3DUP F2DROP OVER X>R
>R 4 F2DUP PF.STACK.FRAME X2DROP
0 4DROP FDROP PICK X2DUP
0\0 4DUP FDUP R@ XDROP
1 D.OVER.N FDUP>R R> XDUP
-1 D>R FOVER R>DROP XDUP>R
2 DEPTH FPICK ROLL XOVER
-2 DPICK FR@ -ROLL XPICK
2DROP DR@ FR> ROT XR@
2DUP DR> FR>DROP -ROT XR>
2DUP>R DR>DROP FRAME.DROP S0 XR>DROP
2OVER DROP FROT SP! XROT
2ROT DUP FSWAP STACK.FRAME XSWAP

STRING
" ," COUNT SKIP>
$COMPARE /STRING SCAN -TRAILING
$MOVE BL SKIP UPPER.CASE

STRUCTURES
+CURRENT.HEAP DEALLOCATED MEMBER-> STRUCTS->
+HEAP.HANDLE DOUBLE-> OR.TYPE.OF: STRUCTURE.BEGIN:
+HEAP.PAGE DOUBLES-> PAGE-> STRUCTURE.END
ADDR-> FIELD REAL-> TYPE.END
ADDRS-> H.INSTANCE: REALS-> TYPE.OF:
ALLOCATED HEAP.STRUCTURE.PF RESERVED V.INSTANCE:
BYTE-> HNDL-> SIZE.OF XADDR->
BYTES-> INT-> STRING-> XADDRS->
D.INSTANCE: INTS-> STRUCT-> XHNDL->

VECTOR MATH
2V.TRANSFORM S.V- S.V< V.ANY= V.SWAP
COL->V S.V* S.V> V.COPY V.TRANSFORM
DOT.PRODUCT S.V.ALL= V- V.FILL V/
MATRIX->V S.V.ANY= V* V.MAX V+
ROW/COL->V S.V/ V*+ V.MIN V<
ROW->V S.V+ V.ALL= V.SUM V>

12 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Stack Symbols and Naming Conventions

Stack Conventions and Notation

Understanding stack notation is very important when programming in Forth. Each glossary entry
contains a "stack comment" (also called a "stack picture") that describes the inputs and outputs of
the function. In addition, we strongly recommend that you include in your own source code a stack
comment for each function that you write. This chapter describes the standard stack notation used
throughout this glossary and all of the QED-Forth Software and Hardware documentation.

Each stack picture is enclosed in parentheses, so it is automatically treated as a comment by the
QED-Forth compiler. A stack picture indicates the input(s) and output(s) of a routine. Inputs are
listed to the left of the -- symbol, and outputs are listed to the right. Stack items are separated by the
\ character which can be read as "under". For example, the stack picture of the addition routine + is:

 (n1\n2 -- n3)

which indicates that the function expects two integer inputs (n1 under n2), and returns the integer
result n3 as an output. If we want to convey a bit more information within the stack picture, we can
add an explanatory phrase within the parentheses. The standard way to do this is to insert a vertical
bar symbol before the explanatory phrase. For example, a more instructive stack picture for the +
routine would be:

 (n1\n2 -- n3 | n3 = n1 + n2)

which tells us that the output n3 is the sum of the two inputs.

Even words that expect no inputs and return no outputs should be documented with a stack picture;
in this case the stack picture would be as follows:

 (--)

Alternate stack inputs or outcomes are indicated by placing the alternatives within brackets as in

 (-- [n1\true] or [false])

The word associated with this stack picture either places a signed integer under a true flag on the
stack, or places a false flag on the stack.

The smallest item that can be stored on the stack is called a "cell". Each stack cell consists of two
bytes. The most significant byte is stored on the top of the stack (in the lower memory location),
and the data stack grows downward toward low memory. For stack items whose data size is less
than two bytes, for example a character, page or byte, the datum is stored in the least significant byte
of the stack cell.

The remainder of this chapter describes the standard stack symbols, data structure names, and nam-
ing conventions used in the QED-Forth Glossary and documentation.

Stack Symbols and Naming Conventions 13

Stack Symbols

The following table describes the standard symbols used to represent items placed on the data stack.

Stack
Symbol

Size on
Stack

Size in
Memory

Valid
Data Size

Meaning

addr 1 cell 2 bytes 2 bytes 16-bit address. Range: 0 to 65,535 (0-0xFFFF).

page 1 cell 2 bytes 1 byte Page. Range: 0 to 255 (0-0xFF).

xaddr 2 cells 4 bytes 3 bytes 32-bit extended address comprising an address
and page: addr\page. In paged memory, the
address immediately after 0x7FFF on a specified
page is 0000 on the following page.

$addr 1 cell 2 bytes 2 bytes 16-bit address of the count byte of an ASCII string.
The count byte precedes the string in memory.

x$addr 2 cells 4 bytes 3 bytes Extended string address, same as: $addr\page.

xtask.id 2 cells 4 bytes 3 bytes Extended task identifier address, also called
STATUS addr or base addr of user area.

xresource 2 cells 4 bytes 3 bytes Extended address of a resource variable.

xmailbox 2 cells 4 bytes 3 bytes Extended address of a mailbox variable.

cfa 1 cell 2 bytes 2 bytes 16-bit code field address.

nfa 1 cell 2 bytes 2 bytes 16-bit name field address.

pfa 1 cell 2 bytes 2 bytes 16-bit parameter field address.

xcfa 2 cells 4 bytes 3 bytes Code field xaddr.

xnfa 2 cells 4 bytes 3 bytes Name field xaddr.

xpfa 2 cells 4 bytes 3 bytes Parameter field xaddr.

xhandle 2 cells 4 bytes 3 bytes 32-bit address of a memory location that contains
a 32-bit xaddr. Typically used to hold the base
xaddr of a heap item.

flag 1 cell 2 bytes 2 bytes Boolean flag, 0 indicates false. Non-zero indicates
true.

true 1 cell 2 bytes 2 bytes Boolean flag, = -1 = 0XFFFF.

false 1 cell 2 bytes 2 bytes Boolean flag, = 0

-1 1 cell 2 bytes 2 bytes -1

0 1 cell 2 bytes 2 bytes 0

1 1 cell 2 bytes 2 bytes 1

char 1 cell 1 byte 1 byte ASCII character.

byte 1 cell 1 byte 1 byte Unspecified single byte datum.

cnt 1 cell 1 byte 1 byte Unsigned byte-sized integer, the count of an ASCII
string. Range: 0 to 255.

n 1 cell 2 bytes 2 bytes Signed 16-bit (single) integer. Range: -32,768 to
32,767.

+n 1 cell 2 bytes 2 bytes Signed positive 16-bit (single) integer. Range: 0 to
32,767.

u 1 cell 2 bytes 2 bytes Unsigned 16-bit (single) integer range: 0 to 65,535.

14 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Stack
Symbol

Size on
Stack

Size in
Memory

Valid
Data Size

Meaning

w 1 cell 2 bytes 2 bytes Unspecified signed or unsigned 16-bit integer,
either n or u.

d 2 cells 4 bytes 4 bytes Signed 32-bit integer. Range: -2,147,483,648 to
+2,147,483,647

+d 2 cells 4 bytes 4 bytes Signed positive 32-bit (double) integer. Range: 0 to
+2,147,483,647.

ud 2 cells 4 bytes 4 bytes Unsigned 32-bit (double) integer. Range: 0 to
4,294,967,295.

wd 2 cells 4 bytes 4 bytes Unspecified signed or unsigned double integer,
either d or ud.

r 2 cells 4 bytes 4 bytes Floating point (real) number, sign and exponent
are in most significant cell (low memory) mantissa
is in least significant cell (high memory).

mode 1 cell 2 bytes 2 bytes Synonym for n, specifies the address mode for an
assembly mnemonic.

condition 1 cell 2 bytes 2 bytes Synonym for n, specifies the condition for
assembly branches and control structures.

arg 1 cell 2 bytes 2 bytes Synonym for w, an argument passed to an
assembly mnemonic. The interpretation of arg
depends on the specified mode.

array.xpfa 2 cells 4 bytes 3 bytes The xpfa of an array. Used to refer to an array as
a whole.

matrix.xpfa 2 cells 4 bytes 3 bytes The xpfa of a matrix. Used to refer to a matrix as a
whole.

#rows 1 cell 2 bytes 2 bytes Specifies the number of rows in a matrix. Range:
0 to 16,383.

row# 1 cell 2 bytes 2 bytes Used as row index for matrices, range: 0 to
16,383.

#cols 1 cell 2 bytes 2 bytes Specifies the number of columns in a matrix.
Range: 0 to 16,383.

col# 1 cell 2 bytes 2 bytes Used as column index for matrices. Range: 0 to
16,383.

xvaddr 2 cells 4 bytes 3 bytes 32-bit extended address specifying the starting
xaddr of a vector (a vector is a collection of floating
point numbers evenly spaced in memory). For the
vector operations to function properly, xvaddr must
be 4-byte aligned (i.e., it must be an even multiple
of 4 bytes). The heap manager and array and
matrix dimensioning words perform this alignment
automatically.

sep 1 cell 2 bytes 2 bytes Specifies the separation used by vector words
expressed in multiples of 4 bytes. Range: 0 to
16,383. sep=1 means a vector of contiguous
floating point numbers, sep=2 means elements are
separated by 8 bytes, etc.

Stack Symbols and Naming Conventions 15

Stack
Symbol

Size on
Stack

Size in
Memory

Valid
Data Size

Meaning

d.#el 2 cells 4 bytes 3 bytes Synonym for +d. Number of elements in a vector;
the allowed number of elements is limited only by
available memory.

\...\ ? cells Unspecified number of bytes.

<name> Indicates that a single word is taken from the input
stream.

<text> Indicates that text is taken from the input stream or
placed into the output stream.

Stack Representations of Data Structures

The following table describes the stack pictures used to represent data structures such as arrays,
matrices, rows, columns, and vectors.

Data
Structure

Stack Picture Representation

array array.xpfa An array is represented by its extended parameter field
address, which is obtained by using the word ' (tick). For
example, ' MY.ARRAY returns the xpfa.

matrix matrix.xpfa A matrix is represented by its extended parameter field
address, which is obtained by using the word ' (tick). For
example, ' MY.MATRIX returns the xpfa.

row/col [row#\-1] or [-1\col#] A number of words operate on a specified row or column in a
matrix. A matrix row is specified by a row number under a -1
under a matrix.xpfa: row#\-1\matrix.xpfa --
A matrix column is specified by a -1 under a column number
under a matrix.xpfa: -1\col#\matrix.xpfa --

vector xvaddr\sep\d.#el A vector is a collection of floating point numbers evenly
spaced in memory. All matrices and their constituent rows
and columns can be represented as vectors, and fast vector
operators form the basis of all matrix math operations. A
vector is represented by an extended base address xvaddr,
a vector element separation value sep, and the 32-bit
number of elements in the vector d.#el. xvaddr must be
4-byte aligned; that is, it must be an even multiple of 4 bytes;
the heap manager and array and matrix dimensioning words
perform this alignment automatically (see XALIGN). sep is
expressed as a multiple of 4 bytes (e.g., sep=1 means a
vector of contiguous floating point numbers, sep=2 means
elements are separated by 8 bytes, and so on). The number
of elements in the vector is limited only by available memory.
A vector may cross one or more page boundaries.

16 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Naming Conventions

Hexadecimal (base sixteen) numbers are denoted by the prefix 0x. The letters and symbols listed
below are commonly used in the names of words to help convey their meaning.

Symbol Meaning

(Words delimited by parentheses are either page-less variations of words, as in (!) versus ! ,
or subsidiary words, as in (CREATE) versus CREATE .

, Words ending with , (comma) are assembler control words. The comma suggests that
execution of the word causes code to be compiled into the dictionary. For example, BEGIN,
... UNTIL, are assembler loop control words analogous to BEGIN ... UNTIL in high level Forth.

-> These are the final two characters of each structure defining word. They suggest the defining
nature of the word.

: A word ending with a colon indicates a defining word.

2 A word beginning with 2 indicates that it operates on double width 32-bit values.

D The D prefix indicates that a word operates on double numbers (32-bit values). This prefix is
also used to distinguish words related to the definitions area of the dictionary (for example, DP,
DPAGE).

F The F prefix indicates that a word operates on floating point numbers.

M An M indicates that a word operates on matrices or on mixed double/single number types (for
example, UM/).

N The N prefix distinguishes words related to the names area of the dictionary (for example, NP,
NPAGE).

ROW/COL Words that operate on a specified row or column in a matrix include ROW/COL in their name.

S The S prefix indicates that a word performs an operation involving a scalar (for example,
S*MATRIX).

U The U prefix indicates that a word operates on unsigned numbers.

V The V prefix indicates that a word operates on vectors. It also distinguishes words related to
the variable area (for example, VP, VPAGE).

X The X prefix indicates that a word operates on extended addresses.

| Words delimited by the | (vertical bar) character are uninterruptable operators (for example,
|2@|). These provide robust behavior even when multiple concurrent tasks or routines are
accessing a shared memory location or 32 bit variable.

Words that Disable Interrupts 17

Attributes

Some glossary entries include an "Attributes" field. The following table presents the meaning of the
single-character codes used in the Attributes field of the Main Glossary.

Symbol Meaning

C Compilation only. The word may be used only during compilation of a colon definition.

D Defining. The word is a defining word.

I Immediate. An immediate word is executed (rather than compiled) even if the interpreter is in
compilation mode.

M Multi-programming impact. The word may execute PAUSE and cause a task switch. See the
Chapter in this Glossary titled "Words That Disable Interrupts" for a list of routines that call
PAUSE.

S Scratchpad impact. The word modifies one or more scratchpad user variables related to
floating point math, floating point string/number conversion, or integer string/number
conversion. If the word is to be used inside an interrupt service routine that shares the same
user area as another program, then the affected scratchpad variables should be saved at the
start of the interrupt service routine and restored before the service routine terminates. The
words FP.PUSH, FP.POP, FP&STRING.PUSH, and FP&STRING.POP are helpful utilities for
saving and restoring the affected scratchpad variables; consult their glossary entries for
examples of use.

U User. The word is a user value.

Words that Disable Interrupts
Certain QED-Forth routines temporarily disable interrupts by setting the I bit in the condition code
register. These routines are summarized here to assist you in planning the time-critical aspects of
your application.

The kernel provides a set of uninterruptable memory operators that disable interrupts for a few mi-
croseconds during the memory access. These are very useful in applications where several tasks or
interrupt routines must access a shared memory location. The glossary entries for these words detail
the length of time that interrupts are disabled.

(CHANGE.BITS) (CLEAR.BITS) (SET.BITS) (TOGGLE.BITS)
CHANGE.BITS CLEAR.BITS SET.BITS TOGGLE.BITS
|2!| |F!| |X!|
|2@| |F@| |X@|

Accessing the LCD display requires the insertion of wait states, and the computer architecture re-
quires that interrupts be disabled while a wait state memory access is in progress. The following
routines disable interrupts to insert wait states:

$>DISPLAY (UPDATE.DISPLAY) ?KEYPAD
?KEYPRESS BYTES>DISPLAY CHAR>DISPLAY
CLEAR.DISPLAY COMMAND>DISPLAY DISPLAY.OPTIONS
INIT.DISPLAY IS.DISPLAY.ADDRESS KEYPAD
PUT.CURSOR UPDATE.DISPLAY UPDATE.DISPLAY.LINE

18 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

The multitasker mediates access to shared resources and ensures smooth transfer of information
among tasks. The routines that manage resource variables and mailboxes must disable interrupts for
short periods of time to ensure proper access to shared resources and messages. Consequently, the
following routines temporarily disable interrupts:

?GET ?RECEIVE ?SEND
GET RECEIVE RELEASE SEND

Consult their glossary entries for details.

The following routines temporarily disable interrupts to ensure that a new task is not corrupted while
it is being built:

BUILD.STANDARD.TASK BUILD.TASK

These routines disable interrupts to ensure that the elapsed time clock is not updated while it is being
read:

READ.ELAPSED.SECONDS READ.ELAPSED.TIME

The multitasker is charged with smoothly transferring control among tasks via timeslicing or coop-
erative task switching. The timeslicer is an interrupt service routine associated with output com-
pare#2. It disables interrupts for the duration of a task switch which requires 25 microseconds plus
3.25 microseconds for each ASLEEP task encountered. The cooperative task switch routine

PAUSE

switches tasks in (27 + 3.25n) microseconds, where n is the number of ASLEEP tasks encountered in
the round robin task list. Of this time, interrupts are disabled for (20 + 3.25n) microseconds.

The PAUSE routine (which temporarily disables interrupts) is called by the following built-in device
drivers:

EMIT EMIT1 EMIT2
KEY KEY1 KEY2
?KEYPAD KEYPAD

The following device driver routines GET and RELEASE resource variables, and so disable inter-
rupts for short periods of time:

?KEY ?KEY1 ?KEY2
?KEYPAD ?KEYPRESS A/D8.MULTIPLE
A/D8.SAMPLE PAUSE.ON.KEY READ.WATCH
SET.WATCH

All of the routines that write to the EEPROM disable interrupts for 20 msec per programmed byte.
This results from the 68HC11's design which prohibits any EEPROM locations from being read
while other EEPROM locations are being modified. Since all interrupts are vectored through
EEPROM, interrupts cannot be serviced while an EEPROM storage operation is in progress. The
following fundamental EEPROM storage routines

(EEC!) (EE!) (EEX!) (EEF!) (EE2!)

Comparison with Prior QED-Forth Firmware 19

disable interrupts for 20 msec per programmed byte. These routines are smart enough to avoid
programming a byte that already has the correct contents. The following routines may modify
EEPROM locations:

ATTACH AUTOSTART
COLD.ON.RESET DEFAULT.REGISTER.INITS
DOWNLOAD.MAP INIT.VITAL.IRQS.ON.COLD
INSTALL.MULTITASKER INSTALL.REGISTER.INITS
IS.DISPLAY NO.AUTOSTART
SAVE SERIAL1.AT.STARTUP
SERIAL2.AT.STARTUP STANDARD.MAP
STANDARD.RESET START.TIMESLICER

All of the routines that write to the Flash memory disable interrupts for 20 msec per programmed
sector, where a standard sector is 256 bytes. This results from the flash architecture which prohibits
any flash locations from being read while other flash locations are being modified. Since interrupts
invoke flash-resident code, interrupts cannot be serviced while an flash storage operation is in prog-
ress. The following flash routines disable interrupts:

PAGE.TO.FLASH PAGE.TO.RAM
PRIORITY.AUTOSTART TO.FLASH

The following routines disable interrupts and do not re-enable them:

DISABLE.INTERRUPTS SEI
COLD WARM

DISABLE.INTERRUPTS and its assembly language counterpart SEI explicitly set the I bit in the con-
dition code register. The routines ENABLE.INTERRUPTS and CLI clear the I bit to globally enable
interrupts. The restart routines COLD and WARM disable interrupts so that the initialization process is
not interrupted.

Comparison with Prior QED-Forth Firmware
The QCard, QScreen Controller, and QED Handheld operating system firmware carries the version
number V4.4x, where x represents a numeric value. Customers who are familiar with the prior
V4.08 operating system software will notice that certain device driver functions have been removed
from V4.4x because the corresponding hardware is not present. These 19 functions comprise the
hardware drivers for the 12-bit A/D, D/A, PIA, and high current drivers. We recommend the use of
the many available WildCard I/O modules and their associated pre-coded kernel extension device
drivers to add customized I/O to meet the needs of your application.

The V4.4x keypad scanner and character/graphics display drivers are available to support an op-
tional Keypad/Display WildCard. These kernel-resident drivers work only if the Keypad/Display
WildCard is assigned a WildCard module address of 0. On the QCard, this is accomplished by
installing the Keypad/Display WildCard on module header 0, and leaving the jumper caps off the
WildCard’s two on-board jumpers. The QScreen and Handheld products come complete with a
graphical user interface that is controlled by pre-coded drivers.

The READ.WATCH and SET.WATCH functions are backwardly compatible with prior versions, but they
rely on different real-time clock hardware as described in their glossary entries.

20 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

The V4.4x kernel boots up at 19200 baud, compared to 9600 baud on many earlier products based
on the V4.08 kernel.

The following seven QED-Forth functions have been added to the V4.4x kernel:

ALL.TO.FLASH BUFFER>SPI
BYTES>DISPLAY CALC.CHECKSUM
CLEAR.BOOT.VECTOR ENABLE.DOWNLOAD
SET.BOOT.VECTOR

Summary of Modified Functions

A set of functions makes it easy for Forth programmers to manage the downloading of code into
RAM and the transfer of the compiled code to flash. The PAGE.TO.FLASH and PAGE.TO.RAM utilities
can copy between parallel RAM and flash pages. The TO.FLASH function can program flash any-
where it appears in the memory map. The STANDARD.MAP, DOWNLOAD.MAP, TO.FLASH,
PAGE.TO.FLASH and PAGE.TO.RAM routines are now aware of the additional memory in the memory
map. In the “standard map”, the QCard has flash at pages 4-7 that swaps with RAM on parallel
pages 1-3, plus flash at hex pages 10-17 that swaps with RAM on parallel hex pages 18-1F. In the
“download map”, flash and RAM are swapped: flash is present on pages 1-3 and 18-1F, and RAM is
present on pages 4-6 and 10-17. On the QScreen Controller and Handheld, TO.FLASH can program
the optional flash memory at pages 0x20-2F.

The great majority of Forth applications compile to less than 96 KBytes of code, which fits on pages
4, 5 and 6. For these applications, the new functions ENABLE.DOWNLOAD and ALL.TO.FLASH greatly
simplify the downloading process. Simply insert the command ENABLE.DOWNLOAD at the top of the
first file to be downloaded to the QCard. This function makes sure that any previously downloaded
code is transferred to RAM, and calls DOWNLOAD.MAP to ensure a RAM-based memory map that
enables compilation of code. At the end of the last file to be downloaded, insert the command
ALL.TO.FLASH. This copies the compiled code in pages 4, 5 and 6 to flash, sets the STANDARD.MAP,
and calls SAVE so that the RESTORE command can be used to recover after a crash or a COLD restart
during the development process.

To support a “bullet-proof” kernel extension to enable firmware upgrades, an optional “boot vector”
is implemented using the SET.BOOT.VECTOR function. This allows the posting of a function that is
executed before the autostart program is run; see the glossary entry of SET.BOOT.VECTOR for details.
The boot vector and its code are located on page 0x0C, a page that can be hardware write protected
with the “page-C write protect” jumper. Removal of the boot vector is accomplished by invoking
CLEAR.BOOT.VECTOR or by using the special cleanup mode described in the hardware docu-
mentation.

The V4.4x interpreter and its DIN, NEXT.NUMBER, and NUMBER functions now accept a leading “0x” or
“0X” to indicate that hexadecimal base should be used when converting the number to binary.

The ?KEYPAD, ?KEYPRESS and KEYPAD functions have been upgraded to support more than 20 keys.
They work identically to prior versions for keys 0 through 19, but add support for an additional 20
keys with numbers 20 through 39.

Comparison with Prior QED-Forth Firmware 21

INIT.SPI now configures the SPI to sample data on the falling trailing edge of the SPI clock. This
is consistent with the data transfer protocol of the on-board battery-backed real-time clock. The user
may freely change the SPI configuration to meet the needs of the application program.

22 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Main Glossary
(Alphabetized in ASCII Order)

! (w\xaddr --)
Stores a 16-bit number w at the extended address xaddr. The high order byte is stored
at xaddr and the low order byte at xaddr+1. Note that in paged memory, the address
immediately following 0x7FFF is address 0000 on the following page.
Pronunciation: "store"

" (-- x$addr)
Compile Time: (<text> --)
Parses the <text> string in the input stream delimited by a terminating " character. If
compiling, emplaces the text in the dictionary as a counted string along with a call to a
routine that pushes x$addr to the stack at runtime. If executing, emplaces the string in
the dictionary at HERE and leave x$addr (the address of the string) on the stack.
Pronunciation: "quote" Attributes: I

(ud1 -- ud2)
Divides unsigned double number ud1 by the value in BASE to compute the unsigned
double quotient ud2 and the integer remainder n. Converts n to an appropriate single
ASCII digit character in the current number base and inserts it into the pictured numeric
output string below PAD. # is used between <# and #> commands to create a pictured
numeric string.
Pronunciation: "number-sign" Attributes: S

#> (d -- xaddr\cnt)
Drops d and leaves the xaddr under the count of the pictured numeric output string
resulting from the number conversion process initiated by <#. The character count is
also stored in location xaddr - 1, so xaddr - 1 can be used as an x$addr. Used to
terminate a pictured numeric output sequence which was opened by <# . The pictured
numeric output string is located below PAD.
Pronunciation: "number-sign-greater"

#FIND (<name> -- [xcfa\xnfa\flag] or [0])
Executes BL WORD to parse the next space-delimited word from the input stream, and
then searches the dictionary for a match of the parsed word. #FIND first searches the
CONTEXT vocabulary. Then, if the word is not found and if the CONTEXT and
CURRENT vocabularies are different, it searches the CURRENT vocabulary. If the word
is not found in the dictionary, it leaves a 0 on the stack. If the word is found, it leaves
the word's extended code field address under its extended name field address under a
flag on the stack. The flag is +1 if the word is immediate and -1 if the word is not
immediate. An error occurs if the input stream is exhausted while WORD executes. A
COLD restart will occur if more than 255 page changes are made during the search
through either vocabulary. This prevents the interpreter from going on an infinite search
through a corrupted dictionary. A COLD restart will also occur if POCKET is not in
common memory.
Pronunciation: "hash-find"

Main Glossary 23

#INPUT.CHARS (-- n)
Places on the stack the number of characters in the input queue of the secondary serial
port (serial2). In other words, returns the number of characters that have been received
by the serial2 input interrupt service routine that have not yet been removed from the
circular input buffer by KEY2. The default serial2 input buffer holds 80 characters and is
located in the system RAM (consult the memory map appendix in the Software Manual
for its location). The serial2 port is supported by QED-Forth's software UART using
hardware pins PA3 (input) and PA4 (output).
Pronunciation: "number-input-chars"

#OUTPUT.CHARS (-- n)
Places on the stack the number of characters in the output queue of the secondary
serial port (serial2). In other words, returns the number of characters that have been
placed in the output buffer by EMIT2 that have not yet been removed from the circular
output buffer by the serial2 output interrupt service routine. The default serial2 output
buffer holds 80 characters and is located in the system RAM (consult the memory map
appendix in the Software Manual for its location). The serial2 port is supported by QED-
Forth's software UART using hardware pins PA3 (input) and PA4 (output).
Pronunciation: "number-output-chars"

#S (ud1 -- ud2 | ud2 = 0\0)
Converts all digits of the unsigned double number ud1 by iteratively dividing quotients
by BASE and inserting the ASCII symbol for the remainder into the pictured numeric
output starting at the left of the string and working towards the right. ud2 is a double
number zero. If ud1 equals zero, a single 0 is added to the pictured output buffer below
PAD. #S is used between <# and #> commands to create pictured numeric output.
Pronunciation: "number-sign-s" Attributes: S

#TIB (-- xaddr)
User variable that contains the number of characters in the terminal input buffer (TIB).
See QUERY .
Pronunciation: "number-t-i-b" Attributes: U

#USER.BYTES (-- n)
n is the number of USER bytes already allocated by QED-Forth. This quantity is useful
if the programmer wants to define more user variables. The first additional user variable
would be defined as #USER.BYTES USER <name> .

$>DISPLAY(x$addr\n1\n2 -- | n1 = line#, n2 = character#)
Moves the contents of the counted string specified by x$addr to the location in
DISPLAY.BUFFER starting at the specified character number n2 on the specified line
number n1. Does not move the count of x$addr. Confines the string to the specified
line in DISPLAY.BUFFER by clamping the number of characters moved to a maximum
equal to the number of character positions remaining after the specified position on the
specified line. The line number n1 should be less than LINES/DISPLAY, and the
character number n2 should be less than CHARS/DISPLAY.LINE. If the most
significant byte of the page in x$addr equals 0xFF, $>DISPLAY accepts a null-
terminated (C-style) string. $>DISPLAY does not modify the contents of the LCD

24 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

display; this will occur upon the next execution of UPDATE.DISPLAY.LINE or
UPDATE.DISPLAY or (UPDATE.DISPLAY).
Pronunciation: "string-to-display"

$>F (x$addr -- [r\-1] or [0])
Removes the next space-delimited text string from the input stream and attempts to
convert it into a valid floating point number r. Returns r under a true flag if the
conversion is successful; otherwise returns a false flag.
Pronunciation: "string-to-f" Attributes: S

$COMPARE (xaddr1\xaddr2\+n1 -- +n2)
Finds the number of common characters +n2 in the strings whose first characters are
stored at xaddr1 and xaddr2, respectively. +n1 specifies the maximum number of
characters to be compared. Comparison starts at the specified addresses and
terminates as soon as an unmatched pair of characters is encountered. +n2 = 0 if there
are no common characters found (i.e., if the character at xaddr1 is different from that at
xaddr2) or if +n1 is negative. The strings may cross page boundaries.
Pronunciation: "string-compare"

$MOVE (x$addr\xaddr\n --)
Moves the contents of the counted string specified by x$addr to the destination starting
at xaddr. Does not move the count byte. The number of characters moved is clamped
to a maximum of n bytes.
Pronunciation: "string-move"

' (-- [xpfa] or [0\0])
Compile Time: (<name> --)
Removes <name> from the input stream and returns <name>'s extended parameter
field address. Returns 0\0 if <name> has no parameter field (see ?HAS.PFA). If in
execution mode, leaves the xpfa on the stack. If in compilation mode, compiles the xpfa
as a 2-cell literal in the current definition; the xpfa is pushed to the stack when the
definition later executes. An error occurs if no <name> is given or if <name> cannot be
found in the dictionary.
Pronunciation: "tick"Attributes: I

 ((--)
Compile Time: (<text)> --)
Ignores all further input until) or the end of the input stream is encountered. Used to
enclose comments. No error occurs if the end of the input stream is encountered.
When used in a block, the terminating) can be on a different line than (. However,
when used from the terminal, only single line comments are allowed. See also \.
Pronunciation: "paren" Attributes: I

(!) (w\addr --)
Stores a 16-bit number at addr on the current page or in common memory. The high
order byte is stored at addr and the low order byte at addr+1.
Pronunciation: "paren-store"

(#FIND) ($addr -- [xcfa\xnfa\flag] or [0])

Main Glossary 25

Searches the dictionary for a match of the counted string at $addr in the common
memory. (#FIND) first searches the CONTEXT vocabulary. Then, if the word is not
found and if the CONTEXT and CURRENT vocabularies are different, it searches the
CURRENT vocabulary. If the word is not found in the dictionary, (#FIND) leaves a 0 on
the stack. If the word is found, it leaves the word's extended code field address under
its extended name field address under a flag on the stack. The flag is +1 if the word is
immediate and -1 if the word is not immediate. A COLD restart will occur if more than
255 page changes are made during the search through either vocabulary. This prevents
the interpreter from going on an infinite search through a corrupted dictionary. A COLD
restart will also occur if POCKET is not in common memory.
Pronunciation: "paren-hash-find"

((ERROR)) ([...]\error.id --)
The default routine called by (ERROR) if a system error is detected and the
CUSTOM.ERROR flag is false. Prints a descriptive error message, if possible printing
the name of the routine that detected the error and any arrays or matrices involved in
producing the error condition. Unlike (ERROR), ((ERROR)) does not execute ABORT.
In multitasking applications, the availability of ((ERROR)) allows a task with access to
the serial line to print intelligible system error messages without executing ABORT.
Since ABORT invokes the user-installed autostart routine in a turnkeyed system, the
ability to handle errors without invoking ABORT increases the programmer's options.
For example, the following user-defined error handler can be installed in UERROR to
allow a task to print standard error messages without calling ABORT or invoking an
installed autostart routine:

: MY.ERROR.HANDLER (--)
((ERROR)) \ prints proper error messages
SP! RP! \ initialize data & return stacks
FORTH DEFINITIONS \ initialize vocabulary
QUIT ; \ enter interpreter

CFA.FOR MY.ERROR.HANDLER UERROR X!
CUSTOM.ERROR ON \ install task's error handler

 See (ERROR), CUSTOM.ERROR, UERROR, and ABORT.
Pronunciation: "paren-paren-error"

(+!) (w\addr --)
Adds w to the 16-bit value stored at addr on the current page or in common memory
and stores the result at addr.
Pronunciation: "paren-plus-store"

(+C!) (byte\addr --)
Adds byte to the 8-bit value at addr on the current page or in common memory and
stores the result at addr.
Pronunciation: "paren-plus-c-store"

(2!) (w1\w2\addr -- | [addr] gets w2, [addr+2] gets w1)
Stores two 16-bit integers at addr on the current page or in common memory. w2 is
stored at addr and w1 is stored at addr+2. Can also be used to store a double number
at addr.
Pronunciation: "paren-two-store"

26 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

(2@) (addr -- w1\w2)
Fetches two 16-bit integers from addr and addr+2 on the current page or in common
memory. w2 is taken from addr and the w1 is from addr+2. Can also be used to fetch a
double number from addr.
Pronunciation: "paren-two-fetch"

(@) (addr -- w)
Fetches a 16-bit number from addr on the current page or in common memory. The
high order byte is taken from addr and the low order byte from addr+1.
Pronunciation: "paren-fetch"

(A/D8.MULTIPLE) (xaddr\u1\u2\n -- | u1=timing param; u2 = #samples, n = channel#)
Acquires u2 samples from the 8 bit analog to digital (A/D) converter in the 68HC11 and
stores the samples as sequential unsigned 8 bit values starting at the specified xaddr. n
specifies the channel number of the A/D (0 < = n < = 7). To maximize speed, this
routine does not GET or RELEASE the A/D8.RESOURCE. Consequently, this routine
should not be used in a multitasking environment where another task might require
access to the 8 bit A/D; see A/D8.MULTIPLE. If the specified xaddr is in common
memory, the first sample is taken after 16 microseconds and subsequent samples are
taken every (10+2.5*u1) microseconds, where u1 is the specified timing parameter
passed to this routine. If the specified xaddr is in paged memory, the first sample is
taken after 11 microseconds and subsequent samples are taken every (32.5+2.5*u1)
microseconds. Of course, the operation of interrupts (including timesliced multitasking)
will affect these sampling times. See (A/D8.SAMPLE), A/D8.SAMPLE,
A/D8.MULTIPLE, and A/D8.ON.
Pronunciation: "paren-A-to-D-eight-multiple"

 (A/D8.SAMPLE) (n -- byte | n = channel#)
Acquires and places on the stack a single sample byte from the 8 bit analog to digital
converter in the 68HC11. n specifies the A/D channel number (0 < = n < = 7). To
maximize speed, this routine does not GET or RELEASE the A/D8.RESOURCE.
Consequently, this routine should not be used in a multitasking environment where
another task might require access to the 8 bit A/D; see A/D8.SAMPLE. This routine
executes in 23 microseconds. See A/D8.SAMPLE, (A/D8.MULTIPLE),
A/D8.MULTIPLE, and A/D8.ON.
Pronunciation: "paren-A-to-D-eight-sample"

(ABORT) ([...] --)
Return Stack: (R: [...] --)
The default abort routine called by ABORT if the CUSTOM.ABORT flag is false. Clears
the data and return stacks, sets the page to the default page (0), and executes FORTH
DEFINITIONS to set CONTEXT and CURRENT equal to FORTH. If an autostart vector
has been installed (see AUTOSTART), (ABORT) executes the specified routine;
otherwise it executes QUIT which sets the compilation mode and enters the interpreter.
If R0 and S0 aren't in common RAM, a COLD restart is initiated.
Pronunciation: "paren-abort"

(BENCHMARK:) (<name> -- u1\ud\u2\u3 | u1=#msec, ud=#sec, u2=#F*, u3=#F+)

Main Glossary 27

Removes the next <name> from the input stream and measures and places on the
stack the execution time and operations count of <name>. Use as:

(BENCHMARK:) <name>
The multitasker's timeslicer clock must be running for the execution time to be
measured; use START.TIMESLICER to start it before calling (BENCHMARK:). Any
stack arguments needed by <name> should be placed on the stack before
(BENCHMARK:) is invoked. If <name> leaves any items on the stack, they will be
below the stack items left by (BENCHMARK:). Net execution time of <name> is
represented by ud seconds + u1 msec. The resolution of the measurement equals the
timeslice period which can be set using the command *100US=TIMESLICE.PERIOD;
the default is 5 msec. u2 is the number of F* and F/ operations performed by <name>
and u3 is the number of F+ and F- operations performed by <name>. Operations
counts up to 65,535 can be reported; after that the 16-bit operations counter rolls over
to 0 and continues counting. This word is a subsidiary to BENCHMARK: which prints
the results instead of leaving them on the stack.
Pronunciation: "paren-benchmark" Attributes: S

(C!) (byte\addr --)
Stores the byte at addr on the current page or in common memory.
Pronunciation: "paren-c-store"

(C@) (addr -- byte)
Fetches the byte stored at addr on the current page or in common memory.
Pronunciation: "paren-c-fetch"

(CHANGE.BITS) (byte1\byte2\addr -- | byte1 = data; byte2 = mask)
At the byte specified by addr on the current page or in common memory, modifies the
bits specified by 1's in byte2 to have the values indicated by the corresponding bits in
byte1. In other words, byte2 serves as a mask that specifies the bits at addr that are to
be modified, and byte1 provides the data that is written to the modified bits. Disables
interrupts for 16 cycles (4 microseconds) to ensure an uninterrupted read/modify/write
operation. Executes more rapidly than CHANGE.BITS.
Pronunciation: "paren-change-bits"

(CLEAR.BITS) (byte1\addr --)
For each bit of byte1 that is set, clears the corresponding bit of the 8 bit value at addr on
the current page or in common memory. Disables interrupts for ten cycles (2.5
microseconds) to ensure an uninterrupted read/modify/write operation. Executes more
rapidly than CLEAR.BITS.
Pronunciation: "paren-clear-bits"

(CMOVE) (addr1\addr2\u -- | addr1=src, addr2=dest, u = byte count)
If u is greater than 0, u consecutive bytes starting at addr1 are copied to the destination
addresses starting at addr2 on the current page or in common memory. Does not
change the page. Speed is approximately 7.5 microseconds per byte. If the source and
destination regions overlap and addr1 < addr2, (CMOVE) starts at high memory and
moves toward low memory to avoid propagation of the moved contents. (CMOVE)
always moves the contents in such a way as to avoid memory propagation.
Pronunciation: "paren-c-move"

28 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

(COMPILE.CALL) (cfa --)
Compiles a call to the specified cfa. Compiles a JSR (jump to subroutine) opcode
followed by cfa into the definitions area at HERE and increments DP by 3. No page
change is compiled.
Pronunciation: "paren-compile-call"

(CREATE) ($addr --)
See CREATE. Similar to CREATE which creates a header for <name>. The difference
is that CREATE removes <name> from the input stream by executing BL WORD, while
(CREATE) accepts <name> as a counted string at $addr in common memory. Converts
the counted string at $addr to upper case letters and searches the dictionary via (FIND)
to check for uniqueness. Issues a warning if <name> is not unique. Creates a new
header for <name> starting at the address pointed to by NP, links the header to the
CURRENT vocabulary, and initializes the code field address in the header to the current
value of DP. Updates the CURRENT vocabulary xhandle to point to the xnfa of
<name> and updates NP to point to the byte after <name>'s header. The number of
characters saved in the header is the lesser of the value in WIDTH or the actual number
of characters in <name>. If locals are compiling, all characters are saved in the header
to avoid non-uniqueness of local variables. An abort error occurs if the header cannot
be stored (e.g. if NP does not point to RAM). If WIDTH is less than or equal to 1,
(CREATE) resets WIDTH to 2.
Pronunciation: "paren-create" Attributes: D

(EE!) (w\addr -- | addr is an EEPROM address)
Stores w at the specified addr in EEPROM. Any byte that already contains the specified
contents is not re-programmed; this helps lengthen the lifetime of the EEPROM.
Requires 20 msec per programmed byte. Disables interrupts during the programming
of each byte. Caution: the prolonged disabling of interrupts by (EE!) can adversely
affect real-time servicing of interrupts including those associated with the secondary
serial line.
Pronunciation: "paren-e-e-store"

(EE2!) (w1\w2\addr -- | [addr] gets w2, [addr+2] gets w1)
Stores w1 and w2 at the specified addr in EEPROM. w2 is stored at addr and w1 is
stored at addr+2. Can also be used to store a double number at addr. Any byte that
already contains the specified contents is not re-programmed; this helps lengthen the
lifetime of the EEPROM. Requires 20 msec per programmed byte. Disables interrupts
during the programming of each byte. Caution: the prolonged disabling of interrupts by
(EE2!) can adversely affect real-time servicing of interrupts including those associated
with the secondary serial line.
Pronunciation: "paren-e-e-two-store"

(EEC!) (byte\addr -- | addr is an EEPROM address)
Stores byte at the specified addr in EEPROM. If addr already contains the specified
contents it is not re-programmed; this helps lengthen the lifetime of the EEPROM.
Requires 20 msec per programmed byte. Disables interrupts during the programming
of each byte. Caution: the prolonged disabling of interrupts by (EEC!) can adversely

Main Glossary 29

affect real-time servicing of interrupts including those associated with the secondary
serial line.
Pronunciation: "paren-e-e-c-store"

(EEF!) (r\addr -- | addr is an EEPROM address)
Stores r at the specified addr in EEPROM. Any byte that already contains the specified
contents is not re-programmed; this helps lengthen the lifetime of the EEPROM.
Requires 20 msec per programmed byte. Disables interrupts during the programming
of each byte. Caution: the prolonged disabling of interrupts by (EEF!) can adversely
affect real-time servicing of interrupts including those associated with the secondary
serial line.
Pronunciation: "paren-e-e-f-store"

(EEX!) (xaddr\addr -- | addr is an EEPROM address)
Stores xaddr at the specified addr in EEPROM. Any byte that already contains the
specified contents is not re-programmed; this helps lengthen the lifetime of the
EEPROM. Requires 20 msec per programmed byte. Disables interrupts during the
programming of each byte. Caution: the prolonged disabling of interrupts by (EEX!) can
adversely affect real-time servicing of interrupts including those associated with the
secondary serial line.
Pronunciation: "paren-e-e-x-store"

 (ERROR) ([...] --)
Return Stack: (R: [...] --)
The default routine called if a system error is detected and the CUSTOM.ERROR flag is
false. Prints a descriptive error message, if possible printing the name of the routine
that detected the error and any arrays or matrices involved in producing the error
condition. After printing the message, executes ABORT. See ((ERROR)),
CUSTOM.ERROR, UERROR, and ABORT.
Pronunciation: "paren-error"

(EXECUTE) (cfa --)
Executes (calls) the routine whose executable machine instructions begin at the
specified code field address cfa on the current page or in common memory.
Pronunciation: "paren-execute"

(F!) (r\addr --)
Stores a floating point number at addr on the current page or in common memory.
Pronunciation: "paren-f-store"

(F@) (addr -- r)
Fetches a floating point number from addr on the current page or in common memory.
Pronunciation: "paren-f-fetch"

(FIND) ($addr -- [xcfa\flag] or [0])
Searches the dictionary for a match of the counted string at $addr in the common
memory. (FIND) first searches the CONTEXT vocabulary. Then, if the word is not
found and if the CONTEXT and CURRENT vocabularies are different, it searches the
CURRENT vocabulary. If the word is not found in the dictionary, (FIND) leaves a 0 on

30 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

the stack. If the word is found, it leaves the word's extended code field address under
a flag on the stack. The flag is +1 if the word is immediate and -1 if the word is not
immediate. A COLD restart will occur if more than 255 page changes are made during
the search through either vocabulary. This prevents the interpreter from going on an
infinite search through a corrupted dictionary. A COLD restart will also occur if
POCKET is not in common memory.
Pronunciation: "paren-find" Attributes: D

(HERE) (-- addr)
Places on the stack the addr of the next available location in the definitions area.
Equivalent to DP 2XN+ @
Pronunciation: "paren-here" Attributes: U

 (MOVE) (addr1\addr2\u -- | addr1=src, addr2=dest, u = count)
If u is greater than 0, u consecutive 16-bit numbers (i.e., 2*u consecutive bytes) starting
at addr1 are copied to the destination addresses starting at addr2 on the current page
or in common memory. Does not change the page. Speed is approximately 15
microseconds per 2-byte cell. If the source and destination regions overlap and addr1 <
addr2, (MOVE) starts at high memory and moves toward low memory to avoid
propagation of the moved contents. (MOVE) always moves the contents in such a way
as to avoid memory propagation.
Pronunciation: "paren-move"

(PAGE.LATCH) (-- addr)
Returns the address of the page latch whose contents indicate the current page. See
THIS.PAGE. Be careful when explicitly changing the contents of the page latch. Note
that the word C! cannot be used to alter the contents of the page latch because C!
saves and restores the page. Rather, the page-less store operator (C!) must be used.

(RP) (-- addr)
Places on the stack the address of the most significant byte of the top item on the return
stack.
Pronunciation: "paren-r-p" Attributes: U

(SET.BITS) (byte1\addr --)
For each bit of byte1 that is set, sets the corresponding bit of the 8 bit value at addr on
the current page or in common memory. Disables interrupts for ten cycles (2.5
microseconds) to ensure an uninterrupted read/modify/write operation. Executes more
rapidly than SET.BITS.
Pronunciation: "paren-set-bits"

(SP) (-- addr)
Places on the stack the address of the most significant byte of the top cell of the data
stack just before (SP) is executed.
Pronunciation: "paren-s-p" Attributes: U

(STATUS) (-- addr | addr is also the base addr of the user area)
Returns the address but not the page of the STATUS user variable which is also the
task identification address at the base of the task's user area. Because STATUS must

Main Glossary 31

be in common memory, a 16-bit address is sufficient to specify its location. Using
(STATUS) instead of STATUS leads to faster code because page-less memory
operators execute more rapidly than operators that take full extended addresses. See
the glossary entry for STATUS.
Pronunciation: "paren-status" Attributes: U

(TOGGLE.BITS) (byte1\addr --)
For each bit of byte1 that is set, reverses the state of the corresponding bit of the 8 bit
value at addr on the current page or in common memory. Disables interrupts for ten
cycles (2.5 microseconds) to ensure an uninterrupted read/modify/write operation.
Executes more rapidly than TOGGLE.BITS.
Pronunciation: "paren-toggle-bits"

(UPDATE.DISPLAY) (--)
Writes the contents of the DISPLAY.BUFFER to the LCD display, but does not re-home
the cursor/display RAM pointer to the default upper left position. This facilitates
"scrolling" the contents of a graphics display when used in conjunction with the
IS.DISPLAY.ADDRESS routine. For character displays, the cursor is turned off during
the write to the display and is restored to its prior state after the update is complete,
thus avoiding "flickering" of the cursor. Intermittently disables interrupts for 28 cycles (7
microseconds) per byte to implement clock stretching. See also UPDATE.DISPLAY
and UPDATE.DISPLAY.LINE.

(X!) (xaddr\addr --)
Stores an extended address xaddr at addr on the current page or in common memory.
Pronunciation: "paren-x-store"

(X@) (addr -- xaddr)
Fetches an extended address from addr on the current page or from common memory.
Pronunciation: "paren-x-fetch"

* (n1\n2 -- n3)
Multiplies n1 by n2 giving n3 which is the least significant cell of the product.
Pronunciation: "star"

*/ (n1\n2\n3 -- n4 | do n1*n2/n3 ; n4 = quotient)
Multiplies n1 and n2 producing an intermediate double number result which is divided
by n3 to yield the integer quotient n4. Uses signed math. An unchecked error occurs
on overflow. Division by zero (n2=0) yields n4 = -1.
Pronunciation: "star-slash"

*/MOD (n1\n2\n3 -- n4\n5 | do n1*n2/n3; n4 = remainder; n5 = quotient)
Multiplies n1 and n2 producing an intermediate double number result which is divided
by n3 to yield remainder n4 and quotient n5. Uses signed math. An unchecked error
occurs on overflow. Division by zero (n2=0) yields n4 = -1 and n5 = -1. See U*/MOD.

Pronunciation: "star-slash-mod"

 *100US=TIMESLICE.PERIOD (u --)

32 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Sets u as the period of the timeslice clock (the OC2 interrupt) in units of 100
microseconds. For example, to set the timeslice period to 0.8 msec, execute

8 *100US=TIMESLICE.PERIOD
Note that the default timeslice increment set after a COLD restart is 5 msec.
Implementation detail: Based on the prescaler bits PR1 and PR0 in the TMSK2
register, this routine calculates the period of the clock driving the OC2 timer. It then
calculates the number of these periods in the requested timeslice period u, and stores
the resulting OC2 timer increment in a headerless system variable called
TIMESLICE.INCREMENT. This stored increment sets the period of the OC2 timer. The
period of the OC2 timer determines the timeslice period and also the resolution of the
elapsed time clock (see READ.ELAPSED.TIME). Aborts if the calculated increment is 0
or is greater than 65,535.
Pronunciation: "times-100-microseconds-equals-timeslice-period"

+ (n1\n2 -- n3)
Adds n1 to n2 and puts the sum n3 on the data stack.
Pronunciation: "plus"

+! (w\xaddr --)
Adds w to the 16-bit value stored at xaddr and stores the result at xaddr.
Pronunciation: "plus-store"

+C! (byte\xaddr --)
Adds byte to the 8-bit value stored at xaddr and stores the result at xaddr.
Pronunciation: "plus-c-store"

+CURRENT.HEAP (xpfa-- xpfa+u)
Adds the offset u to the extended parameter field address xpfa. +CURRENT.HEAP is
defined as a member of the structure HEAP.STRUCTURE.PF. Use as:

' <name.of.heap.item> +CURRENT.HEAP
to find the address in the heap item's parameter field where the 16-bit current.heap
address is stored. CURRENT.HEAP specifies the heap in which the item is allocated.
See HEAP.STRUCTURE.PF, CURRENT.HEAP, +HEAP.PAGE.
Pronunciation: "plus-current-heap"

+HEAP.HANDLE (xpfa-- xpfa+u)
Adds the offset u to the extended parameter field address xpfa. +HEAP.HANDLE is
defined as a member of the structure HEAP.STRUCTURE.PF. Use as:

' <name.of.heap.item> +HEAP.HANDLE
to find the address in the parameter field that contains of the handle which contains the
base xaddr of the heap item. See HEAP.STRUCTURE.PF and +HEAP.PAGE.
Pronunciation: "plus-heap-handle"

 +HEAP.PAGE (xpfa-- xpfa+u)
Adds the offset u to the extended parameter field address xpfa. +HEAP.PAGE is
defined as a member of the structure HEAP.STRUCTURE.PF. Use as:

' <name.of.heap.item> +HEAP.PAGE

Main Glossary 33

to find the address of the page of the heap as saved in the item's parameter field. This
is the page of the handle as well as the page of CURRENT.HEAP in which the item
resides. See HEAP.STRUCTURE.PF.
Pronunciation: "plus-heap-page"

+LOOP (n --)
Return Stack: (R: w1\w2 -- [w1\w2] or [] | drops w1,w2 when loop terminates)
Adds the signed integer n to the loop index. If the loop index was incremented across
the boundary between limit and limit+1, terminates the loop by allowing execution to
continue with the word following +LOOP. Otherwise, continues looping by transferring
control to the word following DO. Use as:

w1 w2 DO words to be executed n +LOOP
where w1 is the loop limit and w2 is the starting index. An error is issued if +LOOP is not
properly paired with DO inside a colon definition. See DO I J K I' LEAVE.
Pronunciation: "plus-loop" Attributes: C, I

, (w --)
Stores w at the next available location in the definitions area and increments the
definitions pointer DP by 2. An error occurs if w is not correctly stored (for example, if
DP does not point to RAM). An error occurs if the operation causes DP to be
incremented across the boundary between 0x7FFF (the last valid address in a given
page) and 0x8000 (the start of the register area).
Pronunciation: "comma"

," (--)
Compile Time: (<text> --)
Parses the <text> string delimited by a " character from the input stream and emplaces
the string in the dictionary starting at HERE. An error occurs if the compiled string
crosses a page boundary.
Pronunciation: "comma-quote"

- (n1\n2 -- n3 | n3 = n1 - n2)
Subtracts n2 from n1 and puts the result n3 on the data stack.
Pronunciation: "minus"

-1 (-- -1)
Puts the value negative one on the data stack.
Pronunciation: "minus-one"

-1/INFINITY (-- r)
Pushes the smallest representable negative floating point number onto the data stack.
Pronunciation: "minus-one-over-infinity"

 -2 (-- -2)
Puts the value negative two on the data stack.
Pronunciation: "minus-two"

-INFINITY (-- r)

34 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pushes the negative of the largest representable floating point number onto the data
stack.
Pronunciation: "minus-infinity"

-ROLL (wn\...\w0\+n -- w0\wn\...\w1 | 0 <= +n <= 255)
Transfers the top item (not including +n) on the data stack to the nth position from the
top of the data stack, where the top stack item is item#0, the next is item#1, etc. For
example, 0 ROLL does nothing, 1 -ROLL is equivalent to SWAP, and 2 -ROLL is
equivalent to -ROT.
Pronunciation: "minus-roll"

-ROT (w1\w2\w3 -- w3\w1\w2)
Rotates the top three stack entries by moving the top cell below the next two cells on
the data stack.
Pronunciation: "minus-rot"

-TRAILING (xaddr\u1 -- xaddr\u2)
Strips trailing space characters from the string located at xaddr by returning the new
character count, u2, of the text string with spaces removed. Equivalent to BL SKIP>
Pronunciation: "dash-trailing"

. (n --)
Prints n with no leading spaces and 1 trailing space. If the number base is decimal, w
is printed as a signed number in the range -32,768 to +32,767. In other bases w is
printed as an unsigned positive number. Use U. to print w as a positive unsigned
number in decimal base.
Pronunciation: "dot" Attributes: M, S

." (--)
Compile Time: (<text> --)
Parses the <text> string in the input stream delimited by a terminating " character. If
executing, types the <text>. If compiling, emplaces the text in the dictionary as a
counted string along with a call to a routine that types the <text> at runtime. An error
occurs if the compiled string crosses a page boundary.
Pronunciation: "dot-quote" Attributes: I, M

.HANDLES (--)
Prints the allocated handles of the current heap in tabular format, listing the size, base
xaddress, and handle xaddress of each heap item. All quantities are displayed in
hexadecimal base. An * displayed in the size field indicates that the handle is not in use
(i.e., it has been returned to the heap) or its contents are invalid.
Pronunciation: "dot-handles" Attributes: M

.R (w\+byte -- | +byte is field width)
Prints w right-justified in a field of +byte characters. If +byte is less than or equal to the
number of characters to be printed, the number is printed with no extra spaces. If the
number base is decimal, w is printed as a signed number in the range -32,768 to
+32,767. In other bases w is printed as an unsigned positive number. To print w as a

Main Glossary 35

positive unsigned number in decimal base, place a 0 on the stack above w to convert it
into a positive double number and call UD.R
Pronunciation: "dot-r" Attributes: M, S

.S (--)
Displays the contents of the data stack without modifying the contents of the stack.
Prints the number of 1-cell stack items in brackets and displays the stack items
separated by \ (read as "under"). A maximum of 5 items are displayed. For example, if
there are 7 stack items having values 1...7 with 1 on top of the stack and 7 farthest
down, executing .S yields

(7) \ 5 \ 4 \ 3 \ 2 \ 1 ok
In execution mode, the stack contents are automatically displayed after each line is
interpreted if the DEBUG flag is true. The stack is also displayed during a TRACE of a
compiled routine.
Pronunciation: "dot-s" Attributes: M, S

/ (n1\n2 -- n3 | n3 = n1/n2)
Divide n1 by n2, giving the quotient n3. If the division does not produce an integer
quotient, the quotient is rounded towards 0. Division by 0 (n2=0) produces a quotient of
-1. See U/.
Pronunciation: "slash"

/MOD (n1\n2 -- n3\n4 | n3 = remainder, n4 = quotient)
Divide n1 by n2, giving the remainder n3 and the quotient n4. The quotient is rounded
towards 0, and the remainder carries the sign of n1. Division by 0 (n2=0) yields n3 = n4
= -1. See U/MOD.
Pronunciation: "slash-mod"

/STRING (xaddr1\u1\n -- xaddr2\u2)
Shortens the text string whose first character is at xaddr1 by computing xaddr2 = xaddr1
+ n and u2 = u1 - n. u1 and u2 are 16 bit text string counts. n may be negative, and the
string may cross a page boundary.
Pronunciation: "slash-string"

0 (-- 0)
Puts the value zero on the data stack.
Pronunciation: "zero"

0< (n -- flag)
Flag is TRUE if n is less than zero and FALSE otherwise.
Pronunciation: "zero-less-than"

 0< > (w -- flag)
Flag is TRUE if w is not equal to zero and FALSE otherwise.
Pronunciation: "zero-not-equal"

0= (w -- flag)
Flag is TRUE if w is equal to zero and FALSE otherwise.
Pronunciation: "zero-equals"

36 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

0> (n -- flag)
Flag is true if n is greater than zero and FALSE otherwise.
Pronunciation: "zero-greater-than"

0\0 (-- 0\0)
Places two zeros on the top of the stack.
Pronunciation: "0-under-0"

1 (-- 1)
Puts the value one on the data stack.
Pronunciation: "one"

1+ (w1 -- w2 | w2 = w1 + 1)
Adds 1 to w1 giving the sum w2.
Pronunciation: "one-plus"

1- (w1 -- w2 | w2 = w1 - 1)
Subtracts 1 from w1 giving w2.
Pronunciation: "one-minus"

1/F (r1 -- r2)
r2 is the multiplicative inverse of r1; r2 = 1.0/r1.
Pronunciation: "one-over-f" Attributes: S

1/INFINITY (-- r)
Places the smallest representable positive floating point number on the data stack.
Pronunciation: "one-over-infinity"

1/LN(2) (-- r)
Places the floating point representation of the inverse of the natural logarithm of 2
(1.4427) on the stack.
Pronunciation: "one-over-l-n-of-two"

1/LOG10(2) (-- r)
Places the floating point representation of the inverse of the base 10 logarithm of 2
(3.3219) on the stack.
Pronunciation: "one-over-log-ten-of-two"

1/PI (-- r)
Places the floating point representation of 1/pi (0.3183) on the stack.
Pronunciation: "one-over-pi"

1/SQRT(2) (-- r)
Places the floating point representation of the inverse of the square root of 2 (0.7071)
on the stack.
Pronunciation: "one-over-square-root-of-two"

1/TEN (-- r)

Main Glossary 37

Places r = 0.1 on the data stack.
Pronunciation: "one-over-ten"

10* (n1 -- n2 | n2 = n1 * 10)
Multiplies n1 by 10 (decimal) giving n2.
Pronunciation: "ten-star"

10^N (n -- r)
r equals 10 to the nth power; r = 10^n.
Pronunciation: "ten-to-the-n"Attributes: S

1XN+ (xaddr1 -- xaddr2)
Adds 1 to xaddr1 yielding xaddr2. Equivalent to 1 XN+ .
Pronunciation: "one-x-n-plus"

1XN- (xaddr1 -- xaddr2)
Subtracts 1 from xaddr1 yielding xaddr2. Equivalent to 1 XN- .
Pronunciation: "one-x-n-minus"

2 (-- 2)
Puts the value two on the data stack.
Pronunciation: "two"

2! (w1\w2\xaddr -- | [xaddr] gets w2, [xaddr+2] gets w1)
Stores two 16-bit integers at xaddr. w2 is stored at xaddr and w1 is stored at xaddr+2.
Can also be used to store a double number at xaddr. Note that in paged memory, the
address immediately following 0x7FFF is address 0000 on the following page.
Pronunciation: "two-store"

2* (n1 -- n2 | n2 = n1 * 2)
Multiplies n1 by 2 giving n2.
Pronunciation: "two-star"

2+ (w1 -- w2 | w2 = w1 + 2)
Adds 2 to w1 giving the sum w2.
Pronunciation: "two-plus"

2- (w1 -- w2 | w2 = w1 - 2)
Subtracts 2 from w1 giving w2.
Pronunciation: "two-minus"

2/ (n1 -- n2 | n2 = n1 / 2)
Divides n1 by 2 giving n2. See U2/.
Pronunciation: "two-slash"

2@ (xaddr -- w1\w2)
Fetches two 16-bit integers from xaddr. w2 is taken from xaddr and w1 is from
xaddr+2. Can also be used to fetch a double number from xaddr. Note that in paged

38 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

memory, the address immediately following 0x7FFF is address 0000 on the following
page.
Pronunciation: "two-fetch"

2ARRAY.FETCH (row#\col#\xpfa -- d)
Fetches and places on the data stack the contents of the element at row#, column# in
the specified 2-dimensional array or matrix. The size of the element that is fetched
depends upon the number of bytes per element of the array or matrix as specified by
DIMENSIONED or DIMMED, and the result is always padded out to 4 bytes on the
stack. There is an unchecked error if the specified array or matrix does not have 2
dimensions or if the number of bytes per element does not equal 1, 2, or 4. See also
M[]@.
Pronunciation: "two-array-fetch"

2ARRAY.STORE (d\ row#\col#\xpfa --)
Stores the specified byte-, 2 byte-, or 4 byte-data at the element specified by row#,
column# in the specified 2-dimensional array or matrix. The size of the element that is
stored can be 1 byte, 2 bytes, or 4 bytes depending upon the number of bytes per
element of the array or matrix as set by DIMENSIONED or DIMMED. There is an
unchecked error if the specified array or matrix does not have 2 dimensions or if the
number of bytes per element does not equal 1, 2, or 4. See also M[]!.
Pronunciation: "two-array-store"

2CONSTANT (wd <name> --)
Removes the next <name> from the input stream and defines a child word called
<name> which when executed leaves the 32-bit value wd on the data stack. wd is
stored in the definitions area of the dictionary. <name> is referred to as a "2constant".
Use as:

wd 2CONSTANT <name>
Pronunciation: "two-constant" Attributes: D

2DROP (w1\w2 --)
Drops the top two cells from the data stack.
Pronunciation: "two-drop"

2DUP (w1\w2 -- w1\w2\w1\w2)
Duplicates the top two cells on the data stack.
Pronunciation: "two-dupe"

 2DUP>R (w1\w2 -- w1\w2)
Return Stack: (R: -- w1\w2)
Copies the top cell pair on the data stack to the return stack.
Pronunciation: "2-dup-to-r" Attributes: C

2LITERAL (-- wd)
Compile Time: (wd --)
If QED-Forth is in execution mode when 2LITERAL is invoked, 2LITERAL does nothing.
If QED-Forth is in compilation mode, 2LITERAL removes wd from the stack and
compiles it into the dictionary along with code that, when later executed, pushes wd to

Main Glossary 39

the stack. 2LITERAL can be used within a colon definition to compile a numeric value
into the definition. For example,

: <name>
... [1234 1000 *] 2LITERAL ...

;
This compiles the value calculated between [and] as a double literal into the definition
of <name>. When <name> is executed, this value will be placed on the stack.
Pronunciation: "two-literal" Attributes: C, I

2OVER (w1\w2\w3\w4 -- w1\w2\w3\w4\w1\w2)
Places a copy of cell pair w1\w2 on the top of the stack.
Pronunciation: "two-over"

2PI/360 (-- r)
Places the floating point representation of 2pi/360 (0.017453) on the stack.
Pronunciation: "two-pi-over-three-sixty"

2ROT (w1\w2\w3\w4\w5\w6 -- w3\w4\w5\w6\w1\w2)
Rotates the top three cell pairs on the data stack.
Pronunciation: "two-rote"

2SWAP (w1\w2\w3\w4 -- w3\w4\w1\w2)
Exchanges the top two cell pairs on the data stack.
Pronunciation: "two-swap"

2V.TRANSFORM (xvaddr1\sep1\xvaddr2\sep2\xvaddr3\sep3\d.#el\xcfa --)
xcfa specifies a floating point transformation that operates on two input numbers to
produce a single floating point result. 2V.TRANSFORM applies this transformation to
each pair of corresponding elements in two source vectors specified by
xvaddr1\sep1\d.#el and xvaddr2\sep2\d.#el and places the result in the destination
vector specified by xvaddr3\sep3\d.#el. The destination vector may be either of the
sources.
Pronunciation: "two-v-transform" Attributes: S

 2VARIABLE (<name> --)
Removes the next <name> from the input stream, defines a child word called <name>,
and VALLOTs 2 cells in the variable area. When <name> is executed it leaves the
extended address xaddr of the two cells reserved in the variable area that hold
<name>'s contents. <name> is referred to as a "2variable". Use as:
 2VARIABLE <name>
Pronunciation: "2-variable" Attributes: D

2XN+ (xaddr1 -- xaddr2)
Adds 2 to xaddr1 yielding xaddr2. Equivalent to 2 XN+ .
Pronunciation: "two-x-n-plus"

2XN- (xaddr1 -- xaddr2)
Subtracts 2 from xaddr1 yielding xaddr2. Equivalent to 2 XN- .
Pronunciation: "two-x-n-minus"

40 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

3 (-- 3)
Puts the value three on the data stack.
Pronunciation: "three"

3* (n1 -- n2 | n2 = n1 * 3)
Multiplies n1 by 3 giving n2.
Pronunciation: "three-star"

360/2PI (-- r)
Places the floating point representation of 360/2pi (57.296) on the stack.
Pronunciation: "three-sixty-over-two-pi"

3DROP (w1\w2\w3 --)
Drops the top three cells from the data stack.
Pronunciation: "three-drop"

3DUP (w1\w2\w3 -- w1\w2\w3\w1\w2\w3)
Duplicates the top three cells on the data stack.
Pronunciation: "three-dupe"

4 (-- 4)
Puts the value four on the data stack.
Pronunciation: "four"

4* (n1 -- n2 | n2 = n1 * 4)
Multiplies n1 by 4 giving n2.
Pronunciation: "four-star"

4+ (w1 -- w2 | w2 = w1 + 4)
Adds 4 to w1 giving the sum w2.
Pronunciation: "four-plus"

 4- (w1 -- w2 | w2 = w1 - 4)
Subtracts 4 from w1 giving w2.
Pronunciation: "four-minus"

4/ (n1 -- n2 | n2 = n1 / 4)
Divides n1 by 4 giving n2.
Pronunciation: "four-slash"

4DROP (w1\w2\w3\w4 --)
Drops the top 4 cells from the data stack.
Pronunciation: "four-drop"

4DUP (w1\w2\w3\w4 -- w1\w2\w3\w4\w1\w2\w3\w4)
Duplicates the top four cells on the data stack.
Pronunciation: "four-dupe"

Main Glossary 41

4XN+ (xaddr1 -- xaddr2)
Adds 4 to xaddr1 yielding xaddr2. Equivalent to 4 XN+ .
Pronunciation: "four-x-n-plus"

4XN- (xaddr1 -- xaddr2)
Subtracts 4 from xaddr1 yielding xaddr2. Equivalent to 4 XN- .
Pronunciation: "four-x-n-minus"

8* (n1 -- n2 | n2 = n1 * 8)
Multiplies n1 by 8 giving n2.
Pronunciation: "eight-star"

8/ (n1 -- n2 | n2 = n1 / 8)
Divides n1 by 8 giving n2.
Pronunciation: "eight-slash"

8XN+ (xaddr1 -- xaddr2)
Adds 8 to xaddr1 yielding xaddr2. Equivalent to 8 XN+ .
Pronunciation: "eight-x-n-plus

: (< name> --)
Starts the compilation of a new definition. Removes <name> from the input stream and
creates a header for <name> in the dictionary. The header is SMUDGEd so that it
cannot be found until ; executes to successfully terminate the definition. Enters the
compile mode so that words following : are compiled into the code field of <name> (but
IMMEDIATE words are executed immediately instead of being compiled). A "<name>
isn't unique" warning is issued if <name> already exists in the dictionary. The contents
of CONTEXT and CURRENT are not modified. Use as

: <name>
...body of new definition...

;
Pronunciation: "colon" Attributes: D

; (--)
Marks the end of a colon definition and enters the execution mode. Checks the stack to
make sure that no extra items were placed on or removed from the data stack during
compilation of the definition. SMUDGEs the header created by : so that the new word
can be found in the dictionary. Compiles code to cause control to be passed to the
calling word when the definition is later executed. If locals were used in the definition,
the code compiled by ; also removes the local variables from the return stack.

Pronunciation: "semicolon" Attributes: C, I

< (n1\n2 -- flag)
Flag is TRUE if n1 is less than n2 and FALSE otherwise.
Pronunciation: "less-than"

< # (--)

42 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Prepares for pictured numeric output by initializing the headerless user variable #PTR to
be equal to PAD. #PTR points to the current character position in the pictured numeric
output, which starts 1 byte below PAD and builds towards low memory.
Pronunciation: "less-number-sign" Attributes: S

< = (n1\n2 -- flag)
Flag is TRUE if n1 is less than or equal to n2 and FALSE otherwise.
Pronunciation: "less-than-or-equal"

< > (w1\w2 -- flag)
Flag is TRUE if w1 is not equal to w2 and FALSE otherwise.
Pronunciation: "not-equal"

 <DBUILDS (<name> --)
Used in a high level defining word to mark the beginning of the specification of the
action taken when a child word is defined. Removes <name> from the input stream and
creates a header for <name> in the dictionary. Sets the HAS.PFA bit in the header to
indicate that <name> has a parameter field. Use as:

: <namex> <DBUILDS code to set up child's parameter field
DOES> run time action

;
where <namex> is referred to as a "defining word". Executing the statement

<namex> <child's.name>
defines the child word. The code after <DBUILDS specifies the action to be taken while
defining the child word. This usually involves allotting and/or initializing the parameter
field of the child. The "D" in <DBUILDS stands for "definitions area"; the parameter field
is located at the next available location in the definitions area pointed to by DP. Thus
the words ALLOT and , (as opposed to VALLOT and V,) should be used after
<DBUILDS to reserve and initialize locations in the child's parameter field. Use
<DBUILDS to define child words whose parameter fields are to be in non-modifiable
write-protected memory once the application program is finished. Restrictions:
LOCALS{ } cannot be used between <DBUILDS and DOES>. If you need to use local
variables to perform the building action, define and call a subsidiary word that performs
the action.
Example of use: a version of CONSTANT could be defined using <DBUILDS:

: MYCONSTANT (n <name> --)
<DBUILDS ,
DOES> @

;
MYCONSTANT is a defining word. To define a child word named THIS.CON initialized
to the value 1234 execute

1234 MYCONSTANT THIS.CON
When MYCONSTANT executes, it initializes the first 2 bytes in the child's parameter
field to 1234 and increments DP by 2. Executing THIS.CON places on the stack the
value stored at the extended pfa. See DOES>.
Pronunciation: "d-builds" Attributes: D

 <VBUILDS (--)

Main Glossary 43

Used in a high level defining word to mark the beginning of the specification of the
action taken when a child word is defined. Removes <name> from the input stream and
creates a header for <name> in the dictionary. Sets the HAS.PFA bit in the header to
indicate that <name> has a parameter field. Use as:

: <namex>
<VBUILDS code to set up child's parameter field
DOES> run time action

;
where <namex> is referred to as a "defining word". Executing the statement

<namex> <child's.name>
defines the child word. The code after <VBUILDS specifies the action to be taken while
defining the child word. This usually involves allotting and/or initializing the parameter
field of the child. The "V" in <VBUILDS stands for "variable area"; the parameter field is
located at the next available location in the variable area. Thus the words VALLOT and
V, (as opposed to ALLOT and ,) should be used after <VBUILDS to reserve and
initialize locations in the child's parameter field. Use <VBUILDS to define child words
whose parameter fields must always be in modifiable non-write-protected memory. See
the definition of <DBUILDS. Restrictions: LOCALS{ } cannot be used between
<VBUILDS and DOES>. If you need to use local variables to perform the building
action, define and call a subsidiary word that performs the action.
Example of use: a version of VARIABLE that initializes the variable's contents could be
defined using <VBUILDS as,

: INITIALIZED.VAR (n <name> --)
<VBUILDS V,
DOES>

;
INITIALIZED.VAR is a defining word. To define a child word named MYVAR initialized
to the value 1234 execute

1234 INITIALIZED.VAR MYVAR
When INITIALIZED.VAR executes, it initializes the first 2 bytes in the child's parameter
field to 1234 and increments VP by 2. Executing MYVAR leaves the extended pfa on
the stack (see DOES>) and a fetch from this address will return the value 1234.
Pronunciation: "v-builds" Attributes: D

= (w1\w2 -- flag)
Flag is TRUE if w1 is equal to w2 and FALSE otherwise.
Pronunciation: "equals"

> (n1\n2 -- flag)
Flag is TRUE if n1 is greater than n2 and FALSE otherwise.
Pronunciation: "greater-than"

> < (w1 -- w2 | w2 has upper and lower bytes of w1 swapped)
Swaps the two bytes of the top data stack cell.
Pronunciation: "swap-bytes"

>= (n1\n2 -- flag)
Flag is TRUE if n1 is greater than or equal to n2 and FALSE otherwise.
Pronunciation: "greater-than-or-equal"

44 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

>ASSM (--)
Executes ASSEMBLER so that assembler mnemonics can be found in the dictionary,
and enters execution mode. Normally used to compile in-line assembly code into a high
level FORTH definition, or to return to assembly after using >FORTH in a CODE
definition. See >FORTH .
Pronunciation: "to-assembly" Attributes: I

>DEGREES (r1 -- r2)
Converts r1 in radians into r2 in degrees.
Pronunciation: "to-degrees" Attributes: S

>FORTH (--)
Sets vocabulary equal to FORTH and enters compilation mode. Normally used to
compile high level FORTH words into an assembly CODE definition, or to return to high
level after using >ASSM to assemble in-line code. See >ASSM .
Pronunciation: "to-forth"

>IN (-- xaddr)
User variable that contains the offset from the start of the current input stream to the
next character to be parsed. The contents of >IN may range from 0 to the number of
characters in the input stream. See QUERY, WORD.
Pronunciation: "to-in" Attributes: U

>R (w --)
Return Stack: (R: -- w)
Transfers the top cell on the data stack to the return stack.
Pronunciation: "to-r"Attributes: C

>RADIANS (r1 -- r2)
Converts r1 in degrees into r2 in radians.
Pronunciation: "to-radians" Attributes: S

 ? (xaddr --)
Prints the integer contents of xaddr.
Pronunciation: "question" Attributes: S

?ARRAY.SIZE (array.xpfa -- d | d = number of elements in array)
Returns the number of elements d (not the number of bytes!) in the array or matrix
designated by array.xpfa. 0\0 is returned for undimensioned arrays and matrices.
Pronunciation: "question-array-size"

?DETERMINANT (matrix.xpfa\n -- r | n = sign, r = determinant)
Calculates the determinant r of an LU decomposed matrix specified by matrix.xpfa given
the sign of the determinant n. May be used after LU.DECOMPOSITION executes.
LU.DECOMPOSITION puts the source matrix in the proper form and calculates n.
?DETERMINANT then returns the value of the determinant of the matrix.
Attributes: S

Main Glossary 45

?DIM.MATRIX (matrix.xpfa -- #rows\#cols)
Returns the number of rows and columns in the specified matrix. If DEBUG is ON,
ABORTs if matrix.xpfa is undimensioned or is not a matrix.
Pronunciation: "question-dim-matrix"

?DIMENSIONS (array.xpfa -- [u1\u2\...uN\N\n] or [0\0] | N=#dim, n=bytes/element)
Returns the number of elements u1, u2, ...uN in each dimension under the number of
dimensions N under the number of bytes per element n for the array or matrix
designated by array.xpfa. Returns 0\0 if the array is undimensioned.
Pronunciation: "question-dimensions"

?DUP (w -- [w\w] or [0])
Duplicates the top cell of the data stack if it is non-zero.
Pronunciation: "question-dupe"

?GET (xresource -- flag | flag is true if resource is available)
Checks the resource variable xresource. If the resource is available (i.e., if it contains
0\0 or the current task's xtask.id), ?GET claims the resource by storing the current
task's xtask.id in xresource, and returns a true flag. Otherwise, ?GET returns a false
flag. Does not execute PAUSE. To ensure that the state of the resource is correctly
determined, ?GET disables interrupts for 27 to 57 cycles (6.75 to 14.25 microseconds).
See GET, RELEASE, and RESOURCE.VARIABLE:.
Pronunciation: "question-get"

?HANDLE.SIZE (xhandle -- +d)
+d is the number of heap bytes allocated to the heap item associated with xhandle. An
unchecked error occurs if xhandle is not a valid heap handle.
Pronunciation: "question-handle-size"

 ?HAS.PFA (xnfa -- flag)
Returns a TRUE flag if the word referenced by xnfa has a parameter field address.
Pronunciation: "question-has-p-f-a"

?IMMEDIATE (xnfa -- flag)
Returns a TRUE flag if the word referenced by xnfa is an immediate word.
Pronunciation: "question-immediate"

?KEY (-- flag)
Returns a flag indicating receipt of a character. If flag is TRUE, a character has been
received; otherwise, no character has been received. Depending on the value in
SERIAL.ACCESS, may execute SERIAL RELEASE and SERIAL GET. See GET,
RELEASE and SERIAL.ACCESS .
?KEY is a vectored routine that executes the routine whose xcfa is stored in the user
variable U?KEY. Thus the programmer may install a different routine to tailor the
behavior of ?KEY to the application's needs. For example, ?KEY could access a serial
port other than that on the 68HC11 chip, or different tasks could use different ?KEY
routines. See ?KEY1 and ?KEY2.
Pronunciation: "question-key" Attributes: M, U

46 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

?KEY1 (-- flag)
Returns a flag indicating whether a character has been received on the primary serial
port (serial1) associated with the 68HC11's on-chip hardware UART. If a character has
been received a TRUE flag is returned; otherwise a FALSE flag is returned. ?KEY1 is
the default ?KEY routine installed in the U?KEY user variable after the special cleanup
mode is invoked, or if SERIAL1.AT.STARTUP has been executed. If the value in
SERIAL.ACCESS is RELEASE.AFTER.LINE, ?KEY1 does not GET or RELEASE the
SERIAL1.RESOURCE. If SERIAL.ACCESS contains RELEASE.ALWAYS, ?KEY1
GETs and RELEASEs the SERIAL1.RESOURCE. If SERIAL.ACCESS contains
RELEASE.NEVER, ?KEY1 GETs but does not RELEASE the SERIAL1.RESOURCE.
See SERIAL.ACCESS, ?KEY, U?KEY, ?KEY2.
Pronunciation: "question-key-one" Attributes: M

?KEY2 (-- flag)
Returns a flag indicating whether a character has been received on the secondary serial
port (serial2). The serial2 port is supported by QED-Forth's software UART using
hardware pins PA3 (input) and PA4 (output). If one or more characters are present in
the serial2 input buffer a TRUE flag is returned; otherwise a FALSE flag is returned.
?KEY2 can be made the default ?KEY routine installed in the U?KEY user variable after
each reset or restart by executing SERIAL2.AT.STARTUP. If the value in
SERIAL.ACCESS is RELEASE.AFTER.LINE, ?KEY2 does not GET or RELEASE the
SERIAL2.RESOURCE. If SERIAL.ACCESS contains RELEASE.ALWAYS, ?KEY2
GETs and RELEASEs the SERIAL2.RESOURCE. If SERIAL.ACCESS contains
RELEASE.NEVER, ?KEY2 GETs but does not RELEASE the SERIAL2.RESOURCE.
See SERIAL.ACCESS, ?KEY, U?KEY, ?KEY1.
Pronunciation: "question-key-two" Attributes: M

?KEYPAD (-- [n\TRUE] or [FALSE] | 0 < = n < = 39)
Scans keypad or touchscreen having up to 8 rows and 5 columns. If a key is being
depressed, PAUSEs and waits until the key is released, then returns the key number
under a true flag. If no key is depressed, returns a false flag. Consult the KEYPAD
glossary entry for a detailed description of keypad orientation. Disables interrupts for 12
µseconds each time a row is scanned. See ?KEYPRESS and KEYPAD.
Pronunciation: "question-keypad"

?KEYPRESS (-- [n\TRUE] or [FALSE] | 0 < = n < = 39)
Scans keypad or touchscreen having up to 8 rows and 5 columns. If a key is being
depressed, returns the key number under a true flag; unlike ?KEYPAD, ?KEYPRESS
does not wait for the key to be released. If no key is depressed, returns a false flag.
Consult the KEYPAD glossary entry for a detailed description of keypad orientation.
Disables interrupts for 12 microseconds each time a row is scanned. See ?KEYPAD
and KEYPAD.
Pronunciation: "question-keypress"

?MATRIX.SIZE (matrix.xpfa -- d | d = number of elements in matrix)
Returns the number of elements d (not the number of bytes!) in the specified matrix. If
DEBUG is ON, ABORTs if matrix.xpfa is undimensioned or is not a matrix. If DEBUG is
OFF, no error checking is performed, and d is indeterminant if matrix is not
dimensioned.

Main Glossary 47

Pronunciation: "question-matrix-size"

?RECEIVE (xmailbox -- [wd\true] or [false] | wd = received message)
If xmailbox is empty (i.e., if it contains 0\0), returns a false flag. If xmailbox contains a
message (i.e., if it does not contain 0\0), fetches the contents of xmailbox wd and stores
a 0\0 into xmailbox to indicate that the message has been received and that the mailbox
is now empty. Leaves the message wd on the stack under a true flag. Does not
execute PAUSE. To ensure that the state of the mailbox is correctly determined,
?RECEIVE disables interrupts for 26 to 61 cycles (6.5 to 15.25 microseconds). See
SEND, RECEIVE, and MAILBOX:.
Pronunciation: "question-receive"

?SEND (wd\xmailbox -- flag | flag is true if message was sent)
If the mailbox with extended address xmailbox is empty (i.e., contains 0\0), stores the
32-bit message wd in xmailbox and returns a true flag. If xmailbox is not empty, drops
wd and returns a false flag. Does not execute PAUSE. The message wd can be any
32-bit quantity except 0\0. For example, the message can be an xaddress that points to
a block of data. To ensure that the state of the mailbox is correctly determined, ?SEND
disables interrupts for 16 to 50 cycles (4 to 12.5 microseconds). See SEND, RECEIVE,
and MAILBOX:.
Pronunciation: "question-send"

@ (xaddr -- w)
Fetches a 16-bit number from the memory location specified by xaddr. The high order
byte is taken from xaddr and the low order byte from xaddr+1. Note that in paged
memory, the address immediately following 0x7FFF is address 0000 on the following
page.
Pronunciation: "fetch"

A/D8.MULTIPLE (xaddr\u1\u2\n -- | u1=timing parameter, u2 = #samples, n = channel#)
Acquires u2 samples from the 8 bit analog to digital (A/D) converter in the 68HC11 and
stores the samples as sequential unsigned 8 bit values starting at the specified xaddr. n
specifies the channel number of the A/D (0 < = n < = 7). To ensure proper operation in
a multitasking environment, this routine executes A/D8.RESOURCE GET before
reading the A/D and A/D8.RESOURCE RELEASE before terminating. If the specified
xaddr is in common memory, the first sample is taken after 86 microseconds and
subsequent samples are taken every (10+2.5*u1) microseconds, where u1 is the
specified timing parameter passed to this routine. If the specified xaddr is in paged
memory, the first sample is taken after 81 microseconds and subsequent samples are
taken every (32.5+2.5*u1) microseconds. Of course, the operation of interrupts
(including timesliced multitasking) will affect these sampling times. For a faster version
suitable for non-multitasking applications, see (A/D8.MULTIPLE). See also
A/D8.SAMPLE, (A/D8.SAMPLE), and A/D8.ON.
Pronunciation: "A-to-D-eight-multiple" Attributes: M

 A/D8.OFF (--)
Turns off the 68HC11's on-chip 8 bit analog to digital (A/D) converter by clearing the
ADPU bit in the processor's OPTION register. The 8 bit A/D is initialized to the off state
upon every reset or restart. See A/D8.ON.

48 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "A-to-D-eight-off"

A/D8.ON (--)
Turns on the 68HC11's on-chip 8 bit analog to digital (A/D) converter by setting the
ADPU bit in the processor's OPTION register, and waits 100 microseconds for the A/D
to stabilize. Also initializes A/D8.RESOURCE to 0\0. This routine must be executed
after a reset or restart before using the 8 bit A/D. See A/D8.OFF.
Pronunciation: "A-to-D-eight-on"

A/D8.RESOURCE (-- xaddr)
A resource variable associated with the 8 bit analog to digital (A/D8) converter. Should
be accessed only by the words GET ?GET and RELEASE. Initialized to 0\0 by
A/D8.ON and at each reset or restart. A/D8.RESOURCE is automatically invoked by
many of the A/D8 device drivers. See RESOURCE.VARIABLE:.
Pronunciation: "A-to-D-eight-resource"

A/D8.SAMPLE (n -- byte | n = channel#)
Acquires and places on the stack a single sample byte from the 8 bit analog to digital
(A/D) converter in the 68HC11. n specifies the channel number of the A/D (0 <= n <=
7). To ensure proper operation in a multitasking environment, this routine executes
A/D8.RESOURCE GET before reading the A/D and A/D8.RESOURCE RELEASE
before terminating. This routine executes in 93 microseconds. For a faster version
suitable for non-multitasking applications, see (A/D8.SAMPLE). See also
(A/D8.MULTIPLE), A/D8.MULTIPLE, and A/D8.ON.
Pronunciation: "A-to-D-eight-sample"

ABORT ([...] --)
Return Stack: (R: [...] --)
If the CUSTOM.ABORT flag is true, executes the abort routine whose xcfa is stored in
the user variable UABORT, and then returns to the routine that called ABORT. If
CUSTOM.ABORT is false, executes the default routine (ABORT) which clears the data
and return stacks, sets the page to the default page (0), and executes FORTH
DEFINITIONS to set CONTEXT and CURRENT equal to FORTH. If an autostart vector
has been installed (see AUTOSTART), (ABORT) executes the specified routine;
otherwise it executes QUIT which sets the compilation mode and enters the interpreter.
If R0 and S0 aren't in common RAM, a COLD restart is initiated.

ABORT" (flag --)
Compile Time: (<text> --)
If flag is true, prints the <text> string between ABORT" and the terminating " and then
executes ABORT. If flag is false, drops flag and continue execution. Useful for error
detection and reporting.
Pronunciation: "abort-quote"Attributes: C, I, M

ABS (n1 -- +n2 | +n2 = absolute value of n1)
Replace n1 with its absolute value +n2. If n1 is positive, +n2 = n1. If n1 is negative, +n2
is the negative of n1.
Pronunciation: "abs"

Main Glossary 49

ACTIVATE (xcfa\xtask.id --)
Sets up the routine specified by xcfa as the action word of the task whose task identifier
(STATUS xaddress) is xtask.id, and leaves the specified task AWAKE so that it will be
entered on the next pass through the round robin task list. ACTIVATE assumes that the
specified task has already been added to the task list by BUILD.TASK or
BUILD.STANDARD.TASK. The task's action word is typically either an infinite loop or a
finite routine that ends with a HALT instruction (which is itself an infinite loop).
ACTIVATE buries a call to HALT in the return stack frame to ensure graceful
termination of a finite activation routine. If cooperative multitasking is used exclusively
(i.e., if the timeslicer is not used), then the loop of the action word must contain at least
one PAUSE statement (or invoke a word that in turn executes PAUSE). Otherwise, no
task switching occurs. If timeslicing is used, incorporation of PAUSE statements in the
loop of the action word is optional. The typical form of an action word is:

: <action.name>
words to be executed once
BEGIN

words to be executed infinitely
PAUSE
words to be executed infinitely

AGAIN
;

or:
: <action.name>

words to be executed
PAUSE
words to be executed
HALT

;
For example, if a task has been defined with

TASK: <task.name>
and built using BUILD.TASK or BUILD.STANDARD.TASK, it can be activated by
executing

CFA.FOR <action.name> <task.name> ACTIVATE

 ADDR-> (u1 <name> -- u2)
Adds a named member to the structure being defined and reserves room for one 16 bit
address field in the structure. Removes <name> from the input stream and creates a
structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u2 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "address" Attributes: D

ADDR: (<name> --)
ADDR: is a synonym for INTEGER: . It defines a 16-bit self-fetching variable. ADDR: is
meant to hold a 16-bit address. See the glossary entry for INTEGER: .

50 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "address-colon" Attributes: D

ADDRS-> (u1\u2 <name> -- u3)
Adds a named member to the structure being defined and reserves room for u2 16 bit
addresses in the structure. Removes <name> from the input stream and creates a
structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u3 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "addresses" Attributes: D

AGAIN (--)
AGAIN is used within a colon definition to mark the end of an infinite loop structure as:

BEGIN
<words to be iterated>

AGAIN
The words between BEGIN and AGAIN are executed indefinitely. AGAIN is equivalent
to FALSE UNTIL. An error is issued if BEGIN and AGAIN are not properly paired inside
a definition.
Attributes: C, I

ALL.COLUMNS.SCALED (matrix.xpfa1\[row#1\-1] or [-1\col#1]\ matrix.xpfa2 --)
Scales each column of the matrix specified by matrix.xpfa1 by dividing each element in
the column by the amount designated in the scaler row/col specified by [row#1\-1] or [-
1\col#1]\ matrix.xpfa2 which must have the same number of elements as the number of
columns of the matrix. The scaler row/col should not be part of the matrix being scaled.
That is, matrix.xpfa1 may not equal matrix.xpfa2.
Attributes: S

 ALL.ROWS.SCALED (matrix.xpfa1\[row#\-1] or [-1\col#]\ matrix.xpfa2 --)
Scales each row of the matrix specified by matrix.xpfa1 by dividing each element in the
row by the amount designated in the scaler row/col specified by [row#\-1] or [-1\col#]\
matrix.xpfa2 which must have the same number of elements as the number of rows of
the matrix. The scaler row/col should not be part of the matrix being scaled. That is,
matrix.xpfa1 may not equal matrix.xpfa2.
Attributes: S

ALL.TO.FLASH (--)
If the standard map is already set, ALL.TO.FLASH simply executes SAVE. If the
download map is set, this command copies pages 4, 5, and 6 to flash, then sets the
standard map and calls SAVE. This function ensures that an application program up to
96 Kbytes long compiled on pages 4, 5, and 6 is properly transferred to flash after a
download. In the event of a crash or COLD restart during the debugging process,
RESTORE can be used to regain access to the compiled code to continue debugging.
USAGE: When paired with the ENABLE.DOWNLOAD command, this function simplifies
the loading of a Forth program. Place the ENABLE.DOWNLOAD command at the top
of the first file to be loaded (before the file’s memory map and ANEW statements), and

Main Glossary 51

place ALL.TO.FLASH at the end of the last file to be loaded. This ensures proper
compilation of code into RAM pages 4, 5 and 6 in the download map, followed by
transfer to flash and setting of the standard map. It is also possible to put
ENABLE.DOWNLOAD at the top of each source code file, and ALL.TO.FLASH at the
bottom of each source file. This technique ensures proper compilation of any given
source code file during the development process. Of course, this command may also
be typed at the QED-Forth prompt after code is downloaded. See
ENABLE.DOWNLOAD.

ALLOCATED (u\xpfa -- | u is heap item size in bytes)
Allocates u bytes of heap memory and associates it with the item having the specified
parameter field address xpfa. The xpfa is typically associated with a word defined by
H.INSTANCE:. Typical use:

size.of.heap.item H.INSTANCE: <name>
SIZE.OF <name> ' <name> ALLOCATED

or:
size.of.heap.item ' <name> ALLOCATED

See H.INSTANCE: and SIZE.OF.

ALLOT (n --)
Reserves n bytes in the dictionary by incrementing the definitions pointer DP by n. An
error occurs if the ALLOT operation causes DP to be incremented across the boundary
between 0x7FFF (the last valid address in a given page) and 0x8000 (the start of the
register area).

AND (w1\w2 -- w3)
Performs a logical bit-wise 'and' of two 16 bit numbers w1 and w2 to produce the result
w3.

ANEW (<name> --)
Tries to find <name> in the CURRENT vocabulary. If <name> is not found or was not
created by ANEW, then creates <name>. If <name> is found, executes <name> which
resets the variable pointer VP to the value it had when ANEW <name> was first
executed, then FORGETs all words defined after <name> was created; this resets DP
and NP to the values they had when ANEW <name> was first executed. ANEW should
be used to avoid redundancy when reloading code during debugging. Note that heap
items associated with forgotten words are not released by ANEW and should be
handled by the programmer using ON.FORGET. See FORGET and ON.FORGET.

ARRAY.PF (-- u | u = size of an array parameter field)
Places on the stack the number of bytes in an array parameter field based on the
current value of MAX#DIMENSIONS. Typically used to define a stack-based temporary
array within a definition; temporary arrays defined in this manner preserve re-entrancy
(see the chapter on Designing Re-entrant Code in the Software Manual). For example:

: ARRAY.FUNCTION
LOCALS{ | x&temp.array.pfa }
ARRAY.PF PF.STACK.FRAME TO x&temp.array.pfa
10 1 6 x&temp.array.pfa DIMENSIONED \ dimension
.... \ use the temp array

52 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

x&temp.array.pfa DELETED \ delete from heap
ARRAY.PF FRAME.DROP \ drop temp pf off stack

;
See MATRIX.PF, PF.STACK.FRAME and FRAME.DROP.
Pronunciation: "array-p-f"

ARRAY: (<name> --)
Removes <name> from input stream and defines <name> as an array. Allots and clears
a parameter field for <name> in the variable area. When executed, <name> returns the
extended element address given the indices; its stack picture is:

(indices -- xaddr)
The element xaddress is also returned by the command

indices ' <name> []
ARRAY: does not allocate heap space or dimension the array; see DIMENSIONED.
Pronunciation: "array-colon" Attributes: D

ASCII (<name> -- char)
Removes <name> from the input stream and converts its first character to its ASCII
value char. In execution mode the ascii value is left on the stack. In compilation mode
the ascii code is compiled as a literal into the current definition.
Attributes: I

ASK.FNUMBER (<text> -- [r\-1] or [0])
Inputs a character string <text> to the PAD buffer, terminating when CHARS/LINE
characters are received or a carriage return is received, whichever comes first. Leaves
<text> as a counted string at PAD and, ignoring leading blanks, attempts to convert the
<text> string to a valid floating point number. If <text> is an ascii representation of a
valid integer or double number or floating point number, the equivalent floating point
representation r is left on the stack under a true flag; otherwise, a false flag is left on the
stack. See ASK.NUMBER and NEXT.NUMBER.
Pronunciation: "ask-f-number" Attributes: M, S

ASK.NUMBER (<text> -- [n\1] or [d\2] or [0])

Inputs a character string <text> to the PAD buffer, terminating when CHARS/LINE
characters are received or a carriage return is received, whichever comes first. Leaves
<text> as a counted string at PAD and, ignoring leading blanks, attempts to convert the
<text> string to a single or double number. If the string is converted to a 16-bit integer
n, leaves n under a 1 flag. If the string cannot be represented as a 16-bit integer but is
a valid 32-bit double number d, leaves d on the stack under a 2 flag. Conversion is
performed in the current number base unless the number starts with 0x or 0X, in which
case hexadecimal base is used. Leaves a 0 flag on the stack if the <text> string cannot
be converted to a valid integer. See ASK.FNUMBER and NEXT.NUMBER.
Attributes: M, S

ASLEEP (-- 1)

Main Glossary 53

A constant that places the value 1 on the stack. When stored into a task's STATUS user
variable, indicates to the multitasking executive that the task is asleep and cannot be
entered.

ASSEMBLER (--)
Sets CONTEXT equal to the assembler vocabulary's xhandle so that the assembler
vocabulary is the first vocabulary searched during dictionary searches.

ATTACH (xcfa\n -- | n = interrupt identity number)
Posts an interrupt handler routine specified by xcfa for the interrupt with identity number
n (e.g., OC1.ID, OC2.ID, etc.) Compiles an 8-byte code sequence at the EEPROM
location associated with the specified interrupt. When the interrupt is serviced, the code
at xcfa will be executed. The xcfa can be on any page. If coded in high level, the
interrupt handler routine should end with a ; and if coded in assembly should end with
an RTS (as opposed to an RTI).

AUTOSTART (xcfa --)
Compiles a 6-byte sequence into the EEPROM in the 68HC11. On subsequent restarts
and ABORTs, the routine having the specified xcfa will be executed. This allows a
finished application to be automatically entered upon power up and resets. CAUTION:
If your application is to be put into production and replicated, it is recommended that you
use the PRIORITY.AUTOSTART function which stores the 6-byte autostart sequence in
flash memory.
Implementation detail: At location 0xAE00 in EEPROM, AUTOSTART writes the pattern
1357 followed by the four byte xcfa. To undo the effects of this command and return to
the default startup action, use NO.AUTOSTART. To recover from the installation of a
buggy autostart routine, use the special cleanup mode. See PRIORITY.AUTOSTART,
and consult the "Interrupts, Register Initializations, and Autostarting" chapter in the
Software Manual.

AWAKE (-- 0)
A constant that places the value 0 on the stack. When stored into a task's STATUS user
variable, indicates to the multitasking executive that the task is awake and may be
entered.

 AXE (<name> --)
If <name> is found in the CURRENT vocabulary, removes its header and compacts the
vocabulary, but leaves the definition (i.e., the code field) of <name> intact. Once a
word's header has been AXEd it can no longer be found in the dictionary. AXE is useful
for conserving memory space in the names area of the dictionary. AXE works properly
only if the name area after <name> is a contiguous single-vocabulary linked list in
modifiable RAM . An error is issued if <name> is not found or if <name> is on a
different page than that returned by LATEST. An unchecked error occurs if words have
been defined into vocabularies other than the CURRENT vocabulary since <name> was
defined, or if NP has been explicitly moved with an

<xaddr> NP X!
command since <name> was defined.

BACKTRACK (--)

54 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Resets >IN to point to the first character of the word in the input stream that was most
recently parsed by WORD.

BASE (-- xaddr)
User variable that contains the current number base (number conversion radix) used for
number I/O and numeric conversion. Unchecked error if the contents of BASE are less
than 2 or greater than 72.
Attributes: U

BAUD1.AT.STARTUP (n --)
Configures the QED Board so that the baud rate of the primary serial port (serial1)
supported by the 68HC11's hardware UART will equal the specified standard baud rate
upon all subsequent resets and restarts. Standard baud rates for boards clocked at 16
MHz are 150, 300, 600, 1200, 2400, 4800, 9600, and 19200 baud.
Implementation detail: This routine calls INSTALL.REGISTER.INITS which writes into
EEPROM the required contents of INIT (=0xB8), the contents of BAUD that corresponds
to the specified baud rate, and the contents of OPTION, TMSK2, BPROT that are
present when this routine is executed. These values are installed in their respective
registers upon each subsequent reset and restart. To undo the effects of this
command, execute DEFAULT.REGISTER.INITS or invoke the special cleanup mode.
Pronunciation: "baud-one-at-startup"

BAUD2 (n --)
Sets the baud rate of the secondary serial port (serial2) supported by QED-Forth's
software UART using hardware pins PA3 (input) and PA4 (output). Smooth file
transfers can be achieved at up to 4800 baud, but note that the operation of other
interrupt service routines may lower the attainable error-free baud rate. The baud rate
of serial2 is initialized to 1200 baud by the COLD restart routine. See USE.SERIAL2.
Pronunciation: "baud-two"

BEEP (--)
Emits the bell character, ascii 07, if QUIET is OFF .

BEGIN (--)
BEGIN is used within a colon definition to mark the start of a loop structure as:

BEGIN ... UNTIL
BEGIN ... WHILE ... REPEAT
BEGIN ... AGAIN

The words after UNTIL or REPEAT are executed after the loop structure terminates.
BEGIN ... AGAIN is an infinite loop. An error is issued if BEGIN is not properly paired in
a loop structure.
Attributes: C, I

BENCHMARK: (<name> --)
Measures and displays the execution time and operations count for the word <name>.
The timeslice clock must be running to benchmark a word. This can be accomplished
by executing START.TIMESLICER before invoking BENCHMARK:. <name> may be
any executable word. Data stack parameters required by <name> should be placed on
the stack before calling BENCHMARK:. Typical use:

Main Glossary 55

START.TIMESLICER \ if timeslicer wasn't already running ...
\ push necessary stack parameters for <name>

BENCHMARK: <name>
See also (BENCHMARK:).
Pronunciation: "benchmark" Attributes: M, S

BL (-- char)
Puts the ascii value for a blank (a space, ascii value 32) on the data stack.
Pronunciation: "b-l"

BLANK (xaddr\u -- | u = byte count)
The ascii character value for space (32) is stored in each of u consecutive bytes
beginning at xaddr. The specified region may cross page boundaries. Does nothing if u
= 0.

BLANK.ARRAY (array.xpfa --)
Stores an ascii blank (32) into each byte of the specified array.

BLK (-- xaddr)
A user variable whose contents equal the number of the file block currently being
interpreted. Contents of 0 indicate that the input stream is to be taken from the terminal
input buffer (TIB). Modified by -->, LOAD and THRU, cleared by QUERY.
Pronunciation: "b-l-k" Attributes: U

BLOCK (n -- xaddr | n = block#, xaddr = buffer)
Performs the function of BUFFER which assigns the block specified by n to the buffer
starting at xaddr, and then reads the contents of the specified block n from mass
memory into its assigned buffer at xaddr. See BUFFER. Note that the starting location
of the specified block in mass memory is given by 1024*(n + offset) where offset equals
the 32-bit contents of the user variable OFFSET.
Attributes: M

BOOLEAN (w -- flag)
Converts a 16-bit integer into a boolean flag. Flag is FALSE (0) if w is 0, otherwise flag
is TRUE (-1).

BREAK (--)
Sets a software breakpoint when compiled into any function (including assembly
language functions). At execution time, BREAK suspends the program flow, saves the
machine state and invokes a FORTH-style text interpreter that can be distinguished
from the standard interpreter by the BREAK> prompt displayed at the start of each line.
Any valid commands may be executed from within the BREAK interpreter. From within
the BREAK interpreter, typing a carriage return alone on a line exits the BREAK mode,
restores the machine registers to the values they held just before BREAK was entered,
and resumes execution of the program that was running when BREAK was entered.
The BREAK routine's preservation of the register state and its ability to execute any
valid command make it a very powerful debugging tool. BREAK may be compiled into
any definition to stop program flow in order to debug or analyze a word at the point
where BREAK was called. Once inside BREAK, the stack contents may be displayed

56 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

(using .S) or altered. Variables and memory locations may be displayed or altered.
New words can even be defined and executed. BREAK is called by the trace routine if
the variable SINGLE.STEP is set. To single step through some code, compile the code
with TRACE ON, then execute the code with DEBUG and SINGLE.STEP ON. After
each call, the name of the traced word and the stack picture will be printed, and then the
BREAK word will execute, letting you execute FORTH commands. To go to the next
"step" in the word being debugged, enter a CR alone on a line. To display the register
state after each traced line, execute DUMP.REGISTERS ON. To stop single-stepping
but continue tracing, execute the forth command SINGLE.STEP OFF. The trace will
continue, but BREAK will not be called again, unless you hit a key. The trace routine
enters the BREAK mode when a keystroke is detected at the serial I/O port: if you hit a
key, BREAK is called by TRACE, and again, a CR resumes execution. To exit the
traced definition completely, execute ABORT (or any illegal command) from within the
BREAK interpreter. Any error encountered while in the BREAK routine executes
ABORT which places the programmer back into the standard QED-Forth interpreter
(unless ABORT has been revectored to perform some other action; see
CUSTOM.ABORT). See DEBUG, TRACE, SINGLE.STEP, DUMP.REGISTERS, and
IS.TRACE.ACTION.
Attributes: M, S

BUFFER (n -- xaddr | n = block#, xaddr = buffer)
Returns the extended address xaddr of the first byte of the block buffer assigned to the
block specified by n. If the specified block is already in a buffer, writes the buffer's
contents to mass memory if the block has been UPDATED, and returns the extended
address of the buffer. If the specified block is not already in a buffer, assigns it to a
buffer, writing the previous contents of the buffer to mass memory if the previous
contents had been UPDATED. BUFFER does not load the buffer with the contents of
the specified block; see BLOCK. Note that the starting location of the specified block in
mass memory is given by 1024*(n + offset) where offset equals the 32 bit contents of
the user variable OFFSET.
Attributes: M

BUFFER.POSITION (n1\n2 -- n3 | n1 = line#, n2 = char#, n3 = buffer.offset)
Given the specified LCD display line number n1 (0 <= n1 < LINES/DISPLAY) and the
specified character position in the display line (0 <= n2 < CHARS/DISPLAY.LINE),
calculates the offset n3 of the specified position relative to the extended base address
returned by DISPLAY.BUFFER. Clamps n3 to ensure that the buffer.offset is not
greater than the size of the buffer. Note that for a graphics-style display the line# n1 is
interpreted differently depending on whether the display is being used in "text mode" or
"graphics mode". In text mode, n1 corresponds to the character line#; in graphics
mode, n1 corresponds to the pixel line#. See LINES/DISPLAY for further information.

BUFFER>SPI (xaddr\+n --)
Writes to the SPI the contents of the buffer specified by xaddr and +n, where xaddr is
the starting address, and +n is the number of bytes (0 <= +n <= 32,768). The buffer
must not cross a page boundary. This routine does not GET or RELEASE the
SPI.RESOURCE, nor does it modify the configuration of the SPI or activate any chip
selects. If required, these additional functions must be performed by the calling

Main Glossary 57

program. This routine is optimized for speed, and executes at 9 microseconds per byte.

BUILD.STANDARD.TASK (xaddr1\xaddr2\xaddr3\xtask.id -- |
xaddr1=xheap.start, xaddr2=xheap.end, xaddr3=VP)

Builds a task with a specified heap and variable area and no compilation privileges. The
task's stacks, user area, PAD, POCKET, and TIB are assigned to a 1Kbyte block of
common RAM starting at xtask.id (the base of the task's user area). The task is
appended to the round-robin task list and left ASLEEP running the default action word
HALT. xaddr1 is the extended heap starting address, and xaddr2 is the extended heap
end address. BUILD.STANDARD.TASK passes these to IS.HEAP which initializes the
heap accordingly. xaddr3 specifies the start of the variable area for the task, and
xtask.id is the task identifier xaddress (also called the task's STATUS address or the
base of its user area.) DP and NP are set to xaddress 0\0 in ROM so that the task
cannot compile new words (it can, however, interpret and execute previously defined
words). The 256-byte user area of the parent task (i.e., the task that is active when this
command executes) is copied to create the new task's user area, so the parent's
configuration is initially "inherited" by the new task. This implies that the new task has
access to all the words in the parent's dictionary. The variables that control the memory
map of the new task are set so that R0 = xtask.id + 0x400, S0 = xtask.id + 0x300, (both
stacks have 1/4K space and grow downward in memory), TIB extends upward for 94
bytes starting at xtask.id + 0x180, POCKET extends upward for 32 bytes starting at
xtask.id + 0x1E0, and PAD extends upward for 82 bytes and downward for 36 bytes
starting at xtask.id + 124H. (Implementation detail: The multitasker uses the 2 bytes
below TIB to hold a C stack pointer.) To initialize CURRENT.HEAP without modifying
the heap control variables, pass BUILD.STANDARD.TASK a heap start xaddress that is
equal to the heap end xaddress (see IS.HEAP).

 BUILD.TASK (xheap.start\xheap.end\xvp\xdp\xnp\xtib\xpad\xpocket\xr0\xs0\xtask\n --)
Builds a task with a specified memory map. Appends the task to the round-robin task
list and leaves it ASLEEP running the default action word HALT. The stack picture
above uses non-standard symbols that are more descriptive than a long list of xaddr
items. All but the last item on the stack are extended addresses (xaddr). The last item
n is the integer size of the user area. The first n bytes of the user area of the parent
task (i.e., the task that is active when this command executes) are copied to create the
new task's user area, so the parent's configuration is initially "inherited" by the new task.
This implies that the new task has access to all the words in the parent's dictionary
because the values in the new task's CONTEXT and CURRENT user variables have
been copied from the parent. The variables that control the memory map of the new
task are set according to the parameters passed to BUILD.TASK.
xheap.start\xheap.end are passed to IS.HEAP which initializes the heap accordingly.
(To initialize CURRENT.HEAP without modifying the heap control variables, pass
BUILD.STANDARD.TASK a heap start xaddress that is equal to the heap end
xaddress; see IS.HEAP). xvp specifies the contents of VP in the new task's user area,
xdp specifies DP, xnp specifies NP, xtib specifies the contents of UTIB, xpad specifies
the contents of UPAD, xpocket specifies the contents of UPOCKET, xr0 specifies R0
which positions the return stack, and xs0 specifies S0 which positions the data stack.
xtask.id is the base address of the user area; it is the xaddress placed on the stack
when the task's name is invoked. xr0, xs0, and xtask.id must be in common ram. The

58 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

user area grows upward in memory, and stacks grow downward. If the new task ever
calls WORD or interprets input, a POCKET buffer must be allocated and must be in the
common RAM. The heap, VP, DP, NP, TIB, and PAD can be anywhere in memory.
BUILD.TASK gives the programmer complete flexibility in allocating memory resources
to a task. Some tasks might not need all of these memory areas; in this case, default
xaddresses in ROM such as 0\0 can be used to initialize the unneeded memory
pointers. The minimum required resources for a task are the first 6 bytes of the user
area (STATUS, NEXT.TASK, and RP.SAVE) and a return stack. At the other end of the
complexity scale, tasks that can compile new definitions and perform math, I/O and
heap operations need to allocate all of the memory areas. Passing values for xvp and
xdp in RAM allows compilation of new definitions and the task could subsequently have
a private dictionary segment that is not accessible to other tasks. (However, note that
concurrent compilation by multiple tasks is discouraged, as some compilation variables
such as local variable save locations are not in task-private memory). An error is issued
if xtask.id, xr0 or xs0 is not in the common RAM. See BUILD.STANDARD.TASK.

BYTE-> (u1 <name> -- u2)
Adds a named member to the structure being defined and reserves room for a single
byte field in the structure. Removes <name> from the input stream and creates a
structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u2 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "byte" Attributes: D

BYTES-> (u1\u2 <name> -- u3)
Adds a named member to the structure being defined and reserves room for u2 bytes in
the structure. Removes <name> from the input stream and creates a structure field
called <name>. u1 is the structure offset initialized by STRUCTURE.BEGIN:. u3 is the
updated offset to be used by the next member defining word or by STRUCTURE.END.
When <name> is later executed, it adds its offset u1 to the extended address found on
the data stack which is typically the start xaddress of an instance of the data structure;
the result is the xaddress of the desired member in the structure.
Pronunciation: "bytes" Attributes: D

BYTES>DISPLAY (xaddr\+n\addr --)
Sends +n bytes of data starting at xaddr to the graphics display specified by addr. This
is a low-level primitive that is typically not useful to the end user.

C! (byte\xaddr --)
Stores byte at xaddr.
Pronunciation: "c-store"

C, (byte --)
Stores byte at the next available location in the definitions area and increments the
definitions pointer DP by 1. An error occurs if byte is not correctly stored; e.g. if DP
does not point to RAM. An error occurs if the C, operation causes DP to be incremented

Main Glossary 59

across the boundary between 0x7FFF (the last valid address in a given page) and
0x8000 (the start of the register area).
Pronunciation: "c-comma"

C@ (xaddr -- byte)
Fetches the byte stored at xaddr.
Pronunciation: "c-fetch"

CALC.CHECKSUM (xaddr\+n -- checksum | n MUST be even)
Calculates a 16-bit checksum for the buffer specified by xaddr and +n, where xaddr is
the starting address, and +n is the number of bytes (0 <= +n <= 32,768). The buffer
must not cross a page boundary, and n must be an even number of bytes. The
checksum is calculated by initializing a 16-bit accumulator to zero, then adding in turn
each 2-byte number in the buffer to the accumulator; the checksum is the final value of
the accumulator. Using this routine provides a method of checking whether the
contents of an area of memory have changed since a prior checksum was calculated.
This routine is optimized for speed, and executes at less than 3 microseconds per byte.

CALL (<name> --)
Removes <name> from the input stream and compiles a call to <name> into the current
definition, where <name> is the name of an executable FORTH or assembly coded
routine. Typically used in an assembly coded definition. See the Assembler chapter of
the Software Manual for examples of use.

CASE (n -- n)
Used inside a colon definition to mark the beginning of a CASE statement which
implements a multi-decision control structure. Use as:

n1 CASE
n2 OF words to be executed if n1 = n2 ENDOF
n3 OF words to be executed if n1 = n3 ENDOF

 n4 OF words to be executed if n1 = n4 ENDOF
words to be executed if n1 does not equal n2 or n3 or n4

ENDCASE
An error is issued if CASE and ENDCASE are not properly paired in a definition. See
ENDCASE, OF, ENDOF, RANGE.OF, and URANGE.OF.
Attributes: C, I

 CFA.FOR (-- xcfa)
Compile Time: (<name> --)
Removes <name> from the input stream and returns <name>'s extended code field
address xcfa. xcfa is the first byte of executable code associated with <name>'s
definition. If in execution mode, leaves the xcfa on the stack. If in compilation mode,
compiles the xcfa as a 2-cell literal in the current definition; the xcfa is pushed to the
stack when the definition later executes. An error occurs if no <name> is given or if
<name> cannot be found in the dictionary.
Pronunciation: "c-f-a-for" Attributes: I

CFA.PTR (xnfa -- xaddr)

60 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Given the extended name field address xnfa of a header in the dictionary, returns the
xaddr in the header that contains the 3-byte code field address associated with the
header. The page of the code field is a single byte stored at xaddr, and the address of
the code field is a 16-bit address stored at xaddr+1. See NFA.FOR.
Pronunciation: "c-f-a-pointer"

CFA>NAME (xcfa --)
Prints the name of the word associated with the specified extended code field address
xcfa. Useful for error diagnostics to print the name of the word in which an error
occurs. The name is printed as ?NAME? if no name corresponding to xcfa is found in
the dictionary.
Pronunciation: "c-f-a-to-name"

CFA>NFA (xcfa -- [xnfa] or [0\0])
Given the extended code field address xcfa of a word in the dictionary, searches the
dictionary and returns the extended name field address xnfa of the word. If the name
associated with xcfa cannot be found in the dictionary, returns 0\0. xcfa is the first byte
of executable machine code associated with the definition, and xnfa is the count byte of
the word's header. See CFA.FOR, ID. and NFA.FOR.
Pronunciation: "c-f-a-to-n-f-a"

CFA>PFA (xcfa -- [xpfa] or [0\0])
Given the extended code field address xcfa of a word in the dictionary, searches the
dictionary and returns the extended parameter field address xpfa of the word. If the
name associated with xcfa cannot be found in the dictionary or if it does not have a
parameter field, returns 0\0. See CFA.FOR and '
Pronunciation: "c-f-a-to-p-f-a"

CHANGE.BITS (byte1\byte2\xaddr -- | byte1 = data; byte2 = mask)
At the byte specified by xaddr, modifies the bits specified by 1's in byte2 to have the
values indicated by the corresponding bits in byte1. In other words, byte2 serves as a
mask which specifies the bits at xaddr that are to be modified, and byte1 provides the
data which is written to the modified bits. Disables interrupts for 16 cycles (4
microseconds) to ensure an uninterrupted read/modify/write operation. See also
(CHANGE.BITS).

 CHAR>DISPLAY (char --)
Writes the specified data byte char to the LCD display. Does not write to the Display
Buffer. If an alphanumeric (character) display is being used, this command writes the
specified ascii character at the current cursor position and increments the cursor
position. (Caution: the cursor does not always follow a contiguous path as it is
incremented; there may be discontinuities at the ends of lines.) Intermittently disables
interrupts for 28 cycles (7 microseconds) per byte written to the display. See
COMMAND>DISPLAY and UPDATE.DISPLAY.
Pronunciation: "char-to-display"

CHARS/DISPLAY.LINE (-- n)
Returns the number of characters per line in the LCD display as specified by the last
execution of IS.DISPLAY. The default value of n after executing the "special cleanup

Main Glossary 61

mode" is 20, corresponding to the default 4-line by 20-character display. The result
returned by this routine is used by BUFFER.POSITION, PUT.CURSOR,
UPDATE.DISPLAY, and UPDATE.DISPLAY.LINE.
Pronunciation: "chars-per-display-line"

CHARS/LINE (-- xaddr)
A user variable that contains the maximum number of characters that can be received
by EXPECT. Also used by matrix print words M. M.. and M.PARTIAL to format their
output. CHARS/LINE is initialized to a default value of 96 upon each COLD restart, and
its value should not be increased above 96 unless the TIB is moved from its default
location.
Pronunciation: "chars-per-line" Attributes: U

CLEAR.BITS (byte1\xaddr --)
For each bit of byte1 that is set, clears the corresponding bit of the 8 bit value at xaddr.
Disables interrupts for ten cycles (2.5 microseconds) to ensure an uninterrupted
read/modify/write operation. See also (CLEAR.BITS) and SET.BITS.

CLEAR.BOOT.VECTOR (--)
Removes a boot vector from page 0x0C so that it will not be executed at reset or restart.
Note that the “page C write protect” jumper must be re-moved for this function to be
effective. This function is typically invoked interactively from the QED-Forth prompt.
This function is called during a “factory cleanup”, but it is not called by
NO.AUTOSTART. See Set_Boot_Vector.

CLEAR.DISPLAY (--)
Clears (blanks) the LCD display, moves the cursor to home position (at the start of line
0). If a character display is in use (as specified by IS.DISPLAY), fills the 80 character
DISPLAY.BUFFER with ascii blank characters. If a graphics display is being used in
text mode, fills the buffer specified by GARRAY.XPFA with ascii blanks. If a graphics
display is being used in graphics mode, erases (zeros) the buffer specified by
GARRAY.XPFA. Intermittently disables interrupts for 28 cycles (7 microseconds) per
byte written to the display. See INIT.DISPLAY.

CLOCK.MONITOR.ID (-- n)
Returns the interrupt identity code for the clock monitor interrupt. Used as an argument
for ATTACH.
Pronunciation: "clock-monitor-i-d"

CMOVE (xaddr1\xaddr2\u -- | xaddr1=src, xaddr2=dest, u = byte count)
If u is greater than 0, u consecutive bytes are copied from addresses starting at xaddr1
to addresses starting at xaddr2. The source and destination extended addresses may
be located on different pages and the move may cross page boundaries. If the source
and destination regions overlap and xaddr1 < xaddr2, CMOVE starts at high memory
and moves toward low memory to avoid propagation of the moved contents. CMOVE
always moves the contents in such a way as to avoid memory propagation. Speed is
approximately 19 microseconds per byte. See CMOVE.MANY.
Pronunciation: "c-move"

62 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

CMOVE.IN.PAGE (addr1\addr2\u\page -- | addr1=src, addr2=dest, u = byte count)
If u is greater than 0, u consecutive bytes starting at addr1 are copied to the destination
addresses starting at addr2 on the specified page. If the source and destination regions
overlap and addr1 < addr2, CMOVE.IN.PAGE starts at high memory and moves toward
low memory to avoid propagation of the moved contents. CMOVE.IN.PAGE always
moves the contents in such a way as to avoid memory propagation. Speed is
approximately 7.5 microseconds per byte.
Pronunciation: "c-move-in-page"

CMOVE.MANY (xaddr1\xaddr2\d -- | xaddr1=src, xaddr2=dest, d = byte count)
If the 32-bit byte count d is greater than 0, d consecutive bytes are copied from
addresses starting at xaddr1 to addresses starting at xaddr2. The source and
destination extended addresses may be located on different pages and the move may
cross page boundaries. If the source and destination regions overlap and xaddr1 <
xaddr2, CMOVE.MANY starts at high memory and moves toward low memory to avoid
propagation of the moved contents. CMOVE.MANY always moves the contents in such
a way as to avoid memory propagation. Speed is approximately 19 microseconds per
byte.
Pronunciation: "c-move-many"

CODE (<name> --)
Begins an assembly coded definition. Removes <name> from the input stream and
creates a header for <name> that cannot be found in the dictionary until END.CODE
executes. Executes ASSEMBLER so that the assembler mnemonics can be found by
the interpreter. The assembly mnemonics between CODE and END.CODE form the
body of the definition. See END.CODE.
Attributes: D

 COL->V (col#\matrix.xpfa -- xvaddr\sep\d.#el)
Returns the vector representation xvaddr\sep\d.#el of the specified column in the
specified matrix. xvaddr is the base address of the vector, sep is the element
separation expressed as a multiple of 4 bytes (e.g., sep=1 means a vector of contiguous
floating point numbers, sep=2 means elements are separated by 8 bytes, etc.) and the
double number d.#el is the number of elements in the vector. In the case of a column
in a matrix, sep=1 (i.e., column elements are stored in contiguous memory locations)
and d.#el is the 32-bit equivalent of the number of rows in the matrix. Note that xvaddr
must be 4-byte aligned (i.e., must be an even multiple of 4). The heap manager and
array and matrix dimensioning words automatically perform the required 4-byte
alignment. See also ROW->V.
Pronunciation: "col-to-v"

COLD (--)
Disables interrupts and restarts the QED-Forth system and initializes all of the user
variables to their default values. Initializes the following machine registers:

PORTG, DDRG, TMSK2, SPCR, BAUD, SCCR1, SCCR2, BPROT,
OPT2, OPTION, HPRIO, INIT, CSSTRH, CSCTL, CSGADR, CSGSIZ.

Initializes the vectors of the vital interrupts if INIT.VITAL.IRQS.ON.COLD has been
executed. Calls ABORT which clears the stacks and calls either the QED-Forth
interpreter or an autostart routine that has been installed using AUTOSTART. If

Main Glossary 63

COLD.ON.RESET has been executed, every reset or power-up will invoke a COLD (as
opposed to a WARM) initialization sequence. Consult the Program Development
Techniques chapter and the Interrupts, Initializations, and Autostarting chapter in the
Software Manual for more information about cold restarts.

COLD.ON.RESET (--)
Initializes a flag in EEPROM that causes subsequent resets to execute a cold restart (as
opposed to the standard warm-or-cold restart). This option is useful to help "bullet-
proof" turnkeyed systems that have an autostart word installed; any error or reset
causes a full COLD restart which initializes all user variables, after which the autostart
routine completes the system initialization and enters the application routine. See
STANDARD.RESET. Implementation detail: Initializes location 0xAE1C in EEPROM to
contain the pattern 13.

COLUMN.CONCATENATE (matrix.xpfa1\matrix.xpfa2\matrix.xpfa3 --)
Concatenates the two source matrices specified by matrix.xpfa1 and matrix.xpfa2 to
form a destination matrix matrix.xpfa3 with more columns. The number of rows in the
two source matrices must be the same. The destination may be one of the sources.

COLUMN.TRUNCATE (matrix.xpfa1\matrix.xpfa2\n --)
Copies all but the final n columns of the source matrix specified by matrix.xpfa1 to the
destination specified by matrix.xpfa2. The destination may be the source.

 COMMAND>DISPLAY (byte --)
Writes the specified byte to the LCD display as a command (as opposed to a character
to be displayed). Does not modify the contents of the DISPLAY.BUFFER. Intermittently
disables interrupts for 28 cycles (7 microseconds) per command byte written to the
display. See CHAR>DISPLAY.
Pronunciation: "command-to-display"

COMPILE (<name> --)
Removes the next <name> from the input stream. Use as:

: <namex>
... COMPILE <name> ...

;
where <namex> is typically immediate and <name> is typically not immediate.
Compiles into the current definition code that will cause <name> to be compiled when
<namex> is executed. That is, COMPILE defers the compilation of <name> until
<namex> executes. Consult the Advanced Topics chapter of the Software Manual for
further description and an example.
Attributes: C, I

COMPILE.CALL (xcfa --)
Compiles a call to the assembly language subroutine whose first byte of executable
machine code is stored at xcfa. If no page change is needed at runtime,
(COMPILE.CALL) is executed. If a page change is needed, an 8-byte sequence is
compiled into the definitions area to accomplish the page change at run time.

COMPLEMENT (w1 -- w2)

64 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Returns the ones complement of w1. That is, inverts each bit of w1 to produce w2.

CONSTANT (w <name> --)
Removes the next <name> from the input stream and defines a child word called
<name> which when executed leaves the value w on the data stack. w is stored in the
definitions area of the dictionary. <name> is referred to as a "constant". Use as:

w CONSTANT <name>
Attributes: D

CONTEXT (-- xaddr)
A user variable that contains a 32-bit xhandle which in turn contains the xnfa of the top
word in the vocabulary to be searched first. Thus CONTEXT X@ returns the xhandle of
the search vocabulary, and CONTEXT X@ X@ returns the xnfa of the top word in the
search vocabulary. In short, the contents of CONTEXT determine the search
vocabulary. See FIND and CURRENT.
Attributes: U

 CONVERT (ud1\xaddr1 -- ud2\xaddr2)
Converts the numeric string starting at xaddr1+1 into the 32-bit number ud2.
Conversion is accomplished by multiplying the double accumulator ud1 by the value in
BASE and then adding the next digit from the string at xaddr1. Conversion ends when a
non-convertible ASCII character is encountered in the string. Isolated embedded
commas are ignored and are not treated as a non-convertible character. xaddr2 is the
address of the first non-convertible character encountered in the string. For example,
executing 0\0 " 123 " CONVERT leaves a 32-bit representation of the number 123 on
the data stack under the xaddr of the terminating space in the string " 123 " .

COP.ID (-- n)
Returns the interrupt identity code for the computer operating properly (COP) interrupt.
Used as an argument for ATTACH.
Pronunciation: "cop-i-d"

COPY.ARRAY (array.xpfa1\array.xpfa2 --)
Dimensions the destination array specified by array.xpfa2 and copies the contents of
the source array specified by array.xpfa1 into the destination. The source and
destination can be in different heaps.

COPY.MATRIX (matrix.xpfa1\matrix.xpfa2 --)
Dimensions the destination matrix specified by matrix.xpfa2 and copies the contents of
the source matrix specified by matrix.xpfa1 into the destination. The source and
destination can be in different heaps.

COUNT (x$addr -- xaddr\cnt | xaddr = x$addr+1)
Unpacks the counted string whose count is stored at x$addr and whose first character
is stored at x$addr+1. Returns the extended address of the first character under the
count. The string may cross a page boundary.

COUNT.TYPE (x$addr --)

Main Glossary 65

Unpacks count from x$addr on page and types the string. COUNT.TYPE is equivalent
to COUNT TYPE
Attributes: M

CR (--)
Causes subsequent output to appear at the beginning of the next line by emitting a
carriage return (ascii 13) followed by a line feed (ascii 10).
Pronunciation: "c-r" Attributes: M

 CR.BEFORE.MSG (-- xaddr)
A user variable that contains a flag. If the flag is false (the default condition), system
warnings and error messages are printed without first emitting carriage return/linefeed
characters. This ensures smooth downloads if the host terminal is using the suggested
technique of waiting for a linefeed character (ascii 10) before sending each new line of
source code to the QED Board (see the Program Development Techniques chapter). If
the CR.BEFORE.MSG flag is true, the error and warning messages are printed on a
separate line, but the leading carriage return/linefeed that is emitted may cause the host
terminal to send the next line of source code before the QED Board is capable of
responding to it. Thus it is recommended that CR.BEFORE.MSG be kept in its default
OFF state while downloading to the QED Board.
Pronunciation: "carriage-return-before-message" Attributes: U

CREATE (<name> --)
Adds a new header for <name> to the names area. Executes BL WORD to parse the
next space-delimited word <name> from the input stream. Converts the parsed string to
upper case letters and searches the dictionary via (FIND) to check for uniqueness. A
warning is issued if <name> is not unique.
Implementation detail: Creates a new header for <name> starting at the address
pointed to by NP, links the header to the CURRENT vocabulary, and initializes the code
field address in the header to the current value of DP. Updates the CURRENT
vocabulary xhandle to point to the xnfa of <name> and updates NP to point to the byte
after <name>'s header. The number of characters saved in the header is the lesser of
the value in WIDTH or the actual number of characters in <name>, to a maximum of 31
characters. If locals are compiling, all characters are saved in the header to avoid non-
uniqueness of local variables. An abort error occurs if the header cannot be stored
(e.g., if NP does not point to RAM). If WIDTH is less than or equal to 1, CREATE resets
WIDTH to 2.
Attributes: D

CREATE.RAMP (start_speed\end_speed\accel\ticks_per_sec\start_ramp_addr\speeds_per_ramp
 -- steps_in_ramp | all parameters are integers)

Writes speed_per_ramp +1 entries into the RAMP.ARRAY starting at the specified
start_ramp_addr to attain the specified starting and ending speeds and acceleration (or
deceleration). Returns the number of steps in the created ramp. start_speed,
end_speed and acceleration are all interpreted as positive numbers. Speeds are in
units of steps per second if the motor is configured for full stepping, or halfsteps per
second if the motor is configured for half stepping. The acceleration is in units of (half)
steps per second per second. Speeds are clamped to the attainable range (between 0
and ticks_per_second), and the acceleration is clamped such that a maximum of 10

66 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

seconds is spent at any one transient speed in a ramp. Each ramp entry comprises a
step_limit which specifies the number of steps to be taken at the speed, and a
duty_cycle which specifies the speed (see the glossary entry for SPEED.TO.DUTY). If
the specified speeds_per_ramp = 0, this function simply writes a "final" speed by setting
the step_limit to 0. For non-zero speeds_per_ramp, this routine writes the specified
number of ramp entries, plus an additional entry at the final speed with the step_limit set
to 0 which tells the STEP.MANAGER that this is the final speed in the ramp. Note that
higher level calling routines can write over the final speed, or concatenate two ramps to
achieve a speed profile that ramps up to a steady speed for a specified number of
steps, and then smoothly ramps down to a stopped state. See the high level source file
steppers.4th in the Demos_and_Drivers directory of the distribution.

CURRENT (-- xaddr)
A user variable that contains a 32-bit xhandle which in turn contains the xnfa of the top
word in the vocabulary to which new definitions are added by CREATE. Thus
CURRENT X@ returns the xhandle of the definitions vocabulary, and CURRENT X@
X@ is equivalent to LATEST, returning the xnfa of the latest word defined. In short, the
contents of CURRENT determine the vocabulary to which new words are added. See
CREATE and CONTEXT.
Attributes: U

CURRENT.HEAP (-- xaddr)
A user variable that holds the 32-bit extended address that specifies the end of the
current heap. Executing CURRENT.HEAP X@ places the xaddress of the last+1 byte
in the current heap on the data stack; the other heap control variables are stored just
below this address in the heap. See IS.HEAP
Pronunciation: "current-heap" Attributes: U

 CUSTOM.ABORT (-- xaddr)
A user variable that contains a flag. If the flag is TRUE, the abort routine whose xcfa is
in UABORT is executed each time that ABORT is called. If the flag is FALSE, ABORT
executes the default (ABORT) routine. See ABORT, (ABORT), and UABORT.
Attributes: U

CUSTOM.ERROR (-- xaddr)
A user variable that contains a flag. If the flag is TRUE, the error routine whose xcfa is
in UERROR is executed in response to every system error. If CUSTOM.ERROR is
FALSE, all system errors call the default (ERROR) routine. See (ERROR) and
UERROR.

Attributes: U

D+ (d1\d2 -- d3)
Adds two signed double numbers d1 and d2 giving the signed double number result d3.
Pronunciation: "d-plus"

D- (d1\d2 -- d3 | d3 = d1 - d2)
Subtracts two signed double numbers d1 and d2 giving the signed double number result
d3.

Main Glossary 67

Pronunciation: "d-minus"

D. (wd --)
Prints wd with no leading spaces and 1 trailing space. If the number base is decimal,
wd is printed as a signed number in the range -2,147,483,648 to +2,147,483,647. In
other bases wd is printed as an unsigned positive number.
Pronunciation: "d-dot" Attributes: M, S

D.INSTANCE: (u <name> -- | u is the size of the structure)
Removes <name> from the input stream and creates a structure instance called
<name>, and allocates u bytes in the definitions area starting at HERE for the structure
instance (the "D" in "D.INSTANCE:" refers to the Definitions area where the instance is
allocated). Compare with V.INSTANCE:. When <name> is executed, the extended
base address of the allocated structure instance is placed on the data stack. Typical
use:

<structure.name> D.INSTANCE: <name>
where <structure.name> was defined using

STRUCTURE.BEGIN: <structure.name>
...

STRUCTURE.END
Executing <structure.name> leaves the structure size u on the stack, and D.INSTANCE:
<name> allocates and names the instance. Executing

SIZE.OF <name>
places the allocated size of the instance on the stack. Note that the instance may cross
page boundaries, and may increment the dictionary pointer DP so that it points to a new
page.
Pronunciation: "d-instance" Attributes: D

D.OVER.N (d\n -- d\n\d)
Copies the double number located under the top data stack cell to the top of the data
stack.
Pronunciation: "d-over-n"

D.R (wd\+byte -- | +byte is field width)
Prints wd right-justified in a field of +byte characters. If +byte is less than or equal to the
number of characters to be printed, the number is printed with no extra spaces. If the
number base is decimal, wd is printed as a signed number in the range -2,147,483,648
to +2,147,483,647. In other bases w is printed as an unsigned positive number. To
print wd as a positive unsigned number in decimal base, use UD.R
Pronunciation: "d-dot-r" Attributes: M, S

D0< > (wd -- flag)
Flag is TRUE if double number wd is not equal to zero, and FALSE otherwise.
Pronunciation: "d-zero-not-equal"

D0= (wd -- flag)
Flag is TRUE if double number wd is equal to zero and FALSE otherwise.
Pronunciation: "d-zero-equal"

68 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

D2* (d1 -- d2 | d2 = d1 * 2)
Multiplies signed double number d1 by 2 giving d2. Overflow errors are not checked.
Pronunciation: "d-two-star"

D2/ (d1 -- d2 | d2 = d1 / 2)
Divides signed double number d1 by 2 giving d2.
Pronunciation: "d-two-slash"

D< (d1\d2 -- flag)
Flag is TRUE if the signed double number d1 is less than the signed double number d2
and FALSE otherwise.
Pronunciation: "d-less-than"

D< > (wd1\wd2 -- flag)
Flag is TRUE if the two double numbers are not equal and FALSE otherwise.
Pronunciation: "d-not-equal"

D= (wd1\wd2 -- flag)
Flag is TRUE if the two double numbers are equal and FALSE otherwise.
Pronunciation: "d-equal"

D> (d1\d2 -- flag)
Flag is TRUE if the signed double number d1 is greater than the signed double number
d2 and FALSE otherwise.
Pronunciation: "d-greater-than"

D>R (d --)
Return Stack: (R: -- d)
Transfers the top double number on the data stack to the return stack.
Pronunciation: "d-to-r" Attributes: C

D>S (d -- n)
Converts the double number d to the single number n by dropping the most significant
cell of d. There is an unchecked error if d cannot be represented by a 16-bit signed
integer.
Pronunciation: "d-to-s"

D>S? (d -- [d\2] or [n\1])
If possible, converts double number d to a single number n and leaves n on the stack
under a 1 flag. Otherwise leaves double number d on the stack under a 2 flag.
Pronunciation: "d-to-s-question"

DABS (d1 -- +d2)
Replaces double precision signed number d1 with its absolute value +d2. If d1 is
positive, +d2 = d1. If d1 is negative, +d2 is the negative of d1.
Pronunciation: "d-abs"

DEALLOCATED (xpfa --)

Main Glossary 69

De-allocates the heap memory associated with the data structure having the specified
parameter field address xpfa. The xpfa is typically associated with a word defined by
H.INSTANCE:. Typical use:

size.of.heap.item H.INSTANCE: <name>
SIZE.OF <name> ' <name> ALLOCATED

...
 ' <name> DEALLOCATED

DEBUG (-- xaddr)
A user variable that holds a flag. If true, this flag enables error checking by the word
NEEDED and by some array and matrix routines. It also enables the trace printout of
words that are compiled while TRACE is ON.
Attributes: U

DECIMAL (--)
Set the numeric conversion base to ten by storing decimal 10 into the user variable
BASE.

DEFAULT.PAGE (-- page | page = 0)
Places a zero onto the data stack; this represents the default page assigned to the
common memory (i.e., addresses above 0x8000).

DEFAULT.REGISTER.INITS (--)
Undoes the effect of the INSTALL.REGISTER.INITS command.
Implementation detail: sets the contents of location AE06H in EEPROM to 0xFF to
ensure that default initializations will be used after subsequent resets. The default
register initializations are:

Register Register Default
Name Address Value
OPTION 0x8039 0x33
TMSK2 0x8024 0x02
BPROT 0x8035 0x10
BAUD 0x802B 0x31

DEFAULT.TRACE.ACTION (--)
Installs NO.OP, a do-nothing word, as the trace action. Equivalent to

CFA.FOR NO.OP IS.TRACE.ACTION
See IS.TRACE.ACTION.

DEFINITIONS (--)
Stores the contents of CONTEXT into CURRENT so that the search vocabulary is also
the vocabulary to which new definitions are appended.
Attributes: I

DELETED (array.xpfa -- | used for arrays and matrices)
De-allocates the heap space assigned to the specified array or matrix, and clears the
parameter field to indicate that the data structure is no longer dimensioned. Use as:

' <name> DELETED
See DIMENSIONED, DIMMED.

70 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

DEPTH (-- +n | +n = stack depth)
+n is the number of cells on the data stack before +n was placed on the stack.

DFIXX (r -- d)
d is the 32 bit integer closest to the floating point number r. See FIXX.
Pronunciation: "d-fix" Attributes: S

DFLOT (d -- r)
Converts the double number d to the nearest floating point number r. Note that there is
a potential loss of resolution in this conversion, since d is represented by 32 significant
bits, while r has a 16-bit mantissa. See FLOT.
Pronunciation: "d-f-lot" Attributes: S

DIGIT (char -- [n\-1] or [0])
Converts ascii char to binary digit n in the current number base and leaves n on the
stack under a true flag. If char cannot be converted to a valid digit, returns a false flag.

DIM.CONSTANT.ARRAY: (u1\...\uN\N\n <name> -- | N=#dim, n=bytes/element)
Removes <name> from the input stream and creates and dimensions an array in the
definitions area. This is useful for building lookup tables that will reside in flash memory
after the application is finished and write-protected. u1, u2, ...uN specify the number of
elements in each dimension, N specifies the number of dimensions, and n specifies the
number of bytes per element. <name> behaves exactly as an array does; its stack
picture is

(indices -- xaddr)
and an element xaddress is also returned upon execution of the command

indices ' <name> []
DIM.CONSTANT.ARRAY: creates a header for <name> in the names area of the
dictionary. It creates and initializes a parameter field and a "handle" (to mimic a heap
handle) in the definitions area, and allots the required number of bytes for the array in
the definitions area. ABORTs if #dim is invalid (<1 or >MAX#DIMENSIONS). The array
may cross page boundaries, and may increment the dictionary pointer DP so that it
points to a new page.
Example of use:
To define and dimension a constant array to have 2 dimensions (3 rows and 4 columns)
with 6 bytes per element, execute:

3 4 2 6 DIM.CONSTANT.ARRAY: <name>
Restrictions: In general, constant arrays should be dimensioned only once at the time of
creation; redimensioning to a larger size could write over other routines in the dictionary
and cause a crash.
Pronunciation: "dim-constant-array" Attributes: D

DIM.CONSTANT.MATRIX: (#rows\#cols <name> --)
Removes <name> from the input stream and creates and dimensions a matrix in the
definitions area. This is useful for building lookup tables that will reside in flash memory
after the application is finished and write-protected. <name> behaves exactly as a
matrix does; its stack picture is:

(row#\col# -- xaddr)

Main Glossary 71

and an element xaddress is also returned upon execution of the command
 row# col# ' <name> M[]

DIM.CONSTANT.MATRIX: creates a header for <name> in the names area of the
dictionary. It creates and initializes a parameter field and a "handle" (to mimic a heap
handle) in the definitions area, and allots the required number of bytes for the matrix in
the definitions area. The matrix is assigned #rows rows and #cols columns, 2
dimensions, and 4 bytes/element. The matrix may cross page boundaries, and may
increment the dictionary pointer DP so that it points to a new page.
Example of use:
To define and dimension a constant matrix to have 3 rows and 4 columns, execute:

3 4 DIM.CONSTANT.MATRIX: <name>
Restrictions: Care must be used when using matrix operators that assume that the
matrix resides in the current heap. In general, constant matrices should be
dimensioned only once at the time of creation; redimensioning to a larger size could
write over other routines in the dictionary and cause a crash.
Pronunciation: "dim-constant-matrix"Attributes: D

 DIMENSIONED (u1\...\uN\N\n\array.xpfa --)
Dimensions the array specified by array.xpfa. u1...uN specify the number of elements
in each dimension, N specifies the number of dimensions, and n specifies the number of
bytes per element. DIMENSIONED executes DELETED to de-allocate any heap space
previously allocated to the array, and then writes the dimensioning information into the
array's parameter field and allocates the required number of bytes in the heap.
ABORTs if there is not enough heap space or if N is invalid (N must be between 1 and
MAX#DIMENSIONS, inclusive).
Example of use:
To define and dimension an array to have 2 dimensions (3 rows and 4 columns) with 6
bytes per element, execute:

ARRAY: <name>
3 4 2 6 ' <name> DIMENSIONED

DIMMED (#rows\#cols\matrix.xpfa --)
Dimensions the matrix specified by matrix.xpfa to have #rows rows and #cols columns.
The number of dimensions is 2, and there are 4 bytes per element (i.e., the size of a
floating point number). DIMMED executes DELETED to de-allocate any heap space
previously allocated to the matrix, and then writes the dimensioning information into the
parameter field and allocates the required number of bytes in the heap. ABORTs if
there is not enough heap space, or (if DEBUG is ON) if the number of rows or columns
is greater than 16,383. For example, to define and dimension a matrix to have 3 rows
and 4 columns, execute:

MATRIX: <name>
3 4 ' <name> DIMMED

DIN (-- wd)
Compile Time: (<name> --)
DIN removes the next word from the input stream, converts it to a 32-bit double number
wd in the current number base (or in hexadecimal if the number is preceeded by 0x or
0X), and executes 2LITERAL which leaves the number on the stack if QED-Forth is in
execution mode, or compiles it as a literal in the current definition if QED-Forth is in

72 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

compilation mode. If DIN is not used, 32-bit numbers in the input stream are truncated
to 16 bits. An error is issued if <name> cannot be converted to a valid number. Typical
use:

HEX DIN 12345678 (-- 5678 \ 1234)
D. 12345678 ok

Pronunciation: "d-in"

DINT (r -- d)
d is the double number representation of the integer part of floating point number r. See
INT.PART.
Pronunciation: "d-int"

DINT.FLOOR (r -- d)
d is the greatest double number less than or equal to r. See INT.FLOOR.
Pronunciation: "d-int-floor"

DISABLE.INTERRUPTS (--)
Sets the interrupt mask bit (the "I bit") in the condition code register to globally disable
interrupts.

DISABLE.SERIAL2 (--)
Disables the secondary serial port (serial2) which is supported by QED-Forth's software
UART. Implementation detail: Locally disables the serial2 output interrupt OC4 and
disconnects the pin control logic associated with the PA4 output. Locally disables the
serial2 input interrupt IC4/OC5. Clears the resource variable SERIAL2.RESOURCE to
0\0.
Pronunciation: "disable-serial-two"

DISK.RESOURCE (-- xresource)
A resource variable associated with the mass memory block buffers. After initialization
to 0\0, should be accessed only by the words GET ?GET and RELEASE. Initialized to
0\0 by the system startup software. See RESOURCE.VARIABLE:.

DISPLAY.BUFFER (-- xaddr)
Returns the extended base address of the buffer that holds the display data.
UPDATE.DISPLAY.LINE and UPDATE.DISPLAY write the contents of this buffer to the
LCD display. If a character display is in use, xaddr is the base address of an 80
character buffer in the system RAM. If a graphics display is in use, xaddr is the starting
address of the array associated with GARRAY.XPFA. Each byte in this buffer
represents a character position or graphical byte on the LCD display. To display
characters on the LCD display, simply write the desired ascii characters or graphical
data into this buffer and execute UPDATE.DISPLAY.LINE or UPDATE.DISPLAY.
UPDATE.DISPLAY.LINE causes the contents of a specified line in DISPLAY.BUFFER
to be written to the corresponding line of the display. UPDATE.DISPLAY causes the
contents of all lines in DISPLAY.BUFFER to be written to the corresponding lines of the
display. See $>DISPLAY and BUFFER.POSITION.

DISPLAY.HEAP (-- xaddr)

Main Glossary 73

 Returns the extended address that points to the top of the heap containing the graphics
array. The default display heap is located at 3000 to 0x45FF on page 0x0F. Caution:
adding items to the DISPLAY.HEAP is not recommended; if there is not enough room
for the GARRAY, INIT.DISPLAY will not dimension it. However, if you must dimension
additional heap items in this heap, execute the following commands:

CURRENT.HEAP X@ \ save the prior heap specifier on dstack
DISPLAY.HEAP CURRENT.HEAP X! \ display.heap is the heap
< dimension or delete heap items here>
CURRENT.HEAP X! \ restore prior heap specifier

 DISPLAY.OPTIONS (flag1\flag2\flag3\flag4 --)
 Sets the display and cursor options on the LCD display. The meanings of the input

flags are as follows:
flag1 = display.enabled?
flag2 = cursor.on?
flag3 = cursor.blinking?
flag4 = text.mode?

If flag1 is true, the contents of the display are visible; if false, the display appears blank.
If flag2 is true, the cursor is on (typically an underscore character); if false, the cursor is
off. If flag3 is true, the cursor blinks (typically a flashing box the size of a single
character); if false, the cursor blink is turned off. If flag4 is true, the display is operating
in "text mode"; if false, it is operating in "graphics mode". (If a Toshiba graphics display
is in use, flag4 can take on the additional value 1, meaning that both text and graphics
modes are enabled. In this case, you must set different home locations for the text and
graphics regions.) Note that graphics mode should only be specified if a graphics
display is in use; see IS.DISPLAY. Note also that the cursor is never visible in graphics
mode. INIT.DISPLAY (which is executed upon each reset or restart) leaves the display
enabled with the cursor off and cursor blink off and the "home" location in the upper left
corner at display ram address 0. Implementation detail: In addition to writing the
appropriate command byte to the display, DISPLAY.OPTIONS stores the command
byte in a headerless system variable called *PRIOR.CURSOR.STATE. This variable is
referenced by UPDATE.DISPLAY.LINE and UPDATE.DISPLAY to blank the cursor
during updates to character displays (to prevent annoying flickering) and restore it to its
prior state after the update is complete. It is also used by LINES/DISPLAY to infer
whether the display is being operated in text mode or graphics mode, which in turn
determines whether LINES/DISPLAY reports the number of character lines or the
number of pixel lines in the display. This routine intermittently disables interrupts for 28
cycles (7 microseconds) per command byte written to the display.

DMAX (d1\d2 -- [d1] or [d2] | retains the greater of d1 and d2)
Retains the greater of two signed double numbers and drops the other.
Pronunciation: "d-max"

DMIN (d1\d2 -- [d1] or [d2] | retains the lesser of d1 and d2)
Retains the lesser of the two signed double numbers and drops the other.
Pronunciation: "d-min"

DNEGATE (d1 -- d2 | d2 = two's complement of d1)

74 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Negates signed double number d1 to yield d2. The negative (two's complement) is
computed by inverting all of the bits in d1 and adding a 32-bit 1 to the result.
Pronunciation: "d-negate"

 DO (w1\w2 -- | w1 = limit, w2 = starting index)
Return Stack: (R: -- w1\w2)
Used inside a colon definition to mark the beginning of a counted loop structure that is
terminated by LOOP or +LOOP. Sets up loop parameters on the return stack with w1
as the limit and w2 as the starting index. Because the loop parameters are maintained
on the return stack, caution must be exercised when using the operators >R and R>
inside a loop. DO...LOOPs may be nested as long as each DO is matched with a
corresponding LOOP or +LOOP in the same definition as DO. w1 and w2 may either be
a pair of signed integers or a pair of unsigned integers. If w1 = w2, the loop does not
execute, and control is immediately passed to the word following LOOP or +LOOP. DO
may only be used within a definition. Use as:

w1 w2 DO ... LOOP
or

w1 w2 DO ... n +LOOP
An error is issued if DO is not properly paired with LOOP or +LOOP inside a definition.
See also LOOP +LOOP I J K I' LEAVE
Attributes: C, I

DOES> (--)
Used in a high level defining word to mark the beginning of the specification of the run-
time action of the child words. Use as:

: <namex>
<DBUILDS compile time action
DOES> run time action

;
or as

: <namex>
<VBUILDS compile time action
DOES> run time action

;
where <namex> is referred to as a "defining word". Executing the statement

<namex> <child's.name>
defines the child word. The code after <DBUILDS or <VBUILDS specifies the action to
be taken while defining the child word, and the code after DOES> specifies the action to
be taken when the child word executes.
The default run-time action of DOES> is to leave the extended parameter field address
of the child word on the data stack. Thus, the code between DOES> and ; should
expect the xpfa on the stack when the child executes. See the definitions of <DBUILDS
and <VBUILDS for examples of use.
Pronunciation: "does"

DOT.PRODUCT (xvaddr1\sep1\xvaddr2\sep2\d.#el -- r)
Returns the dot product r of the vectors specified by xvaddr1\sep1\d.#el and
xvaddr2\sep2\d.#el. The dot product is calculated by multiplying the corresponding

Main Glossary 75

elements of the two vectors and summing the result into a floating point accumulator.
The two vector specifications may refer to the same vector.
Attributes: S

 DOUBLE-> (u1 <name> -- u2)
Adds a named member to the structure being defined and reserves room for a double
number field in the structure. Removes <name> from the input stream and creates a
structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u2 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "double" Attributes: D

DOUBLE: (<name> --)
Defines a 32-bit self-fetching variable. Removes <name> from the input stream and
creates a child word (a self-fetching variable) called <name> and allots 4 bytes in the
variable area as the parameter field where the self-fetching variable's value is stored.
When <name> is executed it leaves its value (a 32-bit number) on the stack. Thus
<name> behaves like a 2constant when executed. Unlike a 2constant, its parameter
field is in the variable area and so can always be modified. The TO command is used
to store a value into the self-fetching variable. In general, code using self-fetching
variables runs faster than does similar code that uses standard variables because the
fetch and store operations are integrated into the action of the variable. Use as:

DOUBLE: <name>
Pronunciation: "double-colon" Attributes: D

DOUBLES-> (u1\u2 <name> -- u3)
Adds a named member to the structure being defined and reserves room for u2 double
numbers in the structure. Removes <name> from the input stream and creates a
structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u3 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "doubles" Attributes: D

DOWNLOAD.MAP (--)
Sets a flag in EEPROM and changes the state of a latch in the onboard PALs to put the
download memory map into effect on flash-equipped QED-Flash Boards. After
execution of this routine, and upon each subsequent reset or restart, pages 4, 5, and 6
are addressed in RAM, and pages 1, 2, and 3 are addressed in flash memory. This
allows code (and Forth names) to be compiled into RAM on pages 4, 5 and 6 and then
transferred to flash using the PAGE.TO.FLASH function. To establish the standard
memory map, see the glossary entry for STANDARD.MAP. Note that the standard map
is active after a "factory cleanup" operation.

76 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

DP (-- xaddr)
User variable that contains the 32-bit definitions pointer. The contents of DP are placed
on the stack by HERE and are modified by ALLOT. The command DP X@ is equivalent
to HERE; it yields the xaddr of the next available dictionary location. The command DP
@ is equivalent to DPAGE; it yields the page of the definitions area.
Pronunciation: "d-p" Attributes: U

DPAGE (-- page)
Returns the page of the definitions area of the dictionary. Equivalent to DP @
Pronunciation: "d-page" Attributes: U

DPICK (d\wn-1\...w1\w0\+n -- d\wn-1\...\w1\w0\d | 0 <= +n <= 255)
Copies the double number whose most significant cell is the nth item on the stack (0-
based, not including n) to the top of the stack. An unchecked error occurs if there are
fewer than +n+2 cells on the data stack. 0 DPICK is equivalent to 2DUP, 1 DPICK is
equivalent to D.OVER.N, 2 DPICK is equivalent to 2OVER.
Pronunciation: "d-pick"

DR> (-- d)
Return Stack: (R: d --)
Transfers the top double number on the return stack to the data stack.
Pronunciation: "d-r-from" Attributes: C

DR>DROP (--)
Return Stack: (R: d --)
Removes the top double number on the return stack.
Pronunciation: "d-r-from-drop" Attributes: C

DR@ (-- d)
Return Stack: (R: d -- d)
Copies the top double number on the return stack to the data stack.
Pronunciation: "d-r-fetch" Attributes: C

DRANGE (d1\d2\d3 -- d1\flag)
Flag is TRUE if d1 is greater than or equal to d2 and less than or equal to d3.
Otherwise flag is FALSE.
Pronunciation: "d-range"

DROP (w --)
Drops the top cell from the stack.

DSCALE (d1\n -- d2)
Arithmetically (i.e., preserving sign) shifts double number d1 by n bit places to yield
signed double number result d2. If n is positive, d1 is shifted left; if n is negative, d1 is
shifted right. The absolute value of n determines the number of bits of shifting. For
example, 1 DSCALE is equivalent to D2* and -1 DSCALE is equivalent to D2/ . There is
an unchecked error if the absolute value of n is greater than 31.
Pronunciation: "d-scale"

Main Glossary 77

DU< (ud1\ud2 -- flag)
Flag is TRUE if the unsigned double number ud1 is less than the unsigned double
number ud2.
Pronunciation: "d-u-less-than"

DU> (ud1\ud2 -- flag)
Flag is TRUE if the unsigned double number ud1 is greater than the unsigned double
number d2.
Pronunciation: "d-u-greater-than"

DUMP (xaddr\u -- | xaddr = start address, u = number of bytes)
Displays the contents of u bytes starting at the specified xaddr. The contents are
dumped as hexadecimal bytes regardless of the current number base, and the ascii
equivalent contents are also displayed. For example, to display 0x40 bytes starting at
address 0x1000\1, execute:

HEX 1000 1 40 DUMP
and to display the last 0x10 bytes on page 1 and the first 0x20 bytes on page 2, type:

7FF0 1 30 DUMP
DUMP calls the word PAUSE.ON.KEY, so the dump responds to XON/XOFF
handshaking and can be aborted by typing a carriage return; see PAUSE.ON.KEY.
Attributes: M, S

DUMP.INTEL (xaddr1\addr2\u --)
xaddr1 is the location of the first byte to be dumped, addr2 specifies the starting
address reported in the dump, and u is the number of bytes to be dumped. Dumps the
contents of u bytes starting at xaddr using the standard ascii Intel hex format which is
useful for transferring data between devices. The line format is:

:{#bytes}{reported.addr}{00}{byte}{byte} ...{byte}{checksum}
All numbers are in hexadecimal base. Each line starts with a : character, followed by a
2-digit number of bytes (20, indicating that the contents of 0x20 bytes are displayed per
line), followed by a 4-digit starting address for the line, followed by 00, followed by the
contents of the memory locations (2 hex digits per byte), and concluding with a
checksum followed by a carriage return/linefeed. The checksum is calculated by
summing each of the bytes on the line into an 8-bit accumulator and negating (two's
complementing) the result. The hex dump ends with the line

:00000001FF
For example, to dump 0x40 bytes starting at QED Board address 0x1000\1 so that the
bytes reside at the beginning of a target memory device, execute:

HEX 1000 01 0000 40 DUMP.INTEL
which specifies 0x1000\1 as the starting address, 0000 as the reported base address in
the memory device, and 0x40 as the number of bytes to be dumped. To dump the last
0x20 bytes on page 1 and the first 0x40 bytes on page 2 so that they reside at locations
0x7FE0 through 0x803F in the target memory device, execute

7FE0 1 7FE0 60 DUMP.INTEL
The complementary word RECEIVE.HEX loads QED memory starting at any location
based on a received Intel or Motorola hex file. DUMP.INTEL calls the word
PAUSE.ON.KEY, so the dump responds to XON/XOFF handshaking and can be

78 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

aborted by typing a carriage return. See DUMP.S1, DUMP.S2, RECEIVE.HEX and
PAUSE.ON.KEY.
Attributes: M, S

DUMP.REGISTERS (-- xaddr)
A user variable that holds a flag. If the flag is true, a definition that has been compiled
with TRACE ON prints the contents of the registers before each instruction during a
trace. If the flag is false, the register contents are not printed during a trace.

DUMP.S1 (xaddr1\addr2\u --)
xaddr1 is the location of the first byte to be dumped, addr2 specifies the starting
address reported in the dump, and u is the number of bytes to be dumped. Dumps the
contents of u bytes starting at xaddr using the standard ascii Motorola S1 hex format
which is useful for transferring data between devices. Motorola S1 records report 16 bit
addresses. (To report full 24 bit addresses, see DUMP.S2.) Outputs an S0 header
record which is

S00900004845414445524D
then as many S1 data records as required, followed by an S9 termination record which
is

S9030000FC
The Motorola S1 hex line format is:

S1{#bytes}{16bit.reported.addr}{byte}...{byte}{chksum}
All numbers are in hexadecimal base. Each line starts with a the record type (S1 in this
case), followed by a 2-digit number of bytes (23, which equals 0x20 bytes per line plus 3
bytes for the reported address and checksum), followed by a 4-digit starting address for
the line, followed by the contents of the memory locations (2 hex digits per byte), and
concluding with a checksum. The checksum is calculated by summing each of the
bytes on the line (excluding the record type) into an 8-bit accumulator and (one's)
complementing the result.
For example, to dump 0x40 bytes starting at QED Board address 0x1000\1 so that the
bytes reside at the beginning of a target memory device, execute:

HEX 1000 01 0000 40 DUMP.S1
which specifies 0x1000\1 as the starting address, 0000 as the reported base address in
the memory device, and 0x40 as the number of bytes to be dumped. To dump the last
0x20 bytes on page 1 and the first 0x40 bytes on page 2 so that they reside at locations
0x7FE0 through 0x803F in the target memory device, execute:

7FE0 1 7FE0 60 DUMP.S1
The complementary word RECEIVE.HEX loads QED memory starting at any location
based on a received Motorola or Intel hex file. DUMP.S1 calls the word
PAUSE.ON.KEY, so the dump responds to XON/XOFF handshaking and can be
aborted by typing a carriage return. See DUMP.S2, DUMP.INTEL, RECEIVE.HEX and
PAUSE.ON.KEY.
Attributes: M, S

DUMP.S2 (xaddr1\d\u --)
xaddr1 is the location of the first byte to be dumped, double number d specifies the 24
bit starting address reported in the dump, and u is the number of bytes to be dumped.
Dumps the contents of u bytes starting at xaddr1 using the standard ascii Motorola S2
hex format which is useful for burning flash memory chips and transferring data

Main Glossary 79

between devices. Motorola S2 records report 24 bit addresses which are useful in
capturing and transferring complete application programs to/from flash memory. (To
report 16 bit addresses, see DUMP.S1.) Dumps an S0 header record which is

S00900004845414445524D
then as many S2 data records as required, followed by an S9 termination record which
is

S9030000FC
The Motorola S2 hex line format is:

S2{#bytes}{24bit.reported.addr}{byte}...{byte}{chksum}
All numbers are in hexadecimal base. Each line starts with a the record type (S2 in this
case), followed by a 2-digit number of bytes (24, which equals 0x20 byte per line plus 4
bytes for the reported address and checksum), followed by a 6-digit starting address for
the line, followed by the contents of the memory locations (2 hex digits per byte), and
concluding with a checksum. The checksum is calculated by summing each of the
bytes on the line (excluding the record type) into an 8-bit accumulator and (one's)
complementing the result. DUMP.S2 calls the word PAUSE.ON.KEY, so the dump
responds to XON/XOFF handshaking and can be aborted by typing a carriage return.
See DUMP.S1, DUMP.INTEL, RECEIVE.HEX and PAUSE.ON.KEY.
Example of use: Assume that you have created an application program in pages 4, 5,
and 6, and used PRIORITY.AUTOSTART to configure a flash-based autostart vector so
that the application runs automatically upon each power-up and restart. To dump a
complete application program that resides on pages 4, 5 and 6, so that the bytes reside
at the beginning of a flash memory device, execute:

HEX
0000 04 DIN 000000 8000 DUMP.S2
0000 05 DIN 008000 8000 DUMP.S2
0000 06 DIN 010000 8000 DUMP.S2

Now you can edit the resulting file, concatenate the 3 dumps into 1 large S-record by
removing all but the first and last S0 (header) and S9 (termination) records, and re-save
the file. To transfer the application to a new QED board, simply execute

DOWNLOAD.MAP
0 4 RECEIVE.HEX <send the captured file>
4 PAGE.TO.FLASH
5 PAGE.TO.FLASH
6 PAGE.TO.FLASH
STANDARD.MAP

This is a time-effective method of mass producing QED-based products running a
“turnkeyed” autostart program.
Attributes: M, S

DUP (w -- w\w)
Duplicates the top cell of the data stack.
Pronunciation: "dupe"

 DUP.HEAP.ITEM (xhandle1 -- [xhandle2] or [0\0])
Given the 32-bit handle xhandle1 of a source heap item, creates a duplicate heap item
with identical contents in the same heap and returns its handle xhandle2. Returns 0\0 if
xhandle1 is not a valid handle or if there is insufficient memory in the heap. To copy a
heap item into a different heap, use TRANSFER.HEAP.ITEM.

80 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "dupe-heap-item"

DUP>R (w -- w)
Return Stack: (R: -- w)
Copies the top cell on the data stack to the return stack.
Pronunciation: "dupe-to-r" Attributes: C

ELSE (--)
Used in a colon definition to mark the beginning of the "else portion" of an IF ... ELSE ...
ENDIF conditional structure (ENDIF and THEN are synonyms). Use as:

flag IF words to execute if flag is true
ELSE words to execute if flag is false
ENDIF

If the flag passed to IF is true, when ELSE is encountered control is passed to the word
following ENDIF. If the flag passed to IF is FALSE, control is immediately passed to the
word following ELSE.
Attributes: C, I

EMIT (char --)
Displays char by sending it via the serial I/O port. EMIT is a vectored routine that
executes the routine whose xcfa is installed in the user variable UEMIT. The default
installed routine called is EMIT1 which sends the character via the primary serial port
(supported by the 68HC11's hardware UART). EMIT2 may be installed in UEMIT by
USE.SERIAL2 or SERIAL2.AT.STARTUP; EMIT2 sends the character via the
secondary serial port (supported by QED Forth's software UART and using pins PA3
and PA4). See EMIT1 and EMIT2.
Attributes: M, U

EMIT1 (char --)
Displays a character by sending it via the primary serial port (serial1) associated with
the 68HC11's on-chip hardware UART. Before sending the character, EMIT1 waits (if
necessary) for the previous character to be sent, and executes PAUSE while waiting.
The most significant byte of the input data stack cell is ignored. EMIT1 is the default
EMIT routine installed in the UEMIT user variable after the special cleanup mode is
invoked or if SERIAL1.AT.STARTUP has been executed. If the value in
SERIAL.ACCESS is RELEASE.AFTER.LINE, EMIT1 does not GET or RELEASE the
SERIAL1.RESOURCE. If SERIAL.ACCESS contains RELEASE.ALWAYS, EMIT1
GETs and RELEASEs the SERIAL1.RESOURCE. If SERIAL.ACCESS contains
RELEASE.NEVER, EMIT1 GETs but does not RELEASE the SERIAL1.RESOURCE.
See EMIT, UEMIT, EMIT2, SERIAL.ACCESS.
Pronunciation: "emit-one" Attributes: M

 EMIT2 (char --)
Writes the specified ascii character to the output buffer of the secondary serial port
(serial2) for subsequent transmission. The serial2 port is supported by QED-Forth's
software UART using hardware pins PA3 (input) and PA4 (output). If the serial2
transmitter is idle (and if the serial2 port and its interrupts have been properly initialized)
then the character is transmitted immediately. Otherwise the character will be
transmitted after the prior characters in the output buffer are transmitted. If the 80

Main Glossary 81

character output buffer is full when EMIT2 is executed, EMIT2 PAUSEs and waits until
room becomes available in the buffer (as a result of a character being sent out). The
most significant byte of the input data stack cell is ignored. EMIT2 can be made the
default EMIT routine installed in the UEMIT user variable after each reset or restart by
executing SERIAL2.AT.STARTUP. If the value in SERIAL.ACCESS is
RELEASE.AFTER.LINE, EMIT2 does not GET or RELEASE the SERIAL2.RESOURCE.
If SERIAL.ACCESS contains RELEASE.ALWAYS, EMIT2 GETs and RELEASEs the
SERIAL2.RESOURCE. If SERIAL.ACCESS contains RELEASE.NEVER, EMIT2 GETs
but does not RELEASE the SERIAL2.RESOURCE. See EMIT, UEMIT, EMIT1,
SERIAL.ACCESS.
Pronunciation: "emit-two" Attributes: M

ENABLE.DOWNLOAD (--)
If the download map is set, this function does nothing. If the standard map is set, this
command prepares for a code download by copying pages 4, 5, and 6 to RAM, then
setting the download map. When combined with ALL.TO.FLASH, this function ensures
that an application program up to 96 Kbytes long compiled on pages 4, 5, and 6 is
properly transferred to flash after a download. Usage: When paired with the
ALL.TO.FLASH command, this function simplifies the loading of a Forth program. Place
the ENABLE.DOWNLOAD command at the top of the first file to be loaded, and place
ALL.TO.FLASH at the end of the last file to be loaded. This ensures proper compilation
of code into RAM pages 4, 5 and 6 in the download map, followed by transfer to flash
and setting of the standard map. It is also possible to put ENABLE.DOWNLOAD at the
top of each source code file, and ALL.TO.FLASH at the bottom of each source file. This
technique ensures proper compilation of any given source code file during the
development process. Of course, this command may also be typed at the QED-Forth
prompt before code is downloaded.

ENABLE.INTERRUPTS (--)
Clears the interrupt mask bit (the "I bit") in the condition code register to globally enable
interrupts.

END-CODE (sys -- | balances CODE)
A synonym for END.CODE
Pronunciation: "end-code"

END.CODE (sys -- | balances CODE)
Terminates an assembly code definition which started with CODE. Executes SMUDGE
so that the header created by CODE can be found in the dictionary. Checks to make
sure that no extra items were left on the stack during the definition process. Stores the
contents of CURRENT into CONTEXT so that ASSEMBLER is no longer the search
vocabulary.
Pronunciation: "end-code"

ENDCASE (n --)
Used inside a colon definition to mark the end of a CASE statement which implements a
multi-decision control structure. Use as:

n1 CASE
n2 OF words to be executed if n1 = n2 ENDOF

82 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

n3 OF words to be executed if n1 = n3 ENDOF
n4 OF words to be executed if n1 = n4 ENDOF
words to be executed if n1 doesn't equal n2 or n3 or n4

ENDCASE
An error is issued if CASE and ENDCASE are not properly paired in a definition. See
CASE, OF, ENDOF, RANGE.OF, and URANGE.OF.
Pronunciation: "end-case" Attributes: C, I

 ENDIF (--)
Synonym for THEN. Used inside a colon definition to mark the end of an
 IF ... ELSE ... ENDIF
or IF ... ENDIF
conditional structure. The word following ENDIF is executed after the IF or ELSE (if
present) part of the conditional executes. An error is issued if ENDIF is not paired with
IF or ELSE in a colon definition.
Pronunciation: "end-if" Attributes: C, I

ENDIFTRUE (--)
Marks the end of a conditional structure that is used outside a colon definition. Use as:

flag IFTRUE OTHERWISE ENDIFTRUE
or

flag IFTRUE ENDIFTRUE
The execution mode conditional structure can be used to conditionally compile portions
of source code. Note that IFTRUE/OTHERWISE/ENDIFTRUE statements can not be
nested. See IFTRUE and OTHERWISE.
Pronunciation: "end-if-true"

ENDOF (--)
Used inside a CASE ... ENDCASE structure to mark the end of a conditional statement
that starts with OF or RANGE.OF or URANGE.OF. If the OF portion of the case
statement is true, ENDOF branches to the word after ENDCASE. See CASE,
ENDCASE, OF, RANGE.OF, and URANGE.OF. An error is issued if OF and ENDOF
are not properly paired.
Pronunciation: "end-of" Attributes: C, I

ERASE (xaddr\u -- | u = byte count)
Stores a zero byte in each of u consecutive bytes beginning at xaddr. The specified
region may cross page boundaries. Does nothing if u = 0.

 EVALUATE (x$addr --)
Interprets the counted string located at x$addr. Use as:

" <words to be executed>" EVALUATE
The string need not end with a space. EVALUATE provides one method of compiling a
reference to a word that has not yet been defined. For example,

: EARLY.WORD
...
" INITIALIZE.EVERYTHING" EVALUATE
...

;

Main Glossary 83

Even though the routine INITIALIZE.EVERYTHING has not yet been defined,
EARLY.WORD will call it if INITIALIZE.EVERYTHING has been defined by the time
EARLY.WORD is finally executed at runtime. Note that EVALUATE must search the
dictionary at runtime to be able to execute INITIALIZE.EVERYTHING. For a more
efficient means of implementing forward references, see REDEFINE.
Implementation detail: EVALUATE saves the contents of the input stream variables
UTIB, #TIB, >IN, and BLK, then sets these variables to reference the specified x$addr,
then calls INTERPRET, and finally restores the original values to the input stream
variables.

EXECUTE (xcfa --)
Executes (calls) the routine whose executable machine instructions begin at the
specified code field xaddress. The xcfa can be on any page.

EXIT (--)
Specifies a termination point in a definition. EXIT is an immediate word that compiles
code that, when later executed, clears the locals off the return stack (if present), and
pops the top value off the return stack and returns control to the calling word. When
compiled into a definition, EXIT causes the word to terminate at that point when the
word is later executed. An unchecked (and usually severe) error occurs if the return
stack does not hold a valid return address (for example, if EXIT is used between >R and
R> or inside a DO...LOOP or FOR...NEXT loop). To exit a definition from inside a single
DO...LOOP, execute UNLOOP (which removes and drops 2 items from the rstack) to
discard the loop index and limit from the return stack before calling EXIT. One
UNLOOP is needed for each nested DO... LOOP. To exit a definition from inside a
FOR...NEXT loop, call R>DROP to discard the loop index before calling EXIT. One
R>DROP is needed for each nested FOR...NEXT.
Attributes: C, I

 EXPECT (xaddr\+n --)
Receives a string of characters from the serial port and stores them in a buffer in
memory starting at xaddr. Terminates when +n characters have been received or a
carriage return occurs, whichever occurs first. Characters are echoed via the serial
port. The carriage return is neither saved in the buffer nor echoed. Tab characters are
echoed; however, they are saved in the buffer as TAB.WIDTH spaces. The backspace
or delete character (ascii 8 or 127) removes the most recently received character from
the buffer unless there are no characters in the buffer. Null characters (ascii 0) and
linefeeds (ascii 10) are ignored. XON and XOFF characters are ignored except that
they cause the XMIT.DISABLE flag in the user area to be set if XOFF is received or
cleared if XON is received. Character case is not altered. The user variable SPAN is
set equal to the number of characters received (but not including the terminating
carriage return, if present). EXPECT is called by QUERY to accept serial input to the
TIB.
Attributes: M

F! (r\xaddr --)
Stores a floating point number at xaddr. A synonym for 2!.
Pronunciation: "f-store"

84 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

F* (r1\r2 -- r3)
Multiplies floating point number r1 by r2 giving r3.
Pronunciation: "f-star" Attributes: S

F** (r1\r2 -- r3)
r3 equals r1 raised to the r2 power; i.e., r3 = r1^r2. Overflows if r1 is negative.
Pronunciation: "f-star-star" Attributes: S

F*/COUNTER (-- xaddr)
A user variable that holds a 16 bit counter that is incremented with each call to F* or F/.
Used by the BENCHMARK: and (BENCHMARK:) routines.
Pronunciation: "f-star-slash-counter" Attributes: U

F+ (r1\r2 -- r3)
Adds floating point number r2 to r1 giving the sum r3.
Pronunciation: "f-plus" Attributes: S

F+COUNTER (-- xaddr)
A user variable that holds a 16 bit counter that is incremented with each call to F+ or F-.
Used by the BENCHMARK: and (BENCHMARK:) routines.
Pronunciation: "f-plus-counter" Attributes: U

F- (r1\r2 -- r3)
Subtracts floating point number r2 from r1 giving the difference r3.
Pronunciation: "f-minus" Attributes: S

 F. (r --)
Displays r using the default format as specified by the most recent execution of FIXED
FLOATING or SCIENTIFIC. FLOATING is the default format after executing
FP.DEFAULTS or after a cold restart. See F>FIXED$, F>SCIENTIFIC$, and
F>FLOATING$.
Pronunciation: "f-dot" Attributes: M, S

F.OVER.N (r\w -- r\w\r)
Copies the floating point value r located under the top data stack cell to the top of the
data stack.
Pronunciation: "f-over-n"

F/ (r1\r2 -- r3)
Divides floating point number r1 by r2 giving the result r3.
Pronunciation: "f-slash" Attributes: S

F0< (r -- flag)
Flag is TRUE if floating point number r is less than zero, FALSE otherwise.
Pronunciation: "f-zero-less-than"

F0< = (r -- flag)
Flag is TRUE if floating point number r is less than or equal to 0, FALSE otherwise.
Pronunciation: "f-zero-less-than-or-equal"

Main Glossary 85

F0< > (r -- flag)
Flag is TRUE if the floating point number is not equal to zero, and FALSE otherwise.
Pronunciation: "f-zero-not-equal"

F0= (r -- flag)
Flag is TRUE if the floating point number equals zero and FALSE otherwise.
Pronunciation: "f-zero-equal"

F0> (r -- flag)
If floating point number r is greater than zero, flag equals TRUE; otherwise, flag equals
FALSE.
Pronunciation: "f-zero-greater-than"

F0>= (r -- flag)
Flag is TRUE if floating point number r is greater than or equal to 0, FALSE otherwise.
Pronunciation: "f-zero-greater-than-or-equal"

F2* (r1 -- r2)
Floating point number r2 equals r1 * 2.
Pronunciation: "f-two-star" Attributes: S

F2/ (r1 -- r2)
Floating point number r2 equals r1 divided by 2.
Pronunciation: "f-two-slash" Attributes: S

F2DROP (r1\r2 --)
Drops two floating point numbers (4 cells) from the data stack.
Pronunciation: "f-two-drop"

F2DUP (r1\r2 -- r1\r2\r1\r2)
Duplicates the top two floating point numbers on the data stack.
Pronunciation: "f-two-dupe"

F< (r1\r2 -- flag)
Flag is TRUE if floating point number r1 is less than r2, FALSE otherwise.
Pronunciation: "f-less-than"

F< = (r1\r2 -- flag)
Flag is TRUE if floating point number r1 is less than or equal to r2.
Pronunciation: "f-less-than-or-equal"

F< > (r1\r2 -- flag)
Flag is TRUE if the two floating point numbers are not equal and FALSE otherwise.
Pronunciation: "f-not-equal"

F= (r1\r2 -- flag)
Flag is TRUE if the two floating point numbers are equal and FALSE otherwise.
Pronunciation: "f-equal"

86 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

F> (r1\r2 -- flag)
Flag is TRUE if floating point number r1 is greater than r2, FALSE otherwise.
Pronunciation: "f-greater-than"

F>= (r1\r2 -- flag)
Flag is TRUE if floating point number r1 is greater than or equal to r2.
Pronunciation: "f-greater-than-or-equal"

F>FIXED$ (r -- x$addr\flag)
Converts r to a counted ascii string starting at x$addr in FIXED format. If the conversion
is successful, flag is TRUE. If r cannot be represented as an ascii string in FIXED
format (i.e., if the values of LEFT.PLACES and RIGHT.PLACES are inappropriate) then
x$addr contains the string "won'tfit" and flag is false. The FIXED format is composed of
(an optional) sign, LEFT.PLACES digits, a decimal point, RIGHT.PLACES digits, and a
trailing space:

-xxx.yyy
If the NO.SPACES flag is false (the default condition), the field size equals
LEFT.PLACES + RIGHT.PLACES + 3 and numbers are decimal aligned. The size of
the string is clamped to a maximum of 32 characters. Setting TRAILING.ZEROS true
displays all trailing zeros to the right of the decimal point to a maximum of
RIGHT.PLACES.
Pronunciation: "f-to-fixed-string" Attributes: S

 F>FLOATING$ (r -- x$addr\true)
Converts r to an ascii string at x$addr using FLOATING format which selects FIXED
format unless the number can be displayed with greater resolution using scientific
notation, in which case SCIENTIFIC format is used (see F>FIXED$ and
F>SCIENTIFIC$). If FILL.FIELD if OFF (the default condition), the string is displayed
using the minimum possible field size, and numbers are not decimal aligned. If
FILL.FIELD is ON, the field size of the string is always equal to the scientific field size,
which is MANTISSA.PLACES+8, and numbers are decimal aligned for neat display of
tabular data. The string includes a trailing space unless NO.SPACES is true. The flag
on top of the stack is always true because any valid floating point number can be
represented in the FLOATING format.
Pronunciation: "f-to-floating-string" Attributes: S

F>R (r --)
Return Stack: (R: -- r)
Transfers the top floating point number on the data stack to the return stack.
Pronunciation: "f-to-r" Attributes: C

F>SCIENTIFIC$ (r -- x$addr\true)
Converts r into a text string at x$addr using SCIENTIFIC format. The format is: (an
optional) sign, single digit, decimal point, MANTISSA.PLACES digits, E, exponent sign,
2-digit exponent, and a trailing space:

-1.xxxxE-yy

Main Glossary 87

The field size is equal to MANTISSA.PLACES + 8. The string includes a trailing space
unless NO.SPACES is true. The flag on top of the stack is always true because any
valid floating point number can be represented in the SCIENTIFIC format.
Pronunciation: "f-to-scientific-string" Attributes: S

F@ (xaddr -- r)
Fetches a floating point number from xaddr. A synonym for 2@.
Pronunciation: "f-fetch"

FABS (r1 -- r2)
r2 is the absolute value of r1. If floating point number r1 is negative, applies FNEGATE
to r1 giving the positive number r2; otherwise, r2 = r1.
Pronunciation: "f-abs" Attributes: S

FACOS (r1 -- r2)
r2 is the arc-cosine of r1. r2 is expressed in radians.
Pronunciation: "f-a-cos" Attributes: S

FALN (r1 -- r2)
r2 equals the natural anti-log of r1; i.e., r2 = e^r1.
Pronunciation: "f-a-l-n" Attributes: S

FALOG10 (r1 -- r2)
r2 equals the base 10 anti-log of r1; i.e., r2 = 10^r1.
Pronunciation: "f-a-log-ten" Attributes: S

FALOG2 (r1 -- r2)
r2 equals the base 2 anti-log of r1; i.e., r2 = 2^r1.
Pronunciation: "f-a-log-two" Attributes: S

FALSE (-- flag | flag = 0)
Puts a boolean false flag equal to 0 on the data stack .

FASIN (r1 -- r2)
r2 is the arcsine of r1. r2 is expressed in radians.
Pronunciation: "f-a-sine" Attributes: S

FATAN (r1 -- r2)
r2 is the arctangent of r1. r2 is expressed in radians.
Pronunciation: "f-a-tan" Attributes: S

FCONSTANT (r <name> --)
Removes the next <name> from the input stream and defines a child word called
<name> which when executed leaves the floating point value r on the data stack. r is
stored in the definitions area of the dictionary. <name> is referred to as an "fconstant".
Use as:

r FCONSTANT <name>
Pronunciation: "f-constant" Attributes: D

88 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

FCOS (r1 -- r2)
r2 is the cosine of r1. r1 is expressed in radians.
Pronunciation: "f-cos" Attributes: S

FDROP (r --)
Drops a floating point number (two cells) from the data stack.
Pronunciation: "f-drop"

FDUP (r -- r\r)
Duplicates the top floating point number (two cells) on the data stack.
Pronunciation: "f-dupe"

FDUP>R (r -- r)
Return Stack: (R: -- r)
Copies the top floating point number on the data stack to the return stack.
Pronunciation: "f-dup-to-r" Attributes: C

 FFT (matrix.xpfa --)
Computes the FFT (Fast Fourier Transform) of the complex floating point data in the
source matrix specified by matrix.xpfa and stores the transformed result in the source
matrix. The source matrix must be dimensioned to have 2 rows with 1 column per input
data point. The number of columns must be a power of 2. Row#0 holds the floating
point number representing the real part of each data point, and row#1 holds the floating
point number representing the imaginary part of each data point (i.e., the part of the
complex number that is multiplied by the imaginary operator which is the square root of
-1). Each data point typically indicates a complex value of the input in the time or
spatial domain. FFT transforms the input into a complex waveform in the frequency
domain and stores the results in the source matrix. The maximum number of complex
data points (columns) that can be transformed is 8192. To perform the inverse FFT,
see IFFT.
Interpretation of results:
Assume that the input waveform spans T seconds. Then column#0 of the transformed
signal corresponds to a frequency of 0, column #1 corresponds to a frequency of 1/T,
column#2 corresponds to 2/T, etc. up to a maximum frequency of (plus or minus) N/2T
where N is the number of points (columns) in the input waveform. After the midway
point (N/2), the frequencies are negative. That is, the last point at column# N-1
corresponds to a frequency of -1/T, the next to last point at column# N-2 corresponds to
-2/T, etc. If a given frequency component has a magnitude of A in the time domain, it is
transformed into a spike with magnitude A*N in the frequency domain.
Pronunciation: "f-f-t"Attributes: S

FIELD (u <name> --)
Defines a field constant <name> which when executed adds u to the extended address
on the top of the data stack. <name>'s stack picture is (xaddr -- xaddr + u). It is
recommended that <name> begin with a + to suggest its runtime behavior of adding the
offset u to the top data stack item. FIELD is the low level word called by all of the words
that create members in structures. See MEMBER->
Attributes: D

Main Glossary 89

FILL (xaddr\u\b -- | u = byte count, b = fill value)
The specified byte b is stored in each of u consecutive addresses beginning at xaddr.
The specified region may cross page boundaries. Does nothing if u = 0. See
FILL.MANY.

FILL.ARRAY (array.xpfa\char --)
Stores char into each byte of the specified array.

FILL.FIELD (-- xaddr)
A user variable that contains a flag. If the flag is true, floating point numbers printed in
FLOATING format are padded with spaces to yield a constant field width irrespective of
whether the number is printed in scientific notation or fixed notation, and numbers
printed in fixed notation are decimal aligned. This leads to neat printouts of tabular data.
If the flag is false, the field width is not padded out. See F>FLOATING$
Attributes: U

FILL.MANY (xaddr\d\b -- | d = byte count, b = fill value)
The specified byte b is stored in each of d consecutive addresses beginning at xaddr.
The specified region may cross page boundaries. Does nothing if d = 0.

FIND (<name> -- [xcfa\flag] or [0])
Executes BL WORD to parse the next space-delimited word from the input stream, and
then searches the dictionary for a match of the parsed word. FIND first searches the
CONTEXT vocabulary. Then, if the word is not found and if the CONTEXT and
CURRENT vocabularies are different, it searches the CURRENT vocabulary. If the word
is not found in the dictionary, FIND leaves a 0 on the stack. If the word is found, FIND
leaves the word's extended code field address under a flag on the stack. The flag is +1
if the word is immediate and -1 if the word is not immediate. An error occurs if the
input stream is exhausted while WORD executes. A COLD restart will occur if more
than 255 page changes are made during the search through either vocabulary. This
prevents the interpreter from going on an infinite search through a corrupted dictionary.
Find also invokes a COLD restart if POCKET is not in common memory.

FINT (r1 -- r2)
If the absolute value of r1 is less than 2^31, r2 is the floating point representation of the
integer part (truncated toward zero) of r1. For these numbers, FINT is the equivalent of
DINT DFLOT. If the absolute value of r1 exceeds 2^31, FINT returns r2 = r1 and sets
the OVERFLOW flag.
Pronunciation: "f-int"

FIRST (-- xaddr)
Returns the extended address of the lower boundary of the block buffers; that is, the
address of the first byte of the first block buffer. Equivalent to UFIRST X@ . Initialized
by BLOCK.BUFFERS.
Attributes: U

FIXED (--)
Sets the default printing format used by F. to fixed. Numbers are decimal aligned, and
RIGHT.PLACES and LEFT.PLACES determine the field width. See F>FIXED$

90 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

FIXED. (r --)
Prints r using FIXED format. Does not change the default printing format. See
F>FIXED$
Pronunciation: "fixed-dot" Attributes: M, S

FIXX (r -- n)
Rounds r to the nearest integer n. OVERFLOW is set if needed. See DFIXX
Attributes: S

FLN (r1 -- r2)
r2 is the natural logarithm of r1.
Pronunciation: "f-l-n" Attributes: S

FLOATING (--)
Sets the default printing format used by F. to floating. The floating format uses FIXED
format if the number can be represented with the same or more significant digits as it
would if it were represented in SCIENTIFIC format. Otherwise, it uses SCIENTIFIC
format. See F>FLOATING$

FLOATING. (r --)
Prints r using FLOATING format. See F>FLOATING$
Pronunciation: "floating-dot" Attributes: M, S

FLOG10 (r1 -- r2)
r2 is the base 10 logarithm of r1.
Pronunciation: "f-log-ten" Attributes: S

FLOG2 (r1 -- r2)
r2 is the base 2 logarithm of r1.
Pronunciation: "f-log-two" Attributes: S

FLOOR (r1 -- r2)
r2 is the floating point representation of the greatest integer less than or equal to r1.
Attributes: S

FLOT (n -- r)
Converts the 16 bit integer n to its floating point representation r. See DFLOT
Pronunciation: "float" Attributes: S

FMAX (r1\r2 -- [r1] or [r2])
Retains the greater of r1 and r2.
Pronunciation: "f-max"

FMIN (r1\r2 -- [r1] or [r2])
Retains the lesser of r1 and r2.
Pronunciation: "f-min"

FNEGATE (r1 -- r2)

Main Glossary 91

r2 is the negative of r1.
Pronunciation: "f-negate"

FNUMBER (x$addr -- [r\-1] or [0])
Attempts to convert the space-delimited counted ascii string at x$addr into a valid
floating point number r. Returns r under a true flag if the conversion is successful;
otherwise returns a false flag. x$addr is the address of the text string's count byte. The
string at x$addr must end with a blank; the blank may or may not be included in the
count. Strings parsed by the commands BL WORD obey this rule. See also NUMBER.
Pronunciation: "f-number" Attributes: S

 FOR (u1 --)
Return Stack: (R: -- u1)
Used inside a colon definition to mark the beginning of a count-down loop structure that
is terminated by NEXT. Sets up loop index u1 on the return stack. Use as:

u1 FOR <words to be executed u1+1 times>
NEXT

0 FOR...NEXT executes 1 time, 1 FOR...NEXT executes 2 times, 65,535 FOR...NEXT
executes 65,536 times, etc. Because the loop index is maintained on the return stack,
caution must be exercised when using the operators >R and R> inside a loop.
FOR...NEXT loops may be nested as long as each FOR is matched with a
corresponding NEXT in the same definition as FOR; otherwise, an error is issued. FOR
... NEXT loops execute faster than DO ... LOOP constructs. The word I may be used
inside a FOR NEXT loop. J K I' and LEAVE may not be used in a FOR NEXT loop.
Attributes: C, I

FORGET (<name> --)
Removes <name> from the input stream and searches for it in the CURRENT
vocabulary. If <name> is found, deletes it from the dictionary and removes all words
defined after <name> by adjusting DP, NP, and the xhandle of the CURRENT
vocabulary. An error occurs if <name> is not found. FORGET does not de-allocate
space in the variable area (VP is not adjusted). Use of ANEW for dictionary cleanup
avoids this problem. Likewise, heap space is not de-allocated by FORGET; use of
ON.FORGET solves this problem. When a word is about to be forgotten, FORGET
checks to see if its name is ON.FORGET. Words with the name ON.FORGET are
executed before being forgotten. This allows cleanup of heap items or other cleanup
actions. A warning is issued if execution of FORGET leaves any of the pointers DP,
NP, or VP pointing to non-RAM locations. Use this word with caution; it is possible to
FORGET the entire operating system!

FORTH (--)
Specifies FORTH as the vocabulary to be searched first during dictionary searches.
Implementation detail: stores the 32-bit xhandle of the FORTH vocabulary into the user
variable CONTEXT.

FOVER (r1\r2 -- r1\r2\r1)
Places a copy of r1 on top of the data stack.
Pronunciation: "f-over"

92 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

FP&STRING.POP (--)
Return Stack: (R: 15 cells --)
Pops off the return stack the values of the scratchpad user variables placed there by
FP&STRING.PUSH and restores the popped values to the user area. Also restores
PAD to the value it had before FP&STRING.PUSH executed. FP&STRING.PUSH and
FP&STRING.POP are intended to be used in interrupt service routines that call floating
point operations and/or floating point string conversion and/or integer string conversion
operations. Execution time is approximately 113 microseconds. See
FP&STRING.PUSH.
Pronunciation: "f-p-and-string-pop" Attributes: S

FP&STRING.PUSH (xaddr -- | xaddr is temporary PAD)
Return Stack: (R: -- 15 cells)
Pushes onto the return stack the values of the scratchpad user variables that are
modified by words that call the basic floating point operators F+ F- F* and F/ or by
words that perform floating point or integer string conversion. Also installs the specified
xaddr as the value of PAD. The saved items are later removed from the return stack
and restored to the user area by FP&STRING.POP. FP&STRING.PUSH is intended to
be used in interrupt service routines that call floating point or number/string conversion
operations. FP&STRING.PUSH should be executed by the interrupt service routine
before the first floating point or conversion function is called to save the scratchpad
values on the return stack and to establish a temporary PAD. Executing
FP&STRING.POP at the end of the interrupt service routine restores the scratchpad
variables and PAD to their prior values. Using FP&STRING.PUSH and
FP&STRING.POP prevents conflicts when both the foreground (i.e., non-interrupt-
invoked) program and the interrupt service routine call floating point and/or string
conversion operations; if the interrupt routine does not save and restore the scratchpad
variables, it may corrupt a floating point or conversion operation in the foreground
program. Integer and floating point string conversion use the 32 bytes below PAD for
string generation, so establishing a new PAD address prevents conflicts between
foreground and interrupt-invoked number conversion routines. Execution time is
approximately 113 microseconds. Note that the S attribute indicates which words
modify scratchpad variables; see also FP.PUSH. If FP&STRING.PUSH is called inside
an interrupt service routine, there is no need to call FP.PUSH, since
FP&STRING.PUSH saves all of the variables that FP.PUSH saves, plus additional
variables.
Example of use: Assume that a foreground program is performing a matrix inversion
and printing the results. This involves floating point additions and multiplications as well
as number-to-string conversion. The following simple interrupt service routine would
function correctly:

FVARIABLE LATEST.DATA
<xaddr in ram> XCONSTANT TEMP.PAD.XADDR
<another xaddr in ram> XCONSTANT STRING.DESTINATION
: INTERRUPT.SERVICE (--)

TEMP.PAD.XADDR FP&STRING.PUSH
LATEST.DATA F@ 2.0 F*
F>SCIENTIFIC$ DROP (xaddr\cnt --)
>R STRING.DESTINATION R> CMOVE
FP&STRING.POP ;

Main Glossary 93

This service routine saves the scratchpad variables on the return stack, establishes a
temporary PAD, multiplies the contents of LATEST.DATA by 2.0 and converts the result
to an ascii string in scientific format (this modifies the scratchpad values), moves the
string to STRING.DESTINATION, and restores the scratchpad values and the original
PAD before terminating so that the foreground program can proceed. Even if the
foreground matrix inversion program is in the middle of a floating point or string
conversion operation when an interrupt occurs, the operation is not corrupted. Note that
local variables should not be used inside interrupt service routines; see LOCALS{.
Pronunciation: "f-p-and-string-push"

FP.DEFAULTS (--)
Initializes floating point user variables to default values. Sets the number base to
DECIMAL, makes FLOATING the default print format, sets LEFT.PLACES = 4,
RIGHT.PLACES = 3, MANTISSA.PLACES = 3, sets TRAILING.ZEROS, NO.SPACES,
and FILL.FIELD false, and initializes MAX#DIMENSIONS to 4.
Pronunciation: "f-p-defaults" Attributes: S

FP.ERROR (-- xaddr)
A user variable containing a 16-bit error flag. Set by many floating point operations and
by OVERFLOW and UNDERFLOW. Can be checked after any floating point operation
to detect an underflow or overflow error. Contents of 0 indicates no error, 1 indicates
underflow, and -1 indicates overflow.
Pronunciation: "f-p-error" Attributes: U

FP.POP (--)
Return Stack: (R: w1\w2\w3\w4\w5 --)
Pops off the return stack the values of the 5 scratchpad user variables placed there by
FP.PUSH and restores the popped values to the user area. FP.PUSH and FP.POP are
intended to be used in interrupt service routines that call floating point operations.
Execution time is approximately 50 microseconds. See FP.PUSH.
Pronunciation: "f-p-pop" Attributes: S

 FP.PUSH (--)
Return Stack: (R: -- w1\w2\w3\w4\w5)
Pushes onto the return stack the values of the 5 scratchpad user variables that are
modified by all words that call the basic floating point operators F+ F- F* and F/. The
items are later removed from the return stack and restored to the user area by FP.POP.
FP.PUSH is intended to be used in interrupt service routines that call floating point
operations. FP.PUSH should be executed by the interrupt service routine before the
first floating point function is called to save the scratchpad values on the return stack.
Executing FP.POP at the end of the interrupt service routine restores the scratchpad
variables to their prior values. Using FP.PUSH and FP.POP prevents conflicts when
both the foreground (i.e., non-interrupt-invoked) program and the interrupt service
routine call floating point operations; if the interrupt routine does not save and restore
the scratchpad variables, it may corrupt a floating point operation in the foreground
program. FP.PUSH saves the contents of four headerless scratchpad variables as well
as the contents of FP.ERROR. Execution time is approximately 50 microseconds.
Note that the S attribute indicates which words modify scratchpad variables; see also
FP&STRING.PUSH.

94 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Example of use:
Assume that a foreground program is performing a matrix inversion which involves
floating point additions and multiplications. The following simple interrupt service
routine would function correctly:

FVARIABLE LATEST.DATA
: INTERRUPT.SERVICE (--)

FP.PUSH \ save fp scratchpad user variables
LATEST.DATA F@ 2.0 F* LATEST.DATA F!
FP.POP \ restore fp scratchpad user variables

;
Even if the foreground matrix inversion program is in the middle of a floating point
operation when an interrupt occurs, the floating point operation is not corrupted.
INTERRUPT.SERVICE saves the fp scratchpad values, performs the F* (which
modifies the scratchpad values) and then restores the original scratchpad values before
terminating so that the foreground program can proceed. Note that local variables
should not be used inside interrupt service routines; see LOCALS{.
Pronunciation: "f-p-push"

FPICK (r\wn-1\...w1\w0\+n -- r\wn-1\...\w1\w0\r | 0 <= +n <= 255)
Copies the floating point number whose most significant cell is the nth item on the stack
(0-based, not including n) to the top of the stack. An unchecked error occurs if there
are fewer than +n+2 cells on the data stack. 0 FPICK is equivalent to FDUP, 1 FPICK
is equivalent to X.OVER.N, 2 FPICK is equivalent to FOVER.
Pronunciation: "f-pick"

FR> (-- r)
Return Stack: (R: r --)
Transfers the top floating point number on the return stack to the data stack.
Pronunciation: "f-r-from" Attributes: C

 FR>DROP (--)
Return Stack: (R: r --)
Removes the top floating point number from the return stack.
Pronunciation: "f-r-from-drop" Attributes: C

FR@ (-- r)
Return Stack: (R: r -- r)
Copies the top floating point number on the return stack to the data stack.
Pronunciation: "f-r-fetch" Attributes: C

FRAME.DROP ([+n bytes]\+n --)
Drops +n bytes (in addition to +n) from the data stack. If +n is odd, +n is incremented
first so that an integer number of two-byte cells is dropped. FRAME.DROP is usually
used to drop items placed on the stack by STACK.FRAME. See STACK.FRAME.

FRANDOM (-- r | 1.0 <= r < 2.0)
r is a pseudo-random floating point number greater than or equal to 1.0 and less than
2.0. See RANDOM# and RANDOM.GAUSSIAN.
Pronunciation: "f-random"

Main Glossary 95

FREE.HANDLE (-- xaddr)
A variable that holds the 16-bit address of the next available handle in the current heap.
xaddr is equal to CURRENT.HEAP - 12. Initialized by IS.HEAP.

FROM.HEAP (d -- [xhandle] or [0\0] | d = number of bytes)
If d bytes are available in the heap, allocates them and returns a 32-bit xhandle whose
contents equal the base xaddress of the allocated heap item. Adjusts d upward so that
it is an even multiple of 4, and allocates the heap item so that its base address is an
even multiple of 4. Returns 0\0 if there is not enough heap space to perform the
allocation, or if the allocated handle is within 5 bytes of the bottom of
CURRENT.HEAP's page (handles must be on the same page as CURRENT.HEAP).

FROT (r1\r2\r3 -- r2\r3\r1)
Rotates the top three floating point numbers on the data stack.
Pronunciation: "f-rote"

FRTI (r1 -- r2)
Rounds r1 to the nearest integer and returns the result r2. OVERFLOW is set if
necessary.
Pronunciation: "f-round-to-integer" Attributes: S

FSCALE (r1\n -- r2)
Adds the signed integer n to the (base 2) exponent of r1 to compute r2. This provides a
fast way of multiplying r1 by a power of 2 (if n is positive) or dividing r1 by a power of 2
(if n is negative). OVERFLOW is set if necessary.
Pronunciation: "f-scale" Attributes: S

FSIN (r1 -- r2)
r2 is the sine of r1. r1 is expressed in radians.
Pronunciation: "f-sine" Attributes: S

FSQRT (r1 -- r2)
r2 is the square root of r1. r2 is zero if r1 is negative.
Pronunciation: "f-square-root" Attributes: S

FSWAP (r1\r2 -- r2\r1)
Exchanges the top two floating point numbers on the stack.
Pronunciation: "f-swap"

FTAN (r1 -- r2)
r2 is the tangent of r1. r1 is expressed in radians.
Pronunciation: "f-tan" Attributes: S

FVARIABLE (<name> --)
Removes the next <name> from the input stream, defines a child word called <name>,
and VALLOTs 2 cells in the variable area. When <name> is executed, it leaves the
extended address xaddr of the two cells reserved in the variable area to hold <name>'s
contents. <name> is referred to as an "fvariable". Use as:

96 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

FVARIABLE <name>
Pronunciation: "f-variable" Attributes: D

F^N (r1\n -- r2)
Raises r1 to the nth power and returns the result r2; r2 = r1^n.
Pronunciation: "f-to-the-n" Attributes: S

GARRAY.XPFA(-- xpfa)
Returns the extended parameter field address that specifies the graphics data array.
This otherwise unnamed array is dimensioned by INIT.DISPLAY if a graphics display
has been specified using IS.DISPLAY. UPDATE.DISPLAY.LINE and
UPDATE.DISPLAY write the contents of this array to the graphics display.
DISPLAY.BUFFER returns the xaddr of the first element in this array if a graphics
display is in use. See the graphics extension routines that are supplied in source code
form to augment the kernel; these routines provide examples of how to access
information in the graphics array.
Pronunciation: "g-array-x-p-f-a"

GET (xresource --)
Used in a multitasking system to gain access to a shared resource. PAUSEs until the
resource variable whose address is xresource is available, and then GETs the resource
by storing the task id (i.e., the STATUS xaddr) of the requesting task into the xresource.
0\0 in xresource indicates that the resource is available, and a non-zero value that is not
equal to the requesting task's id indicates that another task controls the resource. To
ensure that the state of the resource is correctly determined, GET disables interrupts for
27 to 57 cycles (6.75 to 14.25 microseconds). See ?GET, RELEASE, and
RESOURCE.VARIABLE:.
Attributes: M

H.INSTANCE: (u <name> -- | u = size of heap item)
Creates a heap instance. Removes <name> from the input stream, creates a header
for <name> in the dictionary, and allots and erases a 6-byte parameter field associated
with <name> in the variable area. See HEAP.STRUCTURE.PF for a description of the
contents of the parameter field. Does not allocate space in the heap; this is done when
the command ALLOCATED is executed. When <name> is executed, its stack picture is
picture is

(-- [xaddr] or [0\0])
where xaddr is the base address of the item in the heap, and where 0\0 is returned if
heap space has not been ALLOCATED. The size u of the item in the heap is stored in
the code field of <name> for later use by the word SIZE.OF. Typical use:

size.of.heap.item H.INSTANCE: <name>
SIZE.OF <name> ' <name> ALLOCATED
 <name> (-- base.xaddr.of.heap.item)

Pronunciation: "h-instance" Attributes: D

HALT (--)
An infinite loop whose action is to put the calling task ASLEEP and execute PAUSE.
Typically used to terminate a task action that is not an infinite loop.
Attributes: M

Main Glossary 97

HANDLE.PTR (-- xaddr)
A variable that holds the 16-bit address of the next available location that can be
allocated as a handle in the current heap. xaddr is equal to CURRENT.HEAP - 10.
Initialized by IS.HEAP.
Pronunciation: "handle-pointer"

HAS.PFA (--)
Sets the "has-pfa" bit in the header of the most recently defined word in the CURRENT
vocabulary. If set, this bit indicates that the word has a parameter field. HAS.PFA is
executed by <DBUILDS and <VBUILDS and by defining words including VARIABLE
CONSTANT INTEGER: and their double number counterparts and synonyms. The
word ' (tick) checks the has-pfa bit when calculating the parameter field address of a
word. ?HAS.PFA can be used to determine whether the has-pfa bit is set.
Pronunciation: "has-p-f-a"

HEAP.PTR (-- xaddr)
A variable that holds the extended address of the next available byte in the current
heap. xaddr equals CURRENT.HEAP - 8. Initialized by IS.HEAP.
Pronunciation: "heap-pointer"

HEAP.STRUCTURE.PF(-- u | u = minimum size of a heap parameter field)
Places on the stack the minimum number of bytes needed to allocate a parameter field
for a heap item (u = 6 bytes). HEAP.STRUCTURE.PF is a structure defined as:

STRUCTURE.BEGIN: HEAP.STRUCTURE.PF
PAGE-> +HEAP.PAGE \ page of current.heap and heap.handle

 HNDL-> +HEAP.HANDLE \ contains base addr of heap item
ADDR-> +CURRENT.HEAP \ specifies which heap the item is in

STRUCTURE.END
See H.INSTANCE:, +HEAP.PAGE, +HEAP.HANDLE, and +CURRENT.HEAP.
Pronunciation: "heap-structure-p-f"

HERE (-- xaddr)
Places on the stack the xaddr of the next available location in the definitions area.
Equivalent to DP X@
Attributes: U

HEX (--)
Sets the numeric conversion base to sixteen by storing decimal 16 into the user variable
BASE.

HNDL-> (u1 <name> -- u2)
Adds a named member to the structure being defined and reserves room for a 16-bit
field in the structure that will hold a handle (a handle is an address where another
address is stored). Removes <name> from the input stream and creates a structure
field called <name>. u1 is the structure offset initialized by STRUCTURE.BEGIN:. u2 is
the updated offset to be used by the next member defining word or by
STRUCTURE.END. When <name> is later executed, it adds its offset u1 to the
extended address found on the data stack which is typically the start xaddress of an

98 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "handle" Attributes: D

HOLD (char --)
Inserts char into the numeric output string to the left of the prior character in the string
and decrements the headerless pointer #PTR. HOLD is used between <# and #>
commands to create a pictured numeric string.
Attributes: S

 I (-- w)
Return Stack: (R: w -- w)
Places a copy of the current (innermost) loop index on the data stack. Cannot be used
if additional items have been placed on the return stack (for example, using >R).
Typical use:

DO ... I ... LOOP
or

DO ... I ... +LOOP
or

FOR ... I ... NEXT
Pronunciation: "i" Attributes: C

I' (-- w1)
Return Stack: (R: w1\w2 -- w1\w2)
Used inside a DO...LOOP or DO...+LOOP structure. Places a copy of the current
(innermost) loop limit on the data stack. Cannot be used if additional items have been
placed on the return stack (for example, using >R). Typical use:

DO ... I' ... LOOP
Pronunciation: "i-prime" Attributes: C

I+ (n1 -- n2 | n2 = n1 + I)
Return Stack: (R: w1 -- w1)
Used inside a DO...LOOP or DO...+LOOP or FOR ... NEXT structure. Adds the current
(innermost) loop index I to n1 and places the result n2 on the data stack. Cannot be
used if additional items have been placed on the return stack (for example, using >R).
Typical use:

DO ... n1 I+ ... LOOP
Pronunciation: "i-plus" Attributes: C

I- (n1 -- n2 | n2 = n1 - I)
Return Stack: (R: w1 -- w1)
Used inside a DO...LOOP or DO...+LOOP or FOR ... NEXT structure. Subtracts the
current (innermost) loop index I from n1 and places the result n2 on the data stack.
Cannot be used if additional items have been placed on the return stack (for example,
using >R). Typical use:

DO ... n1 I- ... LOOP
Pronunciation: "i-minus" Attributes: C

IC1.ID (-- n)

Main Glossary 99

Returns the interrupt identity code for input capture 1 which is associated with port bit
PA2. Used as an argument for ATTACH.
Pronunciation: "i-c-one-i-d"

IC2.ID (-- n)
Returns the interrupt identity code for input capture 2 which is associated with port bit
PA1. Used as an argument for ATTACH.
Pronunciation: "i-c-two-i-d"

 IC3.ID (-- n)
Returns the interrupt identity code for input capture 3 which is associated with port bit
PA0. Used as an argument for ATTACH.
Pronunciation: "i-c-three-i-d"

IC4/OC5.ID (-- n)
Returns the interrupt identity code for input capture 4/ output compare 5. This interrupt
can control the action of port bit PA3. Note that the optional secondary serial port uses
IC4/OC5 and PA3. Used as an argument for ATTACH.
Pronunciation: "i-c-4-or-o-c-5-i-d"

ID. (xnfa --)
Prints the name of the routine associated with the extended name field address xnfa.
Letters not saved in the header are printed as ___ . The name is followed by a space.
If the word is smudged (for example, if an error occurred during compilation of the
word), a ~ is printed before the first letter in the name. An unchecked error occurs if
xnfa is not a valid name field address.
Pronunciation: "i-d-dot" Attributes: M

IF (flag --)
Used inside a colon definition to mark the beginning of a conditional structure. If flag is
FALSE execution continues after the subsequent ELSE or ENDIF (THEN and ENDIF
are synonyms) . If flag is TRUE execution continues with the word immediately
following IF, and when ELSE is encountered (if present), control is transferred to the
word following ENDIF. Use as:

flag IF words to execute if flag is true
ENDIF

or as:
flag IF words to execute if flag is true

ELSE words to execute if flag is false
ENDIF

Attributes: C, I

IFFT (matrix.xpfa --)
Computes the inverse Fast Fourier Transform of the frequency domain waveform in the
source matrix specified by matrix.xpfa and stores the transformed result in the source
matrix. The source matrix must be dimensioned to have 2 rows and 1 column per input
data point. The number of columns must be a power of 2, with the maximum number of
columns equal to 8192. Row#0 holds the floating point number representing the real
part of each data point, and row#1 holds the floating point number representing the

100 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

imaginary part of each data point. Each data point typically indicates the complex value
of the input in the frequency domain. IFFT transforms the input into a complex
waveform in the time or spatial domain and stores the results in the source matrix
specified by matrix.xpfa. See FFT.
Pronunciation: "inverse-f-f-t" Attributes: S

 IFTRUE (flag --)
Marks the start of the "true" portion of a conditional structure that is used in execution
mode outside a colon definition. Use as:

 flag IFTRUE OTHERWISE ENDIFTRUE
If the flag passed to IFTRUE is true, the code between IFTRUE and OTHERWISE is
executed, and the code between OTHERWISE and ENDIFTRUE is skipped. If the flag
is false, the code between IFTRUE and OTHERWISE is skipped and execution
continues with the words following OTHERWISE. Another valid syntax is:

flag IFTRUE ENDIFTRUE
If the flag passed to IFTRUE is true, the code between IFTRUE and ENDIFTRUE is
executed. If the flag is false, the code between IFTRUE and ENDIFTRUE is skipped.
IFTRUE is analogous to IF but it is used outside of a colon definition. The execution
mode conditional structure can be used to conditionally compile portions of source
code. An unchecked error occurs if IFTRUE is used without a corresponding
ENDIFTRUE. Note that IFTRUE/OTHERWISE/ENDIFTRUE statements can not be
nested.
Pronunciation: "if-true"

ILLEGAL.OPCODE.ID (-- n)
Returns the interrupt identity code for the illegal opcode interrupt. Used as an argument
for ATTACH.
Pronunciation: "illegal-opcode-i-d"

IMMEDIATE (--)
Sets the "immediate bit" in the header of the most recently defined word to indicate that
it should be executed immediately even in compilation mode. The command
?IMMEDIATE may be used to determine the status of the immediate bit for a given
word.

INFINITY (-- r)
Pushes the largest representable floating point number onto the data stack.

INIT.DISPLAY (--)
Initializes the liquid crystal display (LCD) interface. If a graphics-style display has been
specified by IS.DISPLAY, initializes the DISPLAY.HEAP and dimensions
GARRAY.XPFA to point to an appropriately sized array in that heap. The base address
of this array is returned by DISPLAY.BUFFER. If a character-style (alphanumeric)
display has been specified by IS.DISPLAY, then the display buffer is located in the
system RAM and the DISPLAY.HEAP and GARRAY.XPFA are not initialized. If the
dimensions specified by IS.HEAP call for a graphics array that is larger than the
available ROOM in the DISPLAY.HEAP, then INIT.DISPLAY will not dimension the
array; see the glossary entry of DISPLAY.HEAP for further details. INIT.DISPLAY calls
CLEAR.DISPLAY to clear the DISPLAY.BUFFER and write the blank data (ascii blanks

Main Glossary 101

for character displays, binary zeros for graphics displays) to the LCD display. Homes
the cursor to the start of line 0, and leaves the display enabled with the cursor off and
not blinking. See CLEAR.DISPLAY. Intermittently disables interrupts for 28 cycles (7
microseconds) per byte transmitted to the display.

INIT.ELAPSED.TIME (--)
Initializes the system variable TIMESLICE.COUNT to 0\0.

INIT.RS485 (--)
Calls INIT.PIA to configure the peripheral interface adapter (PIA) so that it is consistent
with operation of the RS485 circuitry, and then sets the RS485 transceiver to receive
mode. Recall that INIT.PIA expects to see two flags on the stack: the first flag is true if
PPA is to be an output, and the top flag on the stack is true if upper PPC is to be an
output. INIT.RS485 sets the first flag to leave the data direction of PPA unchanged, and
sets the top flag on the stack to TRUE to configure upper PPC as an output. PPC bit 4
controls the direction of the RS485 data transfer: when bit 4 of PPC is high, the RS485
port is in transmit mode, and when bit 4 of PPC is low, the RS485 port is in receive
mode. (Make sure that the onboard RS485/RS232 jumper is properly set before
attempting to use the RS485 interface). See INIT.PIA, RS485.RECEIVE, and
RS485.TRANSMIT.
Pronunciation: "init-R-S-four-eighty-five"

INIT.SERIAL2 (--)
Initializes the secondary serial port (serial2) which is supported by QED-Forth's software
UART using hardware pins PA3 (input) and PA4 (output). Clears the resource variable
SERIAL2.RESOURCE to 0\0, initializes PARITY to OFF, initializes the transmit and
receive buffers (80 characters each, located in the reserved system RAM), initializes the
data directions of PA3 and PA4 as input and output, respectively, and locally enables
the required interrupts associated with PA3 and PA4. Does not globally enable
interrupts. The programmer must separately execute the BAUD2 command (to set the
baud rate) and execute ENABLE.INTERRUPTS (to globally enable interrupts) before
using the serial2 port. See USE.SERIAL2 and DISABLE.SERIAL2.
Pronunciation: "init-serial-two"

INIT.SPI (--)
Configures and enables the serial peripheral interface (SPI) so that it can transfer data
to and from the on-board battery-backed real-time clock. The SPI uses bits 2-5 of
PORTD. Initializes the 68HC11 as the SPI "master" with 2 MHz data transfer, with valid
data present/sampled on the falling trailing edge of the SPI clock. Initializes the
contents of PORTD.DIRECTION to be compatible with being the master of the SPI (that
is, PD2/MISO = input, PD3/MOSI = output, PD4/SCK = output, PD5/SS = output). Also
initializes the resource variable SPI.RESOURCE to 0\0. See SPI.OFF.
Pronunciation: "init-S-P-I"

INIT.VITAL.IRQS.ON.COLD (--)
Undoes the effect of the NO.VITAL.IRQ.INIT command, and causes subsequent cold
restarts to perform the default action of checking the interrupt vectors for the COP,
clock monitor, illegal opcode and OC2 interrupts and initializing them if they do not

102 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

contain the standard interrupt service vectors. Implementation detail: sets location
AE1B in EEPROM to 0xFF.
Pronunciation: "init-vital-i-r-qs-on-cold"

INPUT.STRING(<text> -- x$addr | x$addr = PAD)
Inputs a character string <text> to the PAD buffer, terminating when CHARS/LINE
characters are received or a carriage return is received, whichever comes first. Leaves
the address of the counted string on the stack. Appends a blank (not included in the
count) to the end of the string.
Attributes: M

INSTALL.MULTITASKER (--)
Installs the timeslice multitasker timer by initializing the interrupt vector of the output
compare 2 (OC2) timer. This command is automatically executed upon a COLD restart
(unless the command NO.VITAL.IRQ.INIT has been executed) and by the command
START.TIMESLICER. Because the interrupt vector is in non-volatile EEPROM, it is
usually not necessary to invoke this command unless the OC2 interrupt vector has been
modified.

INSTALL.REGISTER.INITS (byte1\byte2\byte3\byte4 -- | byte1=OPTION, byte2=TMSK2,
 byte3=BPROT, byte4 = BAUD)

Compiles a 7-byte sequence into the EEPROM that specifies the contents to be loaded
into the "protected registers" plus the BAUD register after subsequent resets. The
protected registers are those that must be initialized within 64 machine cycles after a
reset; after that their contents cannot be changed. They are INIT, OPTION, TMSK2,
and BPROT. The BAUD register controls the BAUD rate of the primary serial
communications interface (serial1), and is included so that a user-specified baud rate
can be set upon every restart. The INIT register controls the location of the on-chip
RAM and the registers. This value is set to B8H (on-chip RAM at 0xB000, and registers
at 0x8000); other values are not compatible with QED-Forth. The contents of the other
4 registers may be specified by the user. Once INSTALL.REGISTER.INITS is
executed, subsequent resets will cause B8H to be stored in INIT, byte1 in OPTION,
byte2 in TMSK2, byte3 in BPROT, and byte4 in BAUD. To undo the effects of this word
and return to the default contents of the protected registers use the
DEFAULT.REGISTER.INITS command; see its glossary entry for a list of the default
values for each of the registers.
Implementation detail: INSTALL.REGISTER.INITS writes the pattern 0x13 at location
0xAE06 in the EEPROM. The five bytes following the pattern contain the specified
contents of INIT (=B8H), OPTION, TMSK2, BPROT, and BAUD, respectively.

INT-> (u1 <name> -- u2)
Adds a named member to the structure being defined and reserves room for a 16-bit
field in the structure. Removes <name> from the input stream and creates a structure
field called <name>. u1 is the structure offset initialized by STRUCTURE.BEGIN:. u2 is
the updated offset to be used by the next member defining word or by
STRUCTURE.END. When <name> is later executed, it adds its offset u1 to the
extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.

Main Glossary 103

Pronunciation: "integer" Attributes: D

 INT.FLOOR (r -- n)
n is the greatest integer less than or equal to r. OVERFLOW is set if needed.
Attributes: S

INT.PART (r -- n)
n is the integer part of r. OVERFLOW is set if needed. (This function used to be named
INT in QED-Forth versions up to V3.01.)
Pronunciation: "int" Attributes: S

INTEGER: (<name> --)
Defines a 16-bit self-fetching variable. Removes <name> from the input stream and
creates a child word (a self-fetching variable) called <name> and VALLOTs 2 bytes in
the variable area as the parameter field where the self-fetching variable's value is
stored. When <name> is executed it leaves its value (a 16-bit integer) on the stack.
Thus <name> behaves like a constant when executed. Unlike a constant, its parameter
field is in the variable area and so can always be modified. The TO command is used
to store a value into the self-fetching variable. In general, code using self-fetching
variables runs faster than does similar code that uses standard variables. Use as:

INTEGER: <name> <value> TO <name>
Pronunciation: "integer-colon" Attributes: D

INTERPRET (--)
Interprets the input stream as designated by BLK and >IN until the input stream is
exhausted. If BLK = 0, the input stream is taken from the terminal input buffer and
INTERPRET interprets a single line of input which was read into the TIB by QUERY. If
BLK does not equal 0, INTERPRET interprets the specified block. INTERPRET
repeatedly calls WORD (which gets the next word from the input stream) until the input
stream is exhausted at the end of the current line or block. See BLK, >IN, BLOCK,
WORD, LOAD, QUERY, and QUIT.

INTS-> (u1\u2 <name> -- u3)
Adds a named member to the structure being defined and reserves room for u2 integers
in the structure. Removes <name> from the input stream and creates a structure field
called <name>. u1 is the structure offset initialized by STRUCTURE.BEGIN:. u3 is the
updated offset to be used by the next member defining word or by STRUCTURE.END.
When <name> is later executed, it adds its offset u1 to the extended address found on
the data stack which is typically the start xaddress of an instance of the data structure;
the result is the xaddress of the desired member in the structure.
Pronunciation: "integers" Attributes: D

INVERTED (matrix.xpfa1\matrix.xpfa2 --)
Inverts the source matrix specified by matrix.xpfa1 and stores the result into the
destination matrix specified by matrix.xpfa2. An error occurs if the source matrix is not
square. matrix.xpfa2 may equal matrix.xpfa1.
Attributes: S

 IRQ.ID (-- n)

104 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Returns the interrupt identity code for the external interrupt request interrupt. Used as
an argument for ATTACH.
Pronunciation: "i-r-q-i-d"

IS.DISPLAY (#rows\#cols\text.mode?\char.display?\hitachi? --)
Based on the specified number of rows, number of columns, and flags that indicate text
or graphics mode, character versus graphics display, and Hitachi versus Toshiba
graphics controller chip, this routine saves the display configuration in EEPROM so that
the LCD display is properly initialized upon subsequent restarts and resets by the
INIT.DISPLAY routine which is automatically executed at startup. The encoded
information is accessible via the routines CHARS/DISPLAY.LINE and LINES/DISPLAY.
When IS.DISPLAY is executed, #rows and #cols should be expressed as the number of
8x6- or 8x8-pixel characters that the screen can accommodate. The standard width font
for Toshiba graphics displays is set by hardware inputs on the display module to either
6 or 8 pixels wide. The standard width font for Hitachi graphics displays is 8 pixels in
graphics mode, and can be set by software to either 6 pixels or 8 pixels wide in text
mode. The allowed values of numRows are 2, 4, 8 or 16 lines per display. The allowed
values of numCols are 8, 12, 16, 20, 24, 30, and 40 characters or bytes per line. The
text.mode? flag selects between text mode (if the flag is true) and graphics mode (if the
flag is false) for graphics displays; character displays always operate in text mode. The
character.display? flag selects between a strictly alphanumeric character display if the
flag is true, and a graphics display if the flag is false. The hitachi? flag specifies the
type of controller that drives the graphics display module. If the hitachi? flag is true, a
Hitachi 61830 controller chip is assumed; if the hitachi? flag is false, we assume a
Toshiba 6963 graphics controller chip. NOTE that if a graphics display is specified
(char.display? is false) but the text mode is specified (text.mode? is true), the data
buffer created by INIT.DISPLAY in the DISPLAY.HEAP will be too small to
accommodate graphical data. Thus if you want to use both the text and graphics
modes of a graphics display, declare a graphics mode display (i.e., with a false
text.mode? flag), and use the DISPLAY.OPTIONS routine to convert to and from text
mode. Then the dimensioned buffer will be large enough for either character or
graphical data. The following routines specify the most commonly used displays:
DECIMAL
: 4X20.CHARACTER 4 20 -1 -1 -1 IS.DISPLAY ;
: 128X240.HITACHI.GRAPHICS 16 30 0 0 -1 IS.DISPLAY ;
: 128X240.HITACHI.TEXT 16 40 -1 0 -1 IS.DISPLAY ;
: 128X240.TOSHIBA.GRAPHICS 16 40 0 0 0 IS.DISPLAY ;
: 128X240.TOSHIBA.TEXT 16 40 -1 0 0 IS.DISPLAY ;
: 128X128.HITACHI.GRAPHICS 16 16 0 0 -1 IS.DISPLAY ;
: 128X128.HITACHI.TEXT 16 20 -1 0 -1 IS.DISPLAY ;
The 4x20 character display is the default type that is established by the "special cleanup
mode". Remember to execute INIT.DISPLAY after executing IS.DISPLAY the first time.
Note that because IS.DISPLAY saves the configuration information in EEPROM, you
need not execute IS.DISPLAY each time the board starts up. INIT.DISPLAY is
automatically executed each time the QED Board starts up.
Implementation detail: This routine encodes the configuration information in a single
byte that is saved at location AE1EH in EEPROM.

IS.DISPLAY.ADDRESS (addr --)

Main Glossary 105

Configures a graphics display so that the next data write will occur at the specified
RamAddress in the display RAM. This routine can be used in conjunction with
(UPDATE.DISPLAY) to write data to the "off-screen" RAM that is typically present on a
graphics display module. Then modifying the "home address" (upper left location) of
the display allows scrolling of data across the display; see the source code of the
graphics extension source code file for more details. IsDisplayAddress() has no effect if
a character display is installed. See also PUT.CURSOR .

IS.HEAP (xaddr1\xaddr2 -- | xaddr1 = start, xaddr2 = end)
Initializes the heap control variables to set up a heap starting at xaddr1 and ending 1
byte below xaddr2. All of the bytes between xaddr1 and xaddr2 must be modifiable
RAM. The size of the heap and of individual heap items is limited only by available
memory. If the specified heap size (xaddr2 - xaddr1) is greater than or equal to 16
bytes, IS.HEAP initializes CURRENT.HEAP to xaddr2, initializes START.HEAP and
HEAP.PTR to xaddr1, and initializes HANDLE.PTR and FREE.HANDLE to indicate that
there are no allocated heap items. If the specified heap size (xaddr2 - xaddr1) is less
than 16 bytes, only the user variable CURRENT.HEAP is initialized, and the heap
control variables that are stored in the heap itself (START.HEAP, HEAP.PTR,
HANDLE.PTR and FREE.HANDLE) are not initialized. This allows tasks to share a
heap that has already been initialized without disturbing the values of the heap control
variables. Caution: sharing a heap among tasks may lead to hard-to-diagnose
multitasking failures. Consult the chapters on multitasking and re-entrant coding in the
Software Manual when designing multitasking programs.
Pronunciation: "is-heap"

IS.IDENTITY (matrix.xpfa --)
Stores 1.0 in all the elements of the specified matrix that have row# equal to col# (i.e., in
the diagonal elements), and stores 0.0 in all the other elements. The matrix need not
be square.
Attributes: S

 IS.TRACE.ACTION (xcfa --)
Installs the action referenced by the extended code field address xcfa as the first action
to be performed by the trace routine. If a colon or code definition is compiled with
TRACE ON, a call to the trace routine is compiled before each call to subsidiary words
in the definition. The first thing that the trace routine does is to execute the code whose
xcfa has been stored in the headerless user variable TRACE.ACTION by
IS.TRACE.ACTION. The default action (set upon COLD restart) is NO.OP. The action
must have no net effect on the data or return stacks, and must be compiled while
TRACE is OFF; if trace is ON while the trace action is being defined, an infinite loop of
calls to the trace routine is initiated. The word DEFAULT.TRACE.ACTION installs
NO.OP (a do-nothing word) as the trace action. See also BREAK, DEBUG,
DUMP.REGISTERS, and SINGLE.STEP.
Example of use: assume that a complex program contains a mysterious bug, and the
programmer is trying to locate it. Further assume that the programmer knows that the
bug causes a particular variable called THE.VARIABLE to be set equal to 0. One way
to locate the problem would be to compile the program with TRACE ON and then
execute the entire program with DEBUG ON. The disadvantage of this is that a great
deal of traced output must be examined. A more efficient method is to write a word that

106 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

tests the variable in question and, if it equals 0 (which signals that the bug has just
occurred), turns DEBUG ON:

: CHECK.FOR.ERROR THE.VARIABLE @ IF DEBUG ON THEN ;
This word is then installed as the trace action by executing:

CFA.FOR CHECK.FOR.ERROR IS.TRACE.ACTION
Now the program is compiled with TRACE ON, and executed with DEBUG initially OFF
so that the program runs at near full speed and no traced output is written to the screen.
As soon as the bug manifests itself, however, the trace action word turns DEBUG ON
which initiates the printout of all trace information. This shows the programmer where
the bug is occurring in the program.

IXN+ (xaddr1 -- xaddr2 | xaddr2 = xaddr1 + I)
Return Stack: (R: w1 -- w1)
Used inside a DO...LOOP or DO...+LOOP or FOR ... NEXT structure. Adds the current
(innermost) loop index I, interpreted as a signed integer in the range -32,768 to
+32,767, to xaddr1 and places the result xaddr2 on the data stack. Cannot be used if
additional items have been placed on the return stack (for example, using >R). Typical
use:

DO ... addr1 IXN+ ... LOOP
See XN+
Pronunciation: "i-x-n-plus" Attributes: C

 IXN- (xaddr1 -- xaddr2 | xaddr2 = xaddr1 - I)
Return Stack: (R: w1 -- w1)
Used inside a DO...LOOP or DO...+LOOP or FOR ... NEXT structure. Subtracts the
current (innermost) loop index I, interpreted as a signed integer in the range -32,768 to
+32,767, from xaddr1 and places the result xaddr2 on the data stack. Cannot be used if
additional items have been placed on the return stack (for example, using >R). Typical
use:

DO ...xaddr1 IXN- ... LOOP
See XN-
Pronunciation: "i-x-n-minus" Attributes: C

IXU+ (xaddr1 -- xaddr2 | xaddr2 = xaddr1 + I)
Return Stack: (R: w1 -- w1)
Used inside a DO...LOOP or DO...+LOOP or FOR ... NEXT structure. Adds the current
(innermost) loop index I, interpreted as an unsigned integer in the range 0 to +65,535, to
xaddr1 and places the result xaddr2 on the data stack. Cannot be used if additional
items have been placed on the return stack (for example, using >R). Typical use:

DO ... xaddr1 IXU+ ... LOOP
See XU+
Pronunciation: "i-x-u-plus" Attributes: C

IXU- (xaddr1 -- xaddr2 | xaddr2 = xaddr1 - I)
Return Stack: (R: w1 -- w1)
Used inside a DO...LOOP or DO...+LOOP or FOR ... NEXT structure. Subtracts the
current (innermost) loop index I, interpreted as an unsigned integer in the range 0 to
+65,535, from xaddr1 and places the result xaddr2 on the data stack. Cannot be used if

Main Glossary 107

additional items have been placed on the return stack (for example, using >R). Typical
use:

DO ... xaddr1 IXU- ... LOOP
See XU-
Pronunciation: "i-x-u-minus" Attributes: C

I\J (-- w1\w2 | w1 = I, w2 = J)
Return Stack: (R: w3\w2\w4\w1 -- w3\w2\w4\w1)
Used inside nested DO...LOOP or DO...+LOOP. Places on the data stack a copy of
the loop index for the current (innermost) loop under a copy of the loop index for the
next outer loop. Equivalent to I J. May not be used if additional items have been placed
on the return stack (for example, using >R). May not be used in FOR...NEXT loops.
Typical use:

DO
DO ... I\J ...
LOOP

LOOP
Pronunciation: "i-under-j" Attributes: C

 J (-- w1)
Return Stack: (R: w2\w1\w3\w4 -- w2\w1\w3\w4)
Used inside nested DO...LOOP or DO...+LOOP. Places on the data stack a copy of
the loop index for the next outer loop (i.e., the index of the loop nested 1 level below the
loop in which J is invoked). Cannot be used if additional items have been placed on the
return stack (for example, using >R). Cannot be used in FOR...NEXT loops. Typical
use:

DO
DO ... J ...
LOOP

LOOP
Attributes: C

J\I (-- w1\w2 | w1 = J , w2 = I)
Return Stack: (R: w3\w1\w4\w2 -- w3\w1\w4\w2)
Used inside nested DO...LOOP or DO...+LOOP. Places on the data stack a copy of
the loop index for the next outer loop under a copy of the loop index for the current
(innermost) loop. Equivalent to J I. Cannot be used if additional items have been
placed on the return stack (for example, using >R). Cannot be used in FOR...NEXT
loops. Typical use:

DO
DO ... J\I ...
LOOP

LOOP
Pronunciation: "j-under-i" Attributes: C

K (-- w1)
Return Stack: (R: w2\w1\w3\w4\w5\w6 -- w2\w1\w3\w4\w5\w6)
Used inside nested DO...LOOP or DO...+LOOP. Places on the data stack a copy of
the loop index for the second outer loop (i.e., the index of the loop nested 2 levels

108 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

below the loop in which K is invoked). Cannot be used if additional items have been
placed on the return stack (for example, using >R). Cannot be used in FOR...NEXT
loops. See I and J. Typical use:

DO
DO

DO ... K ...
LOOP

LOOP
LOOP

Attributes: C

 KEY (-- char)
Waits (if necessary) for receipt of a character from the serial port and places the
character on the data stack. KEY is a vectored routine that executes the routine whose
xcfa is stored in the headerless user variable UKEY. The default installed routine called
is KEY1 which receives the character from the primary serial port (supported by the
68HC11's hardware UART). KEY2 may be installed in UKEY by USE.SERIAL2 or
SERIAL2.AT.STARTUP; KEY2 receives the character from the secondary serial port
(supported by QED Forth's software UART and using pins PA3 and PA4). See KEY1
and KEY2.
Attributes: M, U

KEY1 (-- char)
Waits (if necessary) for receipt of a character from the primary serial port (serial1) and
places the received character on the data stack. KEY1 does not echo the character.
The serial1 port is associated with the 68HC11's on-chip hardware UART. KEY1 is the
default KEY routine installed in the UKEY user variable if SERIAL1.AT.STARTUP has
been executed (and after the special cleanup mode is invoked). If the value in
SERIAL.ACCESS is RELEASE.AFTER.LINE, KEY1 does not GET or RELEASE the
SERIAL1.RESOURCE. If SERIAL.ACCESS contains RELEASE.ALWAYS, KEY1 GETs
and RELEASEs the SERIAL1.RESOURCE. If SERIAL.ACCESS contains
RELEASE.NEVER, KEY1 GETs but does not RELEASE the SERIAL1.RESOURCE.
See KEY, UKEY, KEY2, and SERIAL.ACCESS.
Pronunciation: "key-one" Attributes: M

KEY2 (-- char)
Waits (if necessary) for receipt of a character from the secondary serial (serial2) port,
removes the character from the serial2 input buffer and places the received character
on the data stack. The serial2 port is supported by QED-Forth's software UART using
hardware pins PA3 (input) and PA4 (output). KEY2 does not echo the received
character. KEY2 can be made the default KEY routine installed in the UKEY user
variable after each reset or restart by executing SERIAL2.AT.STARTUP. If the value in
SERIAL.ACCESS is RELEASE.AFTER.LINE, KEY2 does not GET or RELEASE the
SERIAL2.RESOURCE. If SERIAL.ACCESS contains RELEASE.ALWAYS, KEY2 GETs
and RELEASEs the SERIAL2.RESOURCE. If SERIAL.ACCESS contains
RELEASE.NEVER, KEY2 GETs but doesn't RELEASE the SERIAL2.RESOURCE. See
KEY, UKEY, KEY1, and SERIAL.ACCESS.
Pronunciation: "key-two" Attributes: M

Main Glossary 109

KEYPAD (-- n | 0 <= n <= 39)
Scans keypad or touchscreen having up to 8 rows and 5 columns and waits for a
keypress. PAUSEs while waiting. Waits until the key is released, then returns the key
number on the data stack. Disables interrupts for 12 microseconds each time a row is
scanned. The keymap is as follows:

39 35 31 27 23
38 34 30 26 22
37 33 29 25 21
36 32 28 24 20
19 15 11 7 3
18 14 10 6 2
17 13 9 5 1
16 12 8 4 0

Note that the behavior with respect to 4-row by 5-column keypads is unchanged, so
legacy 20-key hardware operates as it did under prior kernel versions. The support for
keys 20 through 39 enables the use of larger keypads on the Handheld product. See
?KEYPAD and ?KEYPRESS.

KILL (xtask.id --)
Puts the task referenced by xtask.id ASLEEP and removes it from the round robin
multitasking loop. The task to be killed must be installed in the round robin loop. If it
isn't, or if a task attempts to KILL itself, the results are unpredictable. Aborts if xtask.id
is not in common ram.

L.INVERTED (matrix.xpfa1\matrix.xpfa2 --)
Inverts a lower triangular matrix specified by matrix.xpfa1 and puts the inverse in the
destination matrix.xpfa2. Ignores the upper half of the source matrix so it doesn't matter
if the elements are not truly zero.
Attributes: S

LATEST (-- xnfa)
Returns the extended name field address of the last word defined in the CURRENT
vocabulary.
Attributes: U

LEAST.SQUARES (X.matrix.xpfa\ Y.matrix.xpfa
\ C.matrix.xpfa\ Sample.Variance.matrix.xpfa
\ [Weight.matrix.xpfa] or [0\0] \ [Y.model.xpfa] or [0\0]
\ [Y.err.matrix.xpfa] or [0\0] \ [Covar.matrix.xpfa] or [0\0] --)

Performs general linear least squares data analysis by solving an overdetermined set of
simultaneous equations in which instances of independent variables (or functions of
independent variables), x, are related to instances of dependent variables (or functions
of dependent variables), y, by a set of linear coefficients, c. The overdetermined system
of equations is represented in matrix form as

Y = X C
Consult the software manual for a detailed example of use.
Although the matrix of dependent variables, Y, is usually only a single column, this
routine can also do a number of least squares problems simultaneously, for different
dependent variables or functions of dependent variables, each contained in a different

110 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

column of Y. Y contains a row for each instance of the Y variable(s). X is the design
matrix, a user-supplied matrix that includes a column for each independent variable or
function of independent variable(s). Each row of X and Y corresponds to a single "trial",
"instance", or "measurement".
C is the matrix designated by the user to contain the primary result returned by this
routine, the coefficients. It contains a row for each column of X and a column for each
column of Y. Most problems require only a single dependent variable so C is generally
a single-column matrix.
Optionally an input matrix of weights that is parallel to the Y matrix may be included.
The weights should be inversely proportional to the expected variances on the
instances of Y. Weights are considered to be relative; their absolute magnitudes are
ignored and only their relative proportions are used by LEAST.SQUARES. Internally to
LEAST.SQUARES the user's weight matrix is normalized so that the column-averaged
weight is unity, that is, the sum of weights in each column is made equal to the number
of instances (rows) in the column. Uniform weighting is assumed if a weight matrix is
not included.
LEAST.SQUARES computes values of the coefficient matrix C that minimizes the
observed sample variance of the data points from the fitted model. Observed sample
variance is defined as the weighted sum of squares of the differences between the Y
data and the modeled Y, divided by the number of degrees of freedom in order to get a
variance per instance. For each column of Y the observed sample variance is

Sample.Error^2 = ∑ wi (yi - yimodel)^2 /(n-m)
where wi are the normalized weights, yi are the input y values (i.e., the contents of the Y
matrix), yimodel are the predicted values of the dependent variable(s) computed from Y
= X C, and (n-m) is the number of degrees of freedom in the optimization, equal to the
number of instances (rows of X or Y) minus the number of coefficients determined
(columns of X or rows of C). The routine reports a value for observed sample variance
for each column of Y in the user's Sample.Variance.matrix. If the user provides
appropriate matrix.xpfas LEAST.SQUARES also reports the predicted Y values in
Y.model.matrix, the residuals or errors on Y, (Y-Ymodel), in Y.err.matrix, and the
variance-covariance matrix for the determined coefficients in Covar.matrix.
If the user provides no weights, or for uniform weighting, or for all weight columns equal
to one another, the returned variance-covariance matrix provides the relative
covariances of the coefficients in any of the columns of the coefficient matrix, C. There
are two ways to compute the actual variances and covariances for a particular column
of C. If coefficient variances are to be determined using the actual deviations of the
model from the best fit then the covariance matrix should be multiplied by the observed
sample variance for the corresponding column of Y, found in Sample.Variance.matrix.
Alternatively, if the coefficient variances are to be determined a priori from the expected
experimental or measurement errors then the covariance matrix should be multiplied by
the experimenter's expected variances on the Y values. After being scaled with the
observed sample variance or the a priori measurement variances, the diagonal
elements of the variance-covariance matrix are the variances on the coefficients of C,
and their square roots are the expected errors on the coefficients.
For weights that differ from column to column the covariance matrix returned is that for
only the first column of C, corresponding to the first column of Y or W.
The user's X, Y, C, and Weight matrices are not modified.
Attributes: S

Main Glossary 111

 LEAVE (--)
Return Stack: (R: w1\w2 -- | discards limit & index)
Forces the immediate termination of a DO...LOOP or DO...+LOOP structure. Discards
the loop control parameters from the return stack and transfers control to the word
following LOOP or +LOOP. An error is issued if LEAVE is used outside a DO...LOOP
or DO...+LOOP structure. LEAVE cannot be used inside a CASE statement which is
inside a DO LOOP or DO +LOOP structure. An unchecked error occurs if extra items
are on the return stack when LEAVE executes (for example, items put on the return
stack by >R). See DO, LOOP and +LOOP. Use as:

w1 w2 DO ...
flag IF LEAVE ENDIF
...

LOOP
Attributes: C, I

LEFT.PLACES (-- xaddr)
A user variable that holds the number of digits to be displayed to the left of the decimal
point when a floating point number is displayed in FIXED format. See F>FIXED$
Attributes: U

LIMIT (-- xaddr)
Returns the extended address of the upper boundary+1 of the block buffers; that is, the
address one greater than the last byte in the last buffer. Initialized by
BLOCK.BUFFERS. Equivalent to ULIMIT X@
Pronunciation: "paren-limit" Attributes: U

LINES/DISPLAY (-- n)
Returns the number of lines in the LCD display. For character displays and for graphics
displays being operated in "text mode", the result n equals the number of character lines
(rows) in the display (the allowed values are 2, 4, 8 or 16 lines per display). For
graphics displays being operated in "graphics mode", the result n equals the number of
horizontal pixels on the display (which in turn is 8 times the number of character lines on
the display). The type of display and the display mode (text mode vs. graphics mode)
are determined by the most recent execution of DISPLAY.OPTIONS or INIT.DISPLAY
(which implements the configuration specified by IS.DISPLAY). The default value of n
after executing the "special cleanup mode" is 4, corresponding to the default 4-line by
20-character display. The result returned by this routine is used by
BUFFER.POSITION, PUT.CURSOR, UPDATE.DISPLAY, and
UPDATE.DISPLAY.LINE.
Pronunciation: "lines-per-display"

 LINK (xnfa1\xnfa2 --)
Sets the link field in the name of the word referenced by name field address xnfa2 to
point to the name referenced by xnfa1. In other words, it changes the way that
backward-linked name list or vocabulary is searched so that the name associated with
xnfa1 is encountered just after the name associated with xnfa2 (see FIND). LINK can
be used in several interesting ways. For example, if xnfa1 = xnfa2, LINK designates the
associated name as the bottom name in a linked list, effectively "sealing" the linked
name list or vocabulary. For example, to define a new sealed vocabulary, execute

112 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

VOCABULARY NEW.VOCAB
NEW.VOCAB DEFINITIONS FORTH
\ new definitions now go into NEW.VOCAB,
\ but FORTH words can be accessed in the definitions
: #1.WORD ;
: #2.WORD ;
\ define as many words as needed in NEW.VOCAB

NFA.FOR #1.WORD XDUP LINK \ seal the vocabulary
Make sure that xnfa2 is in modifiable RAM memory when LINK is executed.
Alternatively, instead of sealing the vocabulary by making #1.WORD the bottom name,
we could execute

NFA.FOR FORTH NFA.FOR #1.WORD LINK
to link #1.WORD to FORTH which is the very first (bottom) name in the QED-Forth
name list. This has the advantage of keeping the vocabulary's contents small while
allowing FORTH to be recognized from within the new vocabulary. This allows graceful
exit to the main FORTH vocabulary after executing NEW.VOCAB DEFINITIONS.

LINK_FILE_IO (--)
This function (present in kernel versions starting with V4.05) links in the Forth headers
of the Memory Interface Board’s ATA Flash Card Software Package into the linked list
of Forth names. See the MIB/ATA Flash Card Users Manual for information on how to
use this function. Because the Memory Interface Board has been obsoleted by the
Compact Flash Wildcard and its associated kernel extension software, this function is
typically not used.

LITERAL (-- w)
Compile Time: (w --)
If QED-Forth is in execution mode when LITERAL is invoked, LITERAL does nothing. If
QED-Forth is in compilation mode, LITERAL removes w from the stack and compiles it
into the dictionary along with code that, when later executed, pushes w to the stack.
LITERAL can be used within a colon definition to compile a numeric value into the
definition. For example,

: <name> (-- n)
[CHARS/LINE @] LITERAL

;
This compiles as a literal the value of CHARS/LINE that exists when the definition is
compiled. When <name> is later executed, this value will be placed on the stack.
Attributes: I

 LN(2) (-- r)
Places the floating point representation of the natural logarithm of 2 (0.69314) on the
stack.
Pronunciation: "l-n-of-two"

LOAD.MATRIX (xpfa <text> -- | expects numbers in input stream)
Repeatedly calls NEXT.NUMBER to get as many numbers as needed to fill the matrix
specified by xpfa. The first row is filled first (starting at the left, i.e., at the first column),
then the next row, etc. Carriage returns and tabs can be used to format the numbers if

Main Glossary 113

desired. The numbers can be valid integers or floating point numbers; NEXT.WORD
automatically converts the integers to their floating point equivalents using FLOT. Non-
numeric text in the input is ignored until the matrix is filled, but be careful: any valid
number encountered by LOAD.MATRIX will be converted and placed in the matrix, even
if it is within parentheses or after a comment delimiter such as \. Integers are converted
according to the current number base. Use as
MATRIX: MAT.A 2 3 ' MAT.A DIMMED \ def & dimension
' MAT.A LOAD.MATRIX 99 3 4.2 5.3 8 3 \ init matrix
Attributes: M, S

 LOCALS{ ([...] -- | items are removed to initialize the local variables)
Return Stack: (R: -- [...] | stack frame is placed on return stack,removed by ;)
Used within a colon definition to begin a command sequence that defines from 1 to 16
local variables. The syntax of the simplest type of local statement is:

LOCALS{ <name.1> <name.2>... <name.n> }
The names between LOCALS{ and the terminating } are given temporary headers that
remain effective for the duration of the current definition. If the first 2 characters in the
name of a local are d& or D& (suggesting a 32-bit double number value) or f& or F&
(suggesting a 32-bit floating point value) or x& or X& (suggesting a 32-bit extended
address) then the local is defined as a 32-bit quantity. All other local variables are
defined as 16-bit quantities. At runtime (when the definition containing the LOCALS{
command is executed) the code compiled by LOCALS{ initializes the values of each of
the named local variables to a corresponding item on the data stack. The top item is
removed from the data stack and loaded into <name.1>, the next item on the data stack
is removed and loaded into <name.2>, etc. A single cell is removed from the stack for
each 16-bit local, and two cells are removed from the stack for each 32-bit local. Each
local variable behaves just like a self-fetching variable. When executed, the local
leaves its value on the stack. Its value can be initialized or modified by placing the
desired value on the stack and invoking the TO operator followed by the name of the
local variable.
An alternative syntax for the locals declaration is:

LOCALS{ <name.1> <name.2> ... | <name.a> <name.b> ... }
where the locals defined between LOCALS{ and the | (bar) are initialized to the values
on the data stack as explained above, and the locals defined between the | and the
terminating } are left uninitialized. If certain local variables are to be initialized by a TO
statement later in the definition, it is better to define them as uninitialized locals to save
execution time. If none of the locals need to be initialized, the syntax:

LOCALS{ | <name.a> <name.b> ... }
is acceptable. Locals can be used in recursive definitions; each execution of the word
allocates a new frame on the return stack where the values of the locals are kept.
Usage rules: The locals command sequence,

LOCALS{ ... | ... }
may occupy multiple lines in the source code; however, no comments may appear
between LOCALS{ and }. If using a disk block for input, the command must reside in a
single block. To avoid problems with non-uniquely named local variables the
convention of using names beginning with & is recommended. Only one

LOCALS{ ... | ... }
command sequence is allowed per definition and within the declaration only one | is
allowed. The LOCALS{ declaration must not be inside a conditional structure such as

114 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

an IF ... ELSE ... ENDIF structure. The number of local variables defined must be
greater than 0 and less than or equal to 16. The local variable names defined in the
body of a word are forgotten after the definition is finished. Colon definitions using locals
should not call CREATE or other defining words and should not manipulate CURRENT.
Locals cannot be used between <DBUILDS or <VBUILDS and DOES> in a defining
word. Locals should not be used in interrupt service routines or in code called by
interrupt service routines.
Pronunciation: "locals-start" Attributes: C, D, I

LOG10(2) (-- r)
Pushes the base-10 logarithm of 2 onto the data stack.
Pronunciation: "log-ten-of-two"

LOG2 (u -- n)
n is the integer part of the base 2 logarithm of u.
Pronunciation: "log-two"

LOOP (--)
Return Stack: (R: w1\w2 -- [w1\w2] or [] | drops w1,w2 when loop terminates)
Used inside a colon definition to mark the end of a counted loop that was started by DO.
Increments the loop index on the return stack. If the incremented index is equal to the
loop limit, terminates the loop by allowing execution to continue with the word following
LOOP. If the incremented index is less than the limit, transfers control to the word
immediately following DO to continue looping. Use as:

w1 w2 DO words to be executed (w1 - w2 - 1) times
LOOP

An error is issued if DO and LOOP are not paired within a definition. See also DO I J K
I' LEAVE
Attributes: C, I

LU.BACKSUBSTITUTION (residue.matrix.xpfa\matrix.xpfa\index.array.xpfa --)
Used in conjunction with LU.DECOMPOSITION to solve a set of simultaneous
equations. This solution method is very efficient when solving a system of equations
with multiple right hand sides (i.e., multiple residues). residue.matrix.xpfa specifies a
column matrix containing the right hand side of the system of equations, matrix.xpfa
specifies a matrix containing the LU decomposition of the coefficient matrix, and
index.array.xpfa specifies an array that was dimensioned and initialized by
LU.DECOMPOSITION. LU.BACKSUBSTITUTION replaces residue.matrix.xpfa with the
solution of the equation (i.e., with the values of the unknown quantities). For application
information and an example, see LU.DECOMPOSITION.
Pronunciation: "l-u-back-substitution" Attributes: S

 LU.DECOMPOSITION (index.array.xpfa\matrix.xpfa -- n | n = determinant's.sign)
Finds the LU ("lower/upper") decomposition of the source matrix specified by
matrix.xpfa and stores the decomposed matrix back into the source matrix. Also
calculates the sign n of the determinant of the source matrix which can be passed to
?DETERMINANT to find the determinant of the source matrix. Dimensions and
initializes the array associated with index.array.xpfa to contain values that are then
used by LU.BACKSUBSTITUTION.

Main Glossary 115

Application: Sometimes it is necessary to solve several systems of equations, each
having the same left hand sides but with different right hand sides, or residue matrices.
The system of equations is represented by the matrix equation

AX=B
where X is a column matrix of unknowns, A is a matrix of coefficients, and B is a column
matrix known as the "residue matrix" that represents the right hand side of the
equations. A second set of equations with a different residue matrix could be
represented as

AX' = C
where C is the residue matrix and X' is the matrix of unknowns that solves the equation.
These sets of equations are most efficiently solved by finding the LU decomposition of A
using the word LU.Decomposition. "LU" refers to "lower/upper", a decomposition
method that minimizes the propagation of round-off error. Now the matrix equations
can be expressed as

LU(A) X= B
LU(A) X'= C

where LU(A) is the decomposition of the A matrix. These equations can be solved for
the unknown matrix X with a minimum of computation using the word
LU.BACKSUBSTITUTION. To solve a given equation for several residue matrices,
LU(A) needs only to be computed once. LU.BACKSUBSTITUTION can then solve each
residue matrix to get each solution matrix with minimal additional work.
Example of use:

ARRAY: INDEX.ARRAY \ define this temporary array
MATRIX: A <initialize A here> \ define & init coefficients
MATRIX: B <initialize B here> \ define & init residue #1
MATRIX: C <initialize C here> \ define & init residue #2
' INDEX.ARRAY ' A LU.DECOMPOSITION

\ replace A with its LU decomposition
DROP \ drop the determinant sign
' B ' A ' INDEX.ARRAY LU.BACKSUBSTITUTION

\ for residue matrix B, find the unknowns X
\ and place them in B

CR ." The answer to AX = B is " ' B M. \ print solution
' C ' A ' INDEX.ARRAY LU.BACKSUBSTITUTION

\ for residue matrix C, find the
\ unknowns X' and place them in C

CR ." The answer to AX' = C is " ' C M. \ print solution

Pronunciation: "l-u-decomposition" Attributes: S

 M* (n1\n2 -- d)
Multiply signed single precision integers n1 and n2 producing signed double precision
product d.
Pronunciation: "m-star"

M*MT (matrix.xpfa1\matrix.xpfa2 --)
Multiplies the source matrix.xpfa1 by its transpose to form the specified destination
matrix.xpfa2. The name of the routine suggests the order of the operands. See MT*M

116 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "m-star-m-transpose"Attributes: S

M. (matrix.xpfa --)
Prints the contents of the matrix specified by matrix.xpfa using the default printing
format (FIXED, FLOATING, or SCIENTIFIC). The print is performed with FILL.FIELD
ON so that tabular format (constant field width, decimal alignment) is maintained.
Printed elements are delimited with spaces and with carriage returns and continuance
marks (...). Output line length is limited to 6 characters less than the contents of the
user variable CHARS/LINE. M. calls the word PAUSE.ON.KEY, so the print responds
to XON/XOFF handshaking and can be aborted by typing a carriage return; see
PAUSE.ON.KEY.
Pronunciation: "m-dot" Attributes: M, S

M.. (matrix.xpfa --)
Prints the name of the matrix specified by matrix.xpfa followed by a display of its
contents as performed by M. See M.
Pronunciation: "m-dot-dot" Attributes: M, S

M.PARTIAL (low.row#\high.row#\low.col#\high.col#\matrix.xpfa --)
Prints a portion of the matrix specified by low.row# through high.row#, inclusive and
low.col# through high.col#, inclusive, using the default print format (FIXED, FLOATING,
or SCIENTIFIC). The print is performed with FILL.FIELD ON so that tabular format
(constant field width, decimal alignment) is maintained. Printed elements are delimited
with spaces and with carriage returns and continuance marks (...). Output line length is
limited to 6 characters less than the contents of the user variable CHARS/LINE.
Typical use: Assume that MAT.A is dimensioned to have 8 rows and 9 columns. The
following command prints the last 5 elements in each of the first 3 rows:

0 2 4 8 ' MAT.A M.PARTIAL
M.PARTIAL calls the word PAUSE.ON.KEY, so the print responds to XON/XOFF
handshaking and can be aborted by typing a carriage return; see PAUSE.ON.KEY.
Pronunciation: "m-dot-partial" Attributes: M, S

M/MOD (d1\n1 -- n2\d2 | n2 = remainder, d2 = quotient)
Divides double number d1 by integer n1 giving integer remainder n2 and double number
quotient d2. Uses signed math. Division by zero (n1 = 0) yields n2 = 0XFFFF and d2 =
FFFF0XFFFF.
Pronunciation: "m-slash-mod"

MAILBOX: (<name> --)
Removes the next <name> from the input stream, defines a child word called <name>,
and VALLOTs 2 cells in the variable area. When <name> is executed, it leaves the
extended address xaddr of the reserved cells that hold the mailbox's contents. <name>
is referred to as a "mailbox". Use as:

MAILBOX: <name>
Mailboxes are used in multitasked systems to share information between tasks and to
synchronize tasks to one another. If the mailbox's contents equal 0\0, the mailbox is
empty; it contains a message if its contents are non-zero. Before its first use, the
mailbox must be initialized to 0\0. After initialization to 0\0, the only operators that

Main Glossary 117

should access the mailbox are SEND ?SEND RECEIVE and ?RECEIVE. Consult the
multitasking chapter for applications information and examples.
Attributes: D

MANTISSA.PLACES (-- xaddr)
A user variable that holds the number of digits to be displayed in the mantissa when a
floating point number is displayed in SCIENTIFIC format. See F>FLOATING$
Attributes: U

MATRIX (<text> -- | expects name and numbers in input stream)
Expects the first word in the input stream following MATRIX to be the name of a
dimensioned matrix. Skips the word following the matrix name (typically =) and then
repeatedly calls NEXT.NUMBER to get as many numbers as needed to fill the matrix.
The first row is filled first (starting at the left, i.e., at the first column), then the next row,
etc. Carriage returns and tabs can be used to format the numbers if desired. The
numbers can be valid integers or floating point numbers; NEXT.WORD automatically
converts the integers to their floating point equivalents using FLOT. Non-numeric text in
the input is ignored until the matrix is filled, but be careful: any valid number
encountered by MATRIX will be converted and placed in the matrix, even if it is within
parentheses or after a comment delimiter such as \. Integers are converted according
to the current number base. Use as
MATRIX: MAT.A 2 3 ' MAT.A DIMMED \ define and dimension
MATRIX MAT.A = 99 3 4.2 5.3 8 \ initialize matrix
Attributes: M, S

MATRIX* (matrix.xpfa1\matrix.xpfa2\matrix.xpfa3 --)
Performs a matrix multiplication of the two source matrices specified by matrix.xpfa1
and matrix.xpfa2, and dimensions and places the result in the destination specified by
matrix.xpfa3. If matrix1 has p rows and m columns, and matrix2 has m rows and n
columns, then matrix 3 will be dimensioned to have p rows and n columns. The number
of columns in matrix1 must equal the number of rows in matrix2. If DEBUG is ON,
aborts if the dimensions of the two sources are incompatible. The destination may be
one of the sources.
Pronunciation: "matrix-star" Attributes: S

 MATRIX+ (matrix.xpfa1\matrix.xpfa2\matrix.xpfa3 --)
Adds each element of the source1 matrix specified by matrix.xpfa1 to the corresponding
element of the source2 matrix specified by matrix.xpfa2 and stores the result in the
corresponding element in the destination specified by matrix.xpfa3. Dimensions the
destination to have the proper dimensions. The destination may be one of the sources.
If DEBUG is ON, aborts if source1 and source2 dimensions are incompatible.
Pronunciation: "matrix-plus" Attributes: S

MATRIX- (matrix.xpfa1\matrix.xpfa2\matrix.xpfa3 --)
Subtracts each element of the source2 matrix specified by matrix.xpfa2 from the
corresponding element of the source1 matrix specified by matrix.xpfa1 and stores the
result in the corresponding element in the destination specified by matrix.xpfa3.
Dimensions the destination to have the proper dimensions. The destination may be one

118 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

of the sources. If DEBUG is ON, aborts if source1 and source2 dimensions are
incompatible.
Pronunciation: "matrix-minus" Attributes: S

MATRIX->V (matrix.xpfa -- xvaddr\sep\d.#el)
Converts a matrix specified by matrix.xpfa into the equivalent vector representation
specified by xvaddr1\sep\d.#el.
Note: xvaddr is the base address of the vector, sep is the element separation expressed
as a multiple of 4 bytes (e.g., sep=1 means a vector of contiguous floating point
numbers, sep=2 means elements are separated by 8 bytes, etc.) and d.#el a double
number that specifies the number of elements in the vector. Note that xvaddr must be
4-byte aligned (i.e., must be an even multiple of 4). The heap manager and array and
matrix dimensioning words automatically perform the required 4-byte alignment.
Pronunciation: "matrix-to-v"

MATRIX.ELEMENT* (matrix.xpfa1\matrix.xpfa2\matrix.xpfa3 --)
Multiplies each element of the source1 matrix specified by matrix.xpfa1 by the
corresponding element of the source2 matrix specified by matrix.xpfa2 and stores the
result in the corresponding element in the destination specified by matrix.xpfa3.
Dimensions the destination to have the proper dimensions. The destination may be one
of the sources. If DEBUG is ON, aborts if source1 and source2 dimensions are
incompatible. This operation should not be confused with a "matrix multiplication"; see
MATRIX* .
Pronunciation: "matrix-element-star" Attributes: S

MATRIX.ELEMENT/ (matrix.xpfa1\matrix.xpfa2\matrix.xpfa3 --)
Divides each element of the source1 matrix specified by matrix.xpfa1 by the
corresponding element of the source2 matrix specified by matrix.xpfa2 and stores the
result in the corresponding element in the destination specified by matrix.xpfa3.
Dimensions the destination to have the proper dimensions. The destination may be one
of the sources. If DEBUG is ON, aborts if source1 and source2 dimensions are
incompatible.
Pronunciation: "matrix-element-divide" Attributes: S

MATRIX.MAX (matrix.xpfa1\matrix.xpfa2\matrix.xpfa3 --)
Performs FMAX on each pair of corresponding elements in the source matrices
specified by matrix.xpfa1 and matrix.xpfa2, and places the result in the corresponding
element of the destination specified by matrix.xpfa3. Dimensions the destination to
have the proper dimensions. The destination may be one of the sources. If DEBUG is
ON, aborts if the dimensions of the two sources are incompatible.

MATRIX.MIN (matrix.xpfa1\matrix.xpfa2\matrix.xpfa3 --)
Performs FMIN on each pair of corresponding elements in the source matrices specified
by matrix.xpfa1 and matrix.xpfa2, and places the result in the corresponding element of
the destination specified by matrix.xpfa3. Dimensions the destination to have the
proper dimensions. The destination may be one of the sources. If DEBUG is ON,
aborts if the dimensions of the two sources are incompatible.

MATRIX.PF (-- u | u = size of a matrix parameter field)

Main Glossary 119

Places on the stack the number of bytes in a matrix parameter field (u = 14 bytes).
Typically used to define a stack-based temporary matrix within a definition; temporary
matrices defined in this manner preserve re-entrancy (see the chapter on Designing Re-
entrant Code in the Software Manual). For example:

: MATRIX.FUNCTION
LOCALS{ | x&temp.matrix.pfa }
MATRIX.PF PF.STACK.FRAME TO x&temp.matrix.pfa
3 4 x&temp.matrix.pfa DIMMED \ dimension as 3X4
.... \ use the temp matrix
x&temp.matrix.pfa DELETED \ delete from heap
MATRIX.PF FRAME.DROP \ drop temp pf off stack

;
See ARRAY.PF, PF.STACK.FRAME and FRAME.DROP.
Pronunciation: "matrix-p-f"

MATRIX.SUM (matrix.xpfa -- r)
r is the sum of all of the elements in the specified matrix.
Attributes: S

MATRIX.VARIANCE (matrix.xpfa -- r)
Finds the variance r of the specified matrix. The variance is defined as the sum of the
squares of all of the elements.
Attributes: S

MATRIX: (<name> --)
Removes <name> from input stream and defines <name> as a matrix. VALLOTs and
clears a parameter field for <name> in the variable area; the size of the parameter field
is MATRIX.PF bytes. When executed, <name> returns the extended element address
given the indices; its stack picture is:

(row#\col# -- xaddr)
The element address is also returned by the command

row# col# ' <name> M[]
MATRIX: does not allocate heap space; see DIMMED.
Pronunciation: "matrix-colon" Attributes: D

MAX (n1\n2 -- [n1] or [n2])
Retains the greater of the two signed integers n1 and n2, and drops the other. Also see
UMAX.

MAX#DIMENSIONS (-- xaddr)
A user variable that holds the maximum allowable number of array dimensions. It is
used to allocate space for the parameter field when an array is first defined using
ARRAY:. It is also used later to compute the size of the parameter fields. The default
value is 4, and the minimum value of MAX#DIMENSIONS is 2.
CAUTION: Decide on the maximum number of dimensions that will be used in the entire
application program and maintain this value in MAX#DIMENSIONS throughout
compilation. Unpredictable results and crashes may occur if arrays are defined (using
ARRAY:) while MAX#DIMENSIONS is small, and then dimensioned or operated on
when MAX#DIMENSIONS is larger.

120 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "max-number-of-dimensions" Attributes: U

MEMBER-> (u1\u2 <name> -- u3)
Adds a named member to the structure being defined and reserves room for u2 bytes in
the structure. Removes <name> from the input stream and creates a structure field
called <name>. u1 is the structure offset initialized by STRUCTURE.BEGIN:. u3 is the
updated offset to be used by the next member defining word or by STRUCTURE.END.
When <name> is later executed, it adds its offset u1 to the extended address found on
the data stack which is typically the start xaddress of an instance of the data structure;
the result is the xaddress of the desired member in the structure.
Pronunciation: "member" Attributes: D

MICROSEC.DELAY (u --)
Enters a software timing loop for u microseconds. At 16MHz, it can time to within 2
microseconds resolution for 16 <= u <= 65535 microseconds. Note that the elapsed
time will be increased by the duration of any interrupt routines that are serviced while
MICROSEC.DELAY is running. Consequently, this routine does not guarantee accurate
timing when the timesliced multitasker is running.
Pronunciation: "microsecond-delay"

 MIN (n1\n2 -- [n1] or [n2])
Retains the lesser of two signed integers n1 and n2, and drops the other. See UMIN.

MOD (n1\n2 -- n3 | n3 = remainder of n1/n2)
Divides n1 by n2, giving the remainder n3. The sign of n3 is the same as that of n1. If
n2 is zero the result is indeterminant. See UMOD.

MOVE (xaddr1\xaddr2\u -- | xaddr1=src, xaddr2=dest, u = count)
If u is greater than 0, copies u consecutive 16-bit cells (i.e., 2*u consecutive bytes) from
addresses starting at xaddr1 to addresses starting at xaddr2. The source and
destination extended addresses may be located on different pages and the move may
cross page boundaries. If the source and destination regions overlap and xaddr1 <
xaddr2, MOVE starts at high memory and moves toward low memory to avoid
propagation of the moved contents. MOVE always moves the contents in such a way
as to avoid memory propagation. Speed is approximately 38 microseconds per cell.
See MOVE.MANY.

MOVE.IN.PAGE (addr1\addr2\u\page -- | addr1=src, addr2=dest, u = count)
If u is greater than 0, copies u consecutive 16-bit cells (i.e., 2*u consecutive bytes)
starting at addr1 to the destination addresses starting at addr2 on the specified page. If
the source and destination regions overlap and addr1 < addr2, MOVE.IN.PAGE starts at
high memory and moves toward low memory to avoid propagation of the moved
contents. MOVE.IN.PAGE always moves the contents in such a way as to avoid
memory propagation. Speed is approximately 15 microseconds per cell.
Pronunciation: "move-in-page"

MOVE.MANY (xaddr1\xaddr2\d -- | xaddr1=src, xaddr2=dest, d = count)
If 32-bit count d is greater than 0, copies d consecutive 16-bit cells (i.e., 2*d consecutive
bytes) from addresses starting at xaddr1 to addresses starting at xaddr2. The source

Main Glossary 121

and destination extended addresses may be located on different pages and the move
may cross page boundaries. If the source and destination regions overlap and xaddr1
< xaddr2, MOVE.MANY starts at high memory and moves toward low memory to avoid
propagation of the moved contents. MOVE.MANY always moves the contents in such a
way as to avoid memory propagation. Speed is approximately 38 microseconds per
cell.

MT*M (matrix.xpfa1\matrix.xpfa2 --)
Multiplies the transpose of the source (matrix.xpfa1) by the source matrix to make the
destination matrix matrix.xpfa2. The name of the routine suggests the order of the
operands. The destination and the source may be the same. See M*MT
Pronunciation: "m-transpose-star-m"Attributes: S

 M[] (row#\col#\matrix.xpfa -- xaddr)
Places on the stack the extended address xaddr of the element with the specified row#
and column# in the matrix specified by matrix.xpfa. When using matrices this is faster
than []. If DEBUG is on, ABORTs if the indices are invalid. Use as:

row# column# ' <matrix.name> M[]
Pronunciation: "m-brackets"

M[]! (r\row#\col#\matrix.xpfa --)
Stores r to the element at row#, column# in the specified matrix. Equivalent to M[] F!.
Pronunciation: "m-brackets-store"

M[]@ (row#\col#\matrix.xpfa -- r)
Fetches r from the element at row#, column# in the specified matrix. Equivalent to M[]
F@.
Pronunciation: "m-brackets-fetch"

NDROP (wn\...\w1\+n -- | 0 <= +n <= 127)
Drops +n cells in addition to +n itself from the data stack. +n is a single cell value within
the range 0...127. 1 NDROP is equivalent to DROP, 2 NDROP is equivalent to 2DROP.
Pronunciation: "n-drop"

NEEDED (+n --)
If DEBUG is true and there are fewer than +n cell units on the data stack (excluding +n),
ABORTs the current word and issues a "Data stack underflow" error message.

NEGATE (n1 -- n2)
Replaces n1 with its two's complement n2. The two's complement of n1 is computed by
inverting each of the bits in n1 and adding 1 to the result.

NEXT (--)
Return Stack: (R: u -- [u] or [] | drops index when loop terminates)
Used inside a colon definition to mark the end of a count-down loop structure that is
begun by FOR. If the current loop index is zero, discards the index and terminates the
loop, continuing execution with the word following NEXT. If the loop index is not 0,
NEXT decrements the index by 1 and continues looping by transferring control to the
word after FOR. Use as:

122 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

u1 FOR <words to be executed u1+1 times>
NEXT

0 FOR...NEXT executes 1 time, 1 FOR...NEXT executes 2 times, 65,535 FOR...NEXT
executes 65,536 times, etc. FOR...NEXT loops may be nested as long as each FOR is
matched with a corresponding NEXT in the same definition as FOR. An error is issued
if FOR is not properly paired with NEXT inside a definition. FOR ... NEXT loops execute
faster than DO ... LOOP constructs. The word I may be used inside a FOR NEXT loop.
J K I' and LEAVE may not be used in a FOR NEXT loop.
Attributes: C, I

NEXT.NUMBER (<text> -- r)
Accepts text from the input stream, reading in new lines if necessary, until a space-
delimited string representing a valid floating point or integer number is encountered. The
floating point representation r of the number is placed on the stack. Integers are
converted according to the current number BASE. See also ASK.FNUMBER and
ASK.NUMBER.
Attributes: M, S

NEXT.TASK (-- xaddr)
User variable that contains the 16-bit task identifier (i.e., the base address of the task's
user area) of the next task in the round-robin task list.
Attributes: U

NEXT.WORD (<name> -- addr)
Removes <name> from the input stream, inputting a new line if necessary to get it,
leaves the text string in POCKET, and returns the 16-bit address of POCKET (which is
in common memory) on the stack.

NFA.FOR (-- xnfa)
Compile Time: (<name> --)
Removes <name> from the input stream and returns <name>'s extended name field
address xnfa. xnfa is the address of the count byte in <name>'s header. If in execution
mode, leaves the xnfa on the stack. If in compilation mode, compiles the xnfa as a 2-
cell literal in the current definition; the xnfa is pushed to the stack when the definition
later executes. An error occurs if no <name> is given or if <name> cannot be found in
the dictionary.
Pronunciation: "n-f-a-for" Attributes: I

NFA>CFA (xnfa -- xcfa)
Given the extended name field address xnfa of a header in the dictionary, returns the
extended code field address xcfa of the word. xcfa is the first byte of executable
machine code associated with the definition. An unchecked error occurs if xnfa is not a
valid name field address. See NFA.FOR
Pronunciation: "n-f-a-to-c-f-a"

NFA>LFA (xnfa -- xaddr)
Given the extended name field address xnfa of a header in the dictionary, returns the
"link field address" which is the extended xaddr in the header that contains the 3-byte
link offset. The link offset consists of a page offset and an address offset which link the

Main Glossary 123

specified header to the previous header in the linked list of names. The page offset is a
single signed byte stored at xaddr and the address offset is a 16-bit signed offset stored
at xaddr+1. Adding the signed address and page offsets to the xnfa yields the xnfa of
the previous word in the linked name list. See NFA.FOR
Pronunciation: "n-f-a-to-l-f-a"

 NFA>PFA (xnfa -- [xpfa] or [0\0])
Given the extended name field address xnfa of a header in the dictionary, returns the
extended parameter field address xpfa of the word. Returns 0\0 if the word has no pfa
(see ?HAS.PFA). An unchecked error occurs if xnfa is not a valid name field address.
See NFA.FOR
Pronunciation: "n-f-a-to-p-f-a"

NHERE (-- xaddr)
Places on the stack the xaddr of the next available location in the names area.
Equivalent to NP X@
Pronunciation: "n-here" Attributes: U

NIP (w1\w2 -- w2)
Drops the cell below the top cell on the data stack. NIP is equivalent to SWAP DROP.

NO.AUTOSTART (--)
Undoes the effect of the AUTOSTART and PRIORITY.AUTOSTART commands and
attempts to ensure that the standard QED-Forth interpreter will be entered after
subsequent resets. Implementation detail: Erases the 0x1357 pattern at location
0xAE00 (put there by AUTOSTART) in EEPROM, and erases the 0x1357 pattern at
location 0x7FFA\4 (put there by PRIORITY.AUTOSTART) in paged memory. Note that
the priority.autostart vector at 0x7FFA\4 cannot be erased if the memory is write-
protected when NO.AUTOSTART is executed. NO.AUTOSTART is invoked by the
special cleanup mode.

NO.OP (--)
Does nothing. Used for redefining forward reference words. See REDEFINE.
Pronunciation: "no-op"

NO.SPACES (-- xaddr)
A user variable that contains a flag. If the flag is true, leading and trailing spaces are
not printed when a floating point number is displayed. If true, the spaces are printed.
See F>FIXED$, F>FLOATING$, and F>SCIENTIFIC$
Attributes: U

NO.VITAL.IRQ.INIT (--)
Writes a pattern into EEPROM so that subsequent cold restarts will not initialize the
COP, clock monitor, illegal opcode, and OC2 interrupt vectors. This option is provided
for programmers interested in installing their own interrupt service routines in any of
these four vectors. Can be undone by INIT.VITAL.IRQS.ON.COLD. Implementation
detail: Initializes location 0xAE1B in EEPROM to contain the pattern 0x13.
Pronunciation: "no-vital-i-r-q-init"

124 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

NOT (w -- flag)
flag is the boolean inverse of w. That is, if w = 0, the flag is TRUE. If w is non-zero, the
flag is FALSE.

NP (-- xaddr)
User variable that contains the 32-bit pointer to the names area of the dictionary. The
contents of NP are placed on the stack by NHERE and are modified by NALLOT. The
command NP X@ is equivalent to NHERE; it yields the xaddr of the next available
location in the names area. The command NP @ is equivalent to NPAGE; it yields the
page of the names area.
Pronunciation: "n-p" Attributes: U

NPAGE (-- page)
Returns the page of the names area in the dictionary. Equivalent to NP @
Pronunciation: "n-page" Attributes: U

NUMBER (x$addr -- [n\1] or [d\2] or [0])
Converts the string whose first character is at x$addr+1 into an integer or double
number in the current number base, unless the number starts with 0x or 0X, in which
case hexadecimal base is used. If the number can be represented as a 16 bit signed
integer, leaves it on the stack under a 1 flag. If it is convertible but cannot be
represented as a 16 bit number, leaves its 32 bit representation on the stack under a 2
flag. If a non-convertible character is encountered in the string or if the string does not
end with a space, leaves a 0 on the stack. x$addr must end with a space; its count is
not used by NUMBER. Except for a leading 0x or 0X or + or - character and isolated
embedded commas, no other punctuation is allowed in the numeric string. If a leading
0x or 0X is present, no + or – is allowed in the string. Also see FNUMBER.
Attributes: S

OC1.ID (-- n)
Returns the interrupt identity code for output compare 1. This interrupt can control the
action of port bits PA3-PA7. Used as an argument for ATTACH.
Pronunciation: "o-c-one-i-d"

OC2.ID (-- n)
Returns the interrupt identity code for output compare 2. This interrupt can control the
action of port bit PA6. Used as an argument for ATTACH. Note that the OC2 interrupt
is used by the timeslice multitasker; if you wish to use it for another purpose, make sure
that you do not need any of the services of the timeslicer or elapsed-time clock.
Pronunciation: "o-c-two-i-d"

OC3.ID (-- n)
Returns the interrupt identity code for output compare 3. This interrupt can control the
action of port bit PA5. Used as an argument for ATTACH.
Pronunciation: "o-c-three-i-d"

OC4.ID (-- n)
Returns the interrupt identity code for output compare 4. This interrupt can control the
action of port bit PA4. Used as an argument for ATTACH. Note that OC4 and PA4 are

Main Glossary 125

used by the optional secondary serial port supported by the QED-Forth software UART;
if you are not using the secondary serial port, you may use freely use OC4 and PA4.
Pronunciation: "o-c-four-i-d"

OF (n1\n2 -- [n1] or [])
Used inside a CASE ... ENDCASE structure to mark the beginning of a conditional
statement. If n1 = n2 then n1 and n2 are dropped and execution continues with the
words between OF and ENDOF and then skips to the word after ENDCASE. If n1 does
not equal n2, then n2 is dropped and execution continues after the next ENDOF. Use
as:

n1 CASE
n2 OF words to be executed if n1 = n2 ENDOF
n3 OF words to be executed if n1 = n3 ENDOF
words to be executed if n1 doesn't equal n2 or n3

ENDCASE
An error is issued if OF and ENDOF are not properly paired.
Attributes: C, I

OFF (xaddr --)
Stores 0 (FALSE) at xaddr.

OFFSET (-- xaddr)
A user variable that holds the 32-bit difference between the 32-bit physical block
number in mass memory and the 16-bit file block number. Used by BUFFER and
BLOCK. Set equal to 0\0 by IS.RAMDISK.
Attributes: U

ON (xaddr --)
Stores -1 (TRUE) at xaddr.

ON.FORGET (--)
Any word named ON.FORGET is executed by FORGET or ANEW before being
forgotten. The programmer can define a word with the name ON.FORGET to de-
allocate a heap item when the associated data structure is forgotten. This prevents
cluttering the heap with memory allocated to forgotten structures during debugging
sessions. Typical use:

MATRIX: MAT.A
: DIM.MATRICES 3 3 ' MAT.A DIMMED ;
: ON.FORGET

' MAT.A DELETED
...other cleanup code...

;
If this code is later forgotten, MAT.A is deleted, thus freeing its space in the heap. If the
ON.FORGET word had not been included, the definition of MAT.A would have been
forgotten, but its heap space would still be allocated. Note that when this definition is
compiled, the message

ON.FORGET isn't unique
will be issued. The non-uniqueness does not affect the performance of the word.

126 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

ONE (-- r)
Pushes the floating point number 1.0 onto the data stack.

OR (w1\w2 -- w3)
Performs a logical bit-wise inclusive-or of two 16-bit numbers w1 and w2 to produce the
result w3.

OR.TYPE.OF: (u1\u2\u3 -- u1\max{u2,u3}\u1)
Used inside a variant field declaration started by TYPE.OF: and terminated by
TYPE.END within a structure definition. Indicates that the following structure fields are a
variant of the fields that followed TYPE.OF: An OR.TYPE.OF: variant should be used
for variant fields which are loosely typed; i.e., during the life of the structure, the field
content may change type. See TYPE.OF: for an example of use.
Pronunciation: "or-type-of" Attributes: D

OTHERWISE (--)
Marks the start of the "else" portion of a conditional structure that is used in execution
mode. Use as:

flag IFTRUE OTHERWISE ENDIFTRUE
If the flag passed to IFTRUE is true, the code between IFTRUE and OTHERWISE is
executed, and the code between OTHERWISE and ENDIFTRUE is skipped. If the flag
is false, the code between IFTRUE and OTHERWISE is skipped and execution
continues with the words following OTHERWISE. OTHERWISE is analogous to ELSE
but it is used outside of a colon definition. The execution mode conditional structure
can be used to conditionally compile portions of source code. An unchecked error
occurs if OTHERWISE is used outside of IFTRUE and ENDIFTRUE. Note that
IFTRUE/OTHERWISE/ENDIFTRUE statements can not be nested.

OVER (w1\w2 -- w1\w2\w1)
Places a copy of w1 on top of the stack.

OVERFLOW (--)
Sets the user variable FP.ERROR to -1 to indicate an overflow error.

PAD (-- xaddr | xaddr = start of scratchpad area)
Returns the xaddr of the start of the PAD scratchpad area. The 32 bytes below PAD
are used for floating point and integer string/number conversion, and the area above
PAD is available as scratchpad memory for the programmer (but note that the kernel
routines ASK.NUMBER, ASK.FNUMBER, INPUT.STRING, and RECEIVE.HEX write
text strings into the PAD). Equivalent to

UPAD X@
PAD must point to modifiable RAM, and there must be at least 32 bytes of RAM below
PAD for number/string conversion. PAD may be on any page, but may not cross a
page boundary.
Attributes: U

 PAGE-> (u1 <name> -- u2)
Adds a named member to the structure being defined and reserves room for a 1-cell
(16-bit) page field in the structure. Removes <name> from the input stream and creates

Main Glossary 127

a structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u2 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "page" Attributes: D

PAGE.TO.FLASH (page --)
Transfers the 32 Kbyte contents of the specified RAM source_page to the parallel page
in flash. If the current memory map is the "download map", then valid source pages are
4, 5, or 6, (and, if a 512K RAM is installed, pages 0x10-17). Page 4 RAM is transferred
to page 1 flash, page 5 RAM is transferred to page 2 flash, page 6 RAM is transferred to
page 3 flash, and pages in the range 0x10-17 are transferred to parallel flash pages in
the range 0x18-1F. If the current memory map is the "standard map", then valid source
pages are 1, 2, or 3 (and, if a 512K RAM is installed, pages 0x18-1F). Page 1 RAM is
transferred to page 4 flash, page 2 RAM is transferred to page 5 flash, page 3 RAM is
transferred to page 6 flash, and pages in the range 0x18-1F are transferred to parallel
flash pages in the range 0x10-17. An "invalid input parameter" error is issued if an
invalid source_page is specified. A "can't program flash" error is issued if the flash
cannot be programmed. This function uses the 68HC11's on-chip RAM at 0xB200 to
0xB3CF to manage the write to the flash (the real-time clock and C/Forth interrupt stack
reserve the bytes at 0xB3D0 to 0xB3FF). The remaining on-chip RAM at 0xB000 to
0xB1FF remains available to the user.

PAGE.TO.RAM (page --)
Transfers the 32 Kbyte contents of the specified flash source_page to the parallel page
in RAM. If the current memory map is the "download map", then valid source pages are
1, 2, or 3 (and, if a 512K RAM is installed, pages 0x18-1F). Page 1 flash is transferred
to page 4 RAM, page 2 flash is transferred to page 5 RAM, page 3 flash is transferred to
page 6 RAM, and pages in the range 0x18-1F are transferred to parallel RAM pages in
the range 0x10-17. If the current memory map is the "standard map", then valid source
pages are 4, 5, or 6 (and, if a 512K RAM is installed, pages 0x10-17). Page 4 flash is
transferred to page 1 RAM, page 5 flash is transferred to page 2 RAM, page 6 flash is
transferred to page 3 RAM, and pages in the range 0x10-17 are transferred to parallel
RAM pages in the range 0x18-1F. An "invalid input parameter" error is issued if an
invalid source_page is specified.

PARITY (-- xaddr)
A system variable that contains a flag set by the programmer to specify the behavior of
the secondary serial port (serial2) supported by QED-Forth's software UART. If the
contents of PARITY are TRUE, a parity bit is appended to each transmitted character
and a parity bit is expected in each incoming character. The level of the transmitted
parity bit is set by the system variable PARITY.OUT, and the value of the parity bit of
the most recently received character is stored in the system variable PARITY.IN.
PARITY is initialized to FALSE by INIT.SERIAL2 and USE.SERIAL2 and at each reset
or restart.

PARITY.IN (-- xaddr)

128 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

A system variable that holds the value of the parity bit of the character most recently
received by the secondary serial port (serial2, supported by the software UART) if
PARITY is true. If the incoming parity bit was high, PARITY.IN is set to 1; otherwise it is
set to 0. The contents are available to the programmer if parity checking of incoming
data is required; the software UART does not check for correct parity. See PARITY.

PARITY.OUT (-- xaddr)
A system variable that holds the value of the parity bit of the character to be sent next
by the secondary serial port (serial2, supported by the software UART) if PARITY is
true. If the contents of PARITY are TRUE and the least significant byte of PARITY.OUT
is nonzero, then the parity bit of the next outgoing character is set to one. If the
contents of PARITY are TRUE and the least significant byte of PARITY.OUT is zero,
then the parity bit of the next outgoing character is set to zero. The value stored in
PARITY.OUT is not modified by the serial2 routines, and the application program must
perform any required parity calculations. See PARITY.

 PARSE (char1 -- xaddr\cnt | char1 is the terminating delimiter)
Parses a string delimited by the specified char1 from the input stream, and returns the
xaddr\cnt of the parsed string, where xaddr is the address of the first character and cnt
is the number of characters in the parsed string (the string may cross a page boundary).
Unlike WORD, which also parses strings from the input stream, PARSE does not move
the parsed string to POCKET. Thus it is suitable for parsing strings longer than 31
bytes (see WORD). If the specified delimiter char1 is a space, then leading spaces are
ignored. If BLK = 0, the input stream is the terminal input buffer TIB. Otherwise PARSE
executes BLOCK so that the input stream is available in a block buffer. The contents of
>IN specify the offset from the start of the input stream to the first character to be
parsed. PARSE leaves >IN pointing 1 byte past the terminating delimiter unless the
input stream is exhausted, in which case >IN is left pointing 1 byte past the last valid
location in the input stream.
Attributes: M

PAUSE (--)
Stacks the state of the current task and passes control to the next AWAKE task in the
round-robin task list. You can embed calls to PAUSE in any task when you wish to give
other tasks a chance to run. PAUSE may be used in multitasked systems whether or
not the timeslicer is active. PAUSE switches tasks in (27 + 3.25n) microseconds, where
n is the number of ASLEEP tasks encountered in the round robin task list. Of this time,
interrupts are disabled for (20 + 3.25n) microseconds.
Attributes: M

PAUSE.ON.KEY (--)
Suspends execution of the calling word when a character is received and, with the
exceptions noted below, resumes execution of the calling word when a second
character is received. Typically coded into a loop structure to allow control of execution
during debugging, or to control a data dump. PAUSE.ON.KEY checks whether a
character has been received. If no character has been received, it does nothing. If a
character has been received and it is a carriage return, executes ABORT which clears
the stacks and returns to the interpreter. If the character received is a . (dot) executes
QUIT which returns to the interpreter without clearing the data stack. If any other

Main Glossary 129

character is received, suspends execution until another character other than carriage
return or . is received. This word effectively responds to XON/XOFF from a host
terminal; a QED-Forth word that dumps data and calls PAUSE.ON.KEY repeatedly will
pause when the XOFF is received by QED-FORTH, and resume when XON is received.
The word does not know that the characters are special; it just stops when receiving the
first and resumes after the second. The kernel words DUMP, DUMP.INTEL, DUMP.S1,
DUMP.S2, M.PARTIAL, M., M.., and WORDS call PAUSE.ON.KEY.
Attributes: M

 PF.STACK.FRAME (+n -- [+n bytes]\xaddr)
First performs the operation of STACK.FRAME, reserving +n bytes of room on the data
stack and leaving xaddr that points to the top (lowest in memory) reserved byte in the
data stack frame. PF.STACK.FRAME then zeros the first 4 bytes (lowest in memory,
nearest top of stack) of the allocated stack frame. See STACK.FRAME and
FRAME.DROP. PF.STACK.FRAME should be used when creating a temporary array
or matrix parameter field within a definition; see ARRAY.PF and MATRIX.PF for
examples of use. The first 4 bytes of a parameter field contain an xhandle to the heap,
and the xhandle should always be initialized to 0\0 before the array or matrix is
dimensioned. PF.STACK.FRAME performs this initialization on the temporary stack-
based parameter field. There is an unchecked error if +n is less than 4.
Pronunciation: "p-f-stack-frame"

PFA>NAME (xpfa --)
Prints the name of the word associated with the specified extended parameter field
address xpfa. Useful for error diagnostics to print the name of an array, matrix or other
data structure given its xpfa. The name is printed as ?NAME? if no name corresponding
to xpfa is found in the dictionary.
Pronunciation: "p-f-a-to-name" Attributes: M

PFA>NFA (xpfa -- [xnfa] or [0\0])
Given the extended parameter field address xpfa of a word in the dictionary, searches
the dictionary and returns the extended name field address xnfa of the word. If the
name associated with xpfa cannot be found in the dictionary, returns 0\0. See ' and
NFA.FOR.
Pronunciation: "p-f-a-to-n-f-a"

PI (-- r)
Places the floating point value pi (= 3.1416) on the stack.

PI/2 (-- r)
Places the floating point representation of pi/2 (1.5708) on the stack.
Pronunciation: "pi-over-two"

PICK (wn\...\w1\w0\+n -- wn\...\w1\w0\wn | 0 <= +n <= 255)
Copies the +nth item (not including n) to the top of the stack, where the top stack item
is item#0, the next is item#1, etc. An unchecked error occurs if there are fewer than
n+1 items on the data stack. 0 PICK is equivalent to DUP, 1 PICK is equivalent to
OVER.

130 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

POCKET (-- xaddr | xaddr is the start of the pocket buffer)
Returns the xaddress of the start of the POCKET buffer. POCKET is a 32-byte
(minimum) scratch area used by WORD. Equivalent to

UPOCKET @ DEFAULT.PAGE
FIND executes COLD if POCKET is not in the common RAM.
Attributes: U

 PORTA (-- xaddr)
Returns the extended address (0x8000\0) of the 8 bit PortA register in the 68HC11.
This port is available to the user and is associated with various counting and timing
functions. Note that the software UART that implements the secondary serial port uses
bits 3 and 4 of PORTA, so care must be taken not to alter the direction or state of these
bits if the secondary serial port is in use. PORTA can be accessed with the standard
C@, C!, SET.BITS, CLEAR.BITS, TOGGLE.BITS, and CHANGE.BITS operators. It is
recommended that the latter four uninterruptable operators be used to modify the
available port bits if the secondary serial port is in use. The PORTA.DIRECTION
register sets the data direction of the pins in PORTA.
Pronunciation: "port-A"

PORTA.DIRECTION (-- xaddr)
Returns the extended address (0x8001\0) of the 8 bit DDRA register in the 68HC11
which sets the data direction of PORTA. To configure a PORTA pin to be an output,
write a 1 to the corresponding bit position in PORTA.DIRECTION. Similarly, to
configure a PORTA pin to be an input, write a 0 to the corresponding bit position in
PORTA.DIRECTION. Note that the software UART that implements the secondary
serial port uses bits 3 and 4 of PORTA, so care must be taken not to alter the direction
or state of these bits if the secondary serial port is in use. The PORTA.DIRECTION
register can be accessed with the standard C@, C!, SET.BITS, CLEAR.BITS,
TOGGLE.BITS, and CHANGE.BITS operators.
Pronunciation: "port-A-direction"

PORTD (-- xaddr)
Returns the extended address (0x8008\0) of the 8 bit PortD register in the 68HC11.
This port implements the primary serial channel on bits 0 and 1, and the serial
peripheral interface (SPI) on bits 2-5. If the SPI is not in use (which implies that the 12
bit A/D and 8 bit D/A are not in use) then bits 2, 3, 4, and 5 of PORTD are available as
general purpose inputs and outputs. The data direction of these bits is set by register
PORTD.DIRECTION. PORTD can be accessed with the standard C@, C!, SET.BITS,
CLEAR.BITS, TOGGLE.BITS, and CHANGE.BITS operators. See INIT.SPI and
SPI.OFF.
Pronunciation: "port-D"

PORTD.DIRECTION (-- xaddr)
Returns the extended address (0x8009\0) of the 8 bit DDRD register in the 68HC11
which sets the data direction of bits 2-5 of PORTD. PORTD implements the primary
serial channel on bits 0 and 1, and the serial peripheral interface (SPI) on bits 2-5. If the
SPI is not in use (which implies that the 12 bit A/D and 8 bit D/A are not in use) then bits
2, 3, 4, and 5 of PORTD are available as general purpose inputs and outputs. To
configure a PORTD pin to be an output, write a 1 to the corresponding bit position in

Main Glossary 131

PORTD.DIRECTION. Similarly, to configure a PORTD pin to be an input, write a 0 to
the corresponding bit position in PORTD.DIRECTION. This register can be accessed
with the standard C@, C!, SET.BITS, CLEAR.BITS, TOGGLE.BITS, and
CHANGE.BITS operators. See INIT.SPI and SPI.OFF.
Pronunciation: "port-D-direction"

 PORTE (-- xaddr)
Returns the extended address (0x800A\0) of the 8 bit PortE register in the 68HC11.
This port can either be used as an 8 channel 8 bit A/D converter, or as an octal digital
input port. PORTE can be accessed with the standard C@ operator. See A/D8.ON and
A/D8.OFF.
Pronunciation: "port-E"

PREV (-- xaddr)
A user variable containing the extended address of the most recently accessed block
buffer.
Attributes: U

 PRIORITY.AUTOSTART (xcfa --)
Compiles a 6-byte sequence at locations 0x7FFA-0x7FFF on page 4 so that upon
subsequent restarts and ABORTs, the routine having the specified xcfa will be
automatically executed. This allows a finished application to be automatically entered
upon power up and resets. In contrast to the EEPROM-based AUTOSTART function,
the PRIORITY.AUTOSTART vector is located in paged memory which is in flash
memory in turnkeyed "production" boards. Thus PRIORITY.AUTOSTART facilitates the
autostarting of flash-based systems. ABORT (which is called by the error handler and
upon every reset or restart) checks the priority autostart vector first and executes the
specified routine (if any). If no priority autostart routine is posted or if the specified
routine terminates, ABORT then checks the EEPROM-based autostart vector (see
AUTOSTART) and executes the specified routine (if any). If no autostart routine is
posted or if the specified routine terminates, ABORT then invokes QUIT which is the
QED-Forth interpreter. PRIORITY.AUTOSTART is Flash smart; it writes to page 4
whether page 4 addresses RAM or Flash at the time. In the standard map
PRIORITY.AUTOSTART writes directly to Flash in page 4. In the download memory
map it also writes to page 4, now RAM. Subsequently page 4 can be copied to Flash
and the Flash readdressed onto page 4 in the standard map.
Implementation detail: At location 7FFAH on page 4, PRIORITY.AUTOSTART writes
the pattern 1357 followed by the four byte xcfa; make sure that page 4 is not write
protected when executing PRIORITY.AUTOSTART. To undo the effects of this
command and return to the default startup action, make sure that page 4 is un-write-
protected RAM and call NO.AUTOSTART (which clears both the priority autostart and
the EEPROM-based autostart vectors). To recover from the installation of a buggy
priority autostart routine if page 4 is RAM, make sure that page 4 is not write-protected
and invoke use the special cleanup mode. See AUTOSTART.

PULSE.EDGE.ID (-- n)
Returns the interrupt identity code for the pulse accumulator input edge detector which
is associated with port bit PA7. Used as an argument for ATTACH.
Pronunciation: "pulse-edge-i-d"

132 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

PULSE.OVERFLOW.ID (-- n)
Returns the interrupt identity code for the pulse accumulator overflow detector which is
associated with port bit PA7. Used as an argument for ATTACH.
Pronunciation: "pulse-overflow-i-d"

 PUT.CURSOR (n1\n2 -- | n1 = line#, n2 = character#)
Positions the LCD display cursor at the line number specified by n1 and the character
number specified by n2. For all character and Hitachi graphics displays, the next
character or graphical byte sent to the display by the CHAR>DISPLAY routine will
appear at the specified cursor position, and then the cursor position will automatically
increment. (Note that for Toshiba graphics displays, PUT.CURSOR affects only the
cursor in text mode, and you must use IS.DISPLAY.ADDRESS to specify the location of
the next graphical data byte.) n1 and n2 are 0 based (that is, the top line on the display
is line#0, and the left-most character on each line is character#0). PUT.CURSOR
clamps n1 to one less than LINES/DISPLAY, and clamps n2 to one less than
CHARS/DISPLAY.LINE. The line# n1 follows the same rules explained in the
description of BUFFER.POSITION: for a graphics-style display the line# n1 is
interpreted differently depending on whether the display is being used in "text mode" or
"graphics mode". In text mode, n1 corresponds to the character line#; in graphics
mode, n1 corresponds to the pixel line#. Note that the cursor may not be visible, and is
never visible in graphics mode; see DISPLAY.OPTIONS. Also note that after the cursor
reaches the end of a line it may skip to the start of a line elsewhere on the display.
Finally, consider using (UPDATE.DISPLAY) instead of UPDATE.DISPLAY to avoid re-
homing the cursor after executing PUT.CURSOR. This routine intermittently disables
interrupts for 28 cycles (7 microseconds) per command byte to implement clock
stretching.

QUERY (--)
Executes

TIB CHARS/LINE @ EXPECT
to accept a line of up to CHARS/LINE characters from the serial port and store them in
the terminal input buffer. Saves the number of characters actually received in the user
variable #TIB. Sets >IN and BLK to 0 so that the next execution of WORD will parse the
received line of input starting at the first character received. This is the main serial
input word in the QED-Forth interpreter. Note that the terminal input buffer may be on
any page, but may not cross a page boundary.
Attributes: M

QUIET (-- xaddr)
A user variable that holds a flag that controls the word BEEP. BEEP is called when an
error is detected. If the flag in QUIET is false, BEEP EMITs the bell character when
executed to give an audible warning. If the flag is true, BEEP does nothing. BEEP is
called by the system error routine, so QUIET controls whether system errors emit an
audible beep.
Attributes: U

QUIT (--)

Main Glossary 133

Enters execution mode and begins an infinite loop (terminated by errors) that repeatedly
executes QUERY INTERPRET to read in a new line of input and interpret it. The return
stack is cleared after each line of input is interpreted while in execution mode. This is
the top level word in the QED-Forth interpreter. See the Software Manual for a detailed
description of this word.
Attributes: M

R0 (-- xaddr)
User variable that contains the 16-bit address which is used by RP! to initialize the
return stack pointer. The first cell on the return stack occupies the 2 bytes below the
address contained in R0, and the stack grows downward in memory. After changing the
contents of R0, the next ABORT or restart loads the value into the return stack pointer
(the S register) to change the position of the stack. The return stack is allocated in a
768 byte region in common memory after each COLD restart. See RP!.
Pronunciation: "r-zero" Attributes: U

R> (-- w)
Return Stack: (R: w --)
Transfers the top cell on the return stack to the data stack.
Pronunciation: "r-from" Attributes: C

R>DROP (--)
Return Stack: (R: w --)
Drops the top cell from the return stack.
Pronunciation: "r-from-drop" Attributes: C

R@ (-- w)
Return Stack: (R: w -- w)
Copies the top cell on the return stack to the data stack.
Pronunciation: "r-fetch" Attributes: C

RANDOM (-- n)
Generates n, a pseudo-random 16-bit integer. See RANDOM#.

RANDOM# (-- xaddr)
A user variable that holds the last 16-bit number generated by RANDOM, or the 16-bit
mantissa of the last floating point random number generated by FRANDOM. Storing a
specific integer (a "seed") into RANDOM# leads to the generation of a reproducible
series of pseudo-random numbers by repeated calls to FRANDOM or RANDOM. This
may be useful for debugging words that use random numbers.
Pronunciation: "random-number" Attributes: U

RANDOM.GAUSSIAN (-- r)
r is a random number drawn from a Gaussian distribution with unity standard deviation
and zero mean. Uses the Box-Muller method.
Attributes: S

RANDOMIZED (matrix.xpfa --)

134 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Fills the specified matrix with random numbers drawn from a Gaussian distribution with
0 mean and unity standard deviation. See RANDOM.GAUSSIAN.
Attributes: S

RANGE (n1\n2\n3 -- n1\flag)
Flag is TRUE if n1 is greater than or equal to n2 and less than or equal to n3.
Otherwise flag is FALSE. See URANGE.

RANGE.OF (n1\n2\n3 -- [n1] or [])
Used inside a CASE ... ENDCASE structure to mark the beginning of a conditional
statement. If n2 <= n1 <= n3 then n1, n2, and n3 are dropped and execution continues
with the words between RANGE.OF and ENDOF and then skips to the word after
ENDCASE. Otherwise, n2 and n3 are dropped and execution continues after the next
ENDOF. Use as:

n1 CASE
n2 n3 RANGE.OF executed if n1 in range (n2,n3) ENDOF
n4 n5 RANGE.OF executed if n1 in range (n4,n5) ENDOF
 words to be executed if not in range (n2,n3) or (n4,n5)
ENDCASE

An error is issued if RANGE.OF and ENDOF are not properly paired. See OF.
Pronunciation: "range-of" Attributes: C, I

READ.ELAPSED.SECONDS (-- u\ud | u = #msec, ud = #sec)
Returns the elapsed time on the timeslice clock since it was initialized to 0\0 by
INIT.ELAPSED.TIME. ud is the number of elapsed seconds, and u is the number of
milliseconds since the last integral second on the timeslice clock. The resolution equals
the period of the timeslice clock (the default is 5 msec). See READ.ELAPSED.TIME,
TIMESLICE.COUNT, START.TIMESLICER,and 100US=TIMESLICE.PERIOD.

READ.ELAPSED.TIME (-- u1\u2\u3\u4\u5 | u1 msec, u2 sec, u3 min, u4 hrs,u5 days)
Returns the number of milliseconds, seconds, minutes, hours, and days that the
timeslice clock (supported by OC2) has run since it was initialized to 0\0 by
INIT.ELAPSED.TIME. u5 is the number of days, u4 is the number of hours since the
last integral day on the clock, u3 is the number of minutes since the last integral hour on
the clock, u2 is the number of seconds since the last integral minute on the clock, and
u1 is the number of milliseconds since the last integral second on the clock. The
resolution equals the period of the timeslice clock (the default is 5 msec). The
maximum time that the clock can represent is proportional to the timeslice period; the
clock can represent times to over 248 days if the default 5 msec timeslice period is
used. See READ.ELAPSED.TIME, TIMESLICE.COUNT, START.TIMESLICER, and
*100US=TIMESLICE.PERIOD.

 READ.WATCH (-- u1\u2\u3\u4\u5\u6\u7\u8)
meaning: (-- 100ths.sec\sec\min\hr\day\date\month\yr)
Reads the battery-operated real-time clock (if present), returning the time, day, and date
specified by u1 through u8. The stack items and their allowed ranges are:

item description range (decimal)
u8 year 0 - 99
u7 month 1 - 12

Main Glossary 135

u6 date 1 - 31
u5 day of week 1 - 7
u4 hour of day 0 - 23
u3 minute after the hour 0 - 59
u2 seconds after the minute 0 - 59
u1 hundredths of seconds 0

Due to a hardware limitation, the hundredths of second parameter always reads as 0; it
is included in the stack picture to maintain backward compatibility with prior code.
READ.WATCH uses the top 16 bytes of on-chip RAM at B3F0-B3FF as a scratchpad
buffer. Once correctly set, the watch handles the differing numbers of days in each
month, and correctly handles leap years. See SET.WATCH.

READ/WRITE (xaddr\n\flag -- | xaddr=buffer, n = block#, flag=true to read)
Calls the routine whose xcfa is stored in the user variable UREAD/WRITE. If flag is
false, the routine specified by xcfa writes a 1 Kbyte block of data from the block buffer
starting at xaddr to the mass memory block specified by n plus the contents of OFFSET.
If flag is true, the routine specified by xcfa reads a 1 Kbyte block of data from the mass
memory block specified by n + OFFSET to the block buffer starting at xaddr. The routine
should trap all errors (invalid disk block, etc.) The default routine whose xcfa is stored in
UREAD/WRITE implements a "ram disk" mass memory. See IS.RAMDISK and
BLOCK.BUFFERS .
Pronunciation: "read-slash-write" Attributes: M, U

REAL-> (u1 <name> -- u2)
Adds a named member to the structure being defined and reserves room for a real
(floating point) number field in the structure. Removes <name> from the input stream
and creates a structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u2 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "real" Attributes: D

 REAL: (<name> --)
REAL: is a synonym for DOUBLE: ; see its glossary entry. REAL: defines a 32-bit self-
fetching variable which holds a 32-bit floating point value (a real number). Use as:

REAL: <name>
Pronunciation: "real-colon" Attributes: D

REALS-> (u1\u2 <name> -- u3)
Adds a named member to the structure being defined and reserves room for u2 real
(floating point) numbers in the structure. Removes <name> from the input stream and
creates a structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u3 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.

136 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "reals" Attributes: D

RECEIVE (xmailbox -- wd | wd is the received message)
If xmailbox is empty (i.e., if it contains 0\0), executes PAUSE until the mailbox contains
a message. If xmailbox contains a message (i.e., if it does not contain 0\0), fetches the
contents of xmailbox and stores a 0\0 into xmailbox to indicate that the message has
been received and that the mailbox is now empty. To ensure that the state of the
mailbox is correctly determined, RECEIVE disables interrupts for 26 to 61 cycles (6.5 to
15.25 microseconds). See SEND, ?RECEIVE and MAILBOX:.
Attributes: M

 RECEIVE.HEX (xaddr1 <text> --)
Accepts a download in standard Intel hex or Motorola S1 or S2 or S3 hex formats and
initializes the memory locations starting at the specified xaddr1 accordingly. The first
address specified in the <text> hex dump is stored in memory at xaddr1, and all
subsequent bytes are stored in QED memory preserving the relative spacing of data
specified in the <text> hex dump. If the specified xaddr1 is FFFF0XFFFF (that is, a 32-
bit -1), the memory storage addresses are as specified in the hex dump itself. The QED
paged memory is treated as a contiguous memory space; recall that the location
following 7FFF on a given page is location 0000 on the following page. Accepts empty
lines. If a format or checksum error is detected, emits an 'X' character to signal the
error, but does not abort. Aborts with a "Missing delimiter" message if the first character
on a line is not a : or S character. Terminates when an end-of-file record is received;
the final line of an Intel hex dump is

:00000001FF
and the standard final line of a Motorola hex dump is

S9030000FC
although any S7, S8, or S9 termination record will terminate reception. Motorola S0
header records are accepted and ignored. Each input text line is temporarily stored at
PAD. Be sure that the PAD buffer is large enough to accommodate a full line (decimal
80 bytes or more is safe). See the glossary entries for DUMP.INTEL, DUMP.S1, and
DUMP.S2 for descriptions of Intel and Motorola hex formats.
Implementation detail: RECEIVE.HEX calculates an offset as the specified xaddr1
minus the first address specified in the <text> file. This offset is then added to every
byte's file address (specified in the <text> file) to calculate the QED destination address.
This scheme allows the data in a <text> hex dump file with arbitrary reported addresses
to be loaded starting at any desired location in the QED memory space.
Pronunciation: "receive-hex"Attributes: M

RECOVER.HANDLE (xaddr -- [xhandle] or [0\0])
Searches through the handle list for a handle that contains the specified base address
xaddr. If found, returns the heap item's xhandle; otherwise, returns 0\0. Useful for
debugging.

RECURSE (--)
Compiles into the current definition a call to the word currently being defined.
Attributes: C, I

REDEFINE (xcfa1\xcfa2 -- | xcfa1 = operational word, xcfa2 = null word)

Main Glossary 137

Resolves a forward reference or redefines a word by writing a call to xcfa1, the
extended code field address of an operational word, into the code field specified by
xcfa2. Up to 9 bytes are written into the code field of xcfa2.
To implement a forward reference (that is, to use a word before its action or operation
has been defined), first define a null definition as:

: <null.definition.name>
NO.OP ;

Then define words which call <null.definition.name> .
Then define the operational word as

: <operational.definition.name>
words defining the operation ;

Then execute
CFA.FOR <operational.definition.name>
CFA.FOR <null.definition.name>
REDEFINE

Now, all the words that were compiled with calls to <null.definition.name> will execute
<operational.definition.name>. Of course, when REDEFINE is executed, xcfa2 must be
in modifiable RAM.
REDEFINE may also be used during debugging. If xcfa2 is the code field address of a
word that is found to be buggy, a bug-free version with code field address xcfa1 can be
defined, and a REDEFINE command will cause all compiled calls to the buggy routine
to execute the debugged version instead:

CFA.FOR <debugged.definition.name>
CFA.FOR <buggy.definition.name>
REDEFINE

Two requirements must be met: xcfa2 must be in modifiable RAM, and the code field of
xcfa2 must be at least 9 bytes long so that the redefinition will not overwrite other words
in the dictionary. There is no error checking. For another (though less efficient) way to
implement forward references, see EVALUATE.

REDIMMED (#rows\#cols\matrix.xpfa --)
Re-writes the contents of the parameter field of the specified dimensioned matrix.
Modifies the number of rows and columns in the parameter field to have the specified
values without changing any data in the matrix. Thus the data in the matrix is effectively
reconfigured into the new number of rows and columns. Error if the previous product of
#rows times #columns is not equal to the product of the specified #rows times #cols.

REGISTER:(addr <name> --)
Typically used to define names for the HC11's hardware registers, REGISTER: removes
the next <name> from the input stream and defines an XCONSTANT called <name>
which when executed leaves the specified register address under a 0 (designating the
default page) on the data stack. REGISTER: enforces a minimum WIDTH of 6 in the
saved name to minimize non-unique names when defining registers. For example, to
define a register address for the timer counter register named TCNT on the processor,
execute

HEX 800E REGISTER: TCNT
Pronunciation: "register-colon" Attributes: D

RELEASE (xresource --)

138 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

If the current task owns the resource variable referenced by xresource (i.e., if xresource
contains the current task's xtask.id), releases the resource by storing 0\0 in xresource.
Otherwise, does nothing; this prevents a task from RELEASEing a resource controlled
by another task. Interrupts are not disabled and PAUSE is not executed. See GET and
RESOURCE.VARIABLE:.

RELEASE.AFTER.LINE (-- n)
A constant which is the default value stored into the SERIAL.ACCESS user variable. If
stored into the SERIAL.ACCESS user variable of a task that is running the QED-Forth
interpreter, prevents the low level I/O words KEY EMIT and ?KEY from executing GET
or RELEASE on the active serial resource variable. Rather, the interpreter (that is,
QUIT) GETs the serial resource before each line is received and RELEASEs the serial
resource after each line is interpreted. This virtually eliminates the overhead required to
GET and RELEASE during downloads, and allows the interpreter to run at sustainable
baud rates to 19200 baud. CAUTION: In multitasking systems using both serial ports
SERIAL1 and SERIAL2, the application code should include the command

RELEASE.ALWAYS SERIAL.ACCESS !
or RELEASE.NEVER SERIAL.ACCESS !
before building the tasks. This prevents contention that can occur if the default
RELEASE.AFTER.LINE option is installed in the SERIAL.ACCESS user variable. See
SERIAL.ACCESS, RELEASE.NEVER, and RELEASE.ALWAYS.

RELEASE.ALWAYS (-- n)
A constant. Returns a value that, when stored into the SERIAL.ACCESS user variable,
causes the low level I/O words KEY EMIT and ?KEY to always RELEASE the serial
resource variable after each I/O operation. This is useful if the task that has control over
the serial line (for example, the task running the QED-Forth interpreter) wants to share
access to the serial port. See SERIAL.ACCESS, RELEASE.NEVER, and
RELEASE.AFTER.LINE.
CAUTION: Depending on which terminal program you use, you may find that storing
RELEASE.ALWAYS into the QED-Forth task's SERIAL.ACCESS variable decreases
the sustainable download baud rate to 9600 baud. To assure the highest sustainable
download baud rate, it is recommended that RELEASE.AFTER.LINE be stored in the
QED-Forth task's SERIAL.ACCESS variable during program development.
CAUTION: In multitasking systems using both serial ports SERIAL1 and SERIAL2, the
application code should include the command

RELEASE.ALWAYS SERIAL.ACCESS !
or RELEASE.NEVER SERIAL.ACCESS !
before building the tasks. This prevents contention that can occur if the default
RELEASE.AFTER.LINE option is installed in the SERIAL.ACCESS user variable.

 RELEASE.NEVER (-- n)
A constant. Returns a value that, when stored into the SERIAL.ACCESS user variable,
prevents the low level I/O words KEY EMIT and ?KEY from executing the command
SERIAL RELEASE. This is useful if the task that has control over the serial line (for
example, the task running the QED-Forth interpreter) does not want to share access to
the serial port. See SERIAL.ACCESS, RELEASE.ALWAYS, and
RELEASE.AFTER.LINE.

Main Glossary 139

CAUTION: Depending on which terminal program you use, you may find that storing
RELEASE.NEVER into the QED-Forth task's SERIAL.ACCESS variable decreases the
sustainable download baud rate to 9600 baud. To assure the highest sustainable
download baud rate, it is recommended that RELEASE.AFTER.LINE be stored in the
QED-Forth task's SERIAL.ACCESS variable during program development.
CAUTION: In multitasking systems using both serial ports SERIAL1 and SERIAL2, the
application code should include the command

RELEASE.ALWAYS SERIAL.ACCESS !
or RELEASE.NEVER SERIAL.ACCESS !
before building the tasks. This prevents contention that can occur if the default
RELEASE.AFTER.LINE option is installed in the SERIAL.ACCESS user variable.

REPEAT (--)
Used inside a colon definition to mark the end of a BEGIN ... WHILE ... REPEAT loop
structure. Use as:

BEGIN ...
flag WHILE ...
REPEAT

See BEGIN and WHILE.
Attributes: C, I

RESERVED (u1\u2 -- u3)
Used during definition of a structure to reserve an unnamed space equal to u2 bytes
within the structure. u1 is the structure offset initialized by STRUCTURE.BEGIN:. u3 is
the updated offset to be used by the next member defining word or by
STRUCTURE.END.
Attributes: D

RESIZE.HANDLE (xhandle\d -- flag)
Attempts to resize the heap item associated with xhandle so that it has a new size of d
bytes. Retains as much data as possible in the heap item. The heap must have enough
space to copy the heap item to be successful. A true flag is returned if the heap item is
successfully resized. A false flag indicates failure (due to an invalid xhandle or
inadequate heap space) and the original heap item is left unchanged.

 RESOURCE.VARIABLE: (<name> --)
Removes the next <name> from the input stream, defines a child word called <name>,
and VALLOTs 2 cells in the variable area. When <name> is executed, it leaves the
extended address, xaddr, of the two cells reserved in the variable area to hold the
resource variable's contents. <name> is referred to as a "resource variable". Use as:

RESOURCE.VARIABLE: <name>
Resource variables are used in multitasked systems to control access to shared
resources (for example, an A/D converter, serial port, block of memory, etc.) When the
resource associated with <name> is available, <name> contains 0\0. When it is
controlled by a task (and hence unavailable to other tasks), it contains the task id of the
controlling task. Before its first use, the resource variable must be initialized to 0\0.
After initialization to 0\0, the only operators that should access the resource variable are
GET ?GET and RELEASE. The following resource variables are pre-defined in the
QED-Forth kernel:

140 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

DISK.RESOURCE SPI.RESOURCE
SERIAL1.RESOURCE SERIAL2.RESOURCE
A/D8.RESOURCE

See their glossary entries and consult the Software Manual for further descriptions and
examples of use.
Attributes: D

RESTORE (--)
Restores the memory map user variables stored by the last execution of SAVE to their
respective user variables. See SAVE.

RIGHT.PLACES (-- xaddr)
A user variable that holds the number of digits to be displayed to the right of the decimal
point when a floating point number is printed in FIXED format. See F>FIXED$
Attributes: U

ROLL (wn\wn-1\...\w0\+n -- wn-1\...\w0\wn | 0 <= +n <= 255)
Transfers the +nth item (not including +n) on the data stack to the top of the data stack.
The top stack item is item#0, the next is item#1, etc. 0 ROLL does nothing, 1 ROLL is
equivalent to SWAP, and 2 ROLL is equivalent to ROT. An unchecked error occurs if
there are less than +n items on the data stack.

ROOM (-- d)
d is the number of bytes available in the HEAP.

ROT (w1\w2\w3 -- w2\w3\w1)
Rotates the top three stack cells.
Pronunciation: "rote"

 ROW->V (row#\matrix.xpfa -- xvaddr\sep\d.#el)
Returns the vector representation xvaddr\sep\d.#el of the specified row in the specified
matrix. xvaddr is the base address of the vector, sep is the element separation
expressed as a multiple of 4 bytes (e.g., sep=1 means a vector of contiguous floating
point numbers, sep=2 means elements are separated by 8 bytes, etc.) and the double
number d.#el is the number of elements in the vector. In the case of a row in a matrix,
sep equals the number of rows in the matrix and d.#el equals the 32-bit equivalent of
the number of columns in the matrix. Note that xvaddr must be 4-byte aligned (i.e.,
must be an even multiple of 4). The heap manager and array and matrix dimensioning
words automatically perform the required 4-byte alignment. See also COL->V.
Pronunciation: "row-to-v"

ROW.CONCATENATE (matrix.xpfa1\matrix.xpfa2\matrix.xpfa3 --)
Concatenates the two source matrices specified by matrix.xpfa1 and matrix.xpfa2 to
form a destination matrix matrix.xpfa3 with more rows. The number of columns in the
two source matrices must be the same. The destination may be one of the sources.

ROW/COL* ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2\
 [row#3\-1] or [-1\col#3]\matrix.xpfa3 --)

Main Glossary 141

Multiplies each element of the source1 row/col specified by
[row#1\-1] or [-1\col#1]\matrix.xpfa1

by the corresponding element of the source2 row/col specified by
[row#2\-1] or [-1\col#2]\matrix.xpfa2

and stores the result in the corresponding element of the destination row/col specified
by

[row#3\-1] or [-1\col#3]\matrix.xpfa3.
The destination row/col may be one of the sources. If the destination is in the same
matrix as one or both of the sources, the destination should not intersect either of the
sources.
Pronunciation: "row-or-col-star" Attributes: S

ROW/COL*+ (r1 \ [row#1\-1] or [-1\col#1]\matrix.xpfa1\
[row#2\-1] or [-1\col#2]\matrix.xpfa2\
[row#3\-1] or [-1\col#3]\matrix.xpfa3 -- r1)

Multiplies the scalar r1 by each element in the source2 row/col specified by
[row#2\-1] or [-1\col#2]\matrix.xpfa2

and adds the result to the corresponding element of the source1 row/col specified by
[row#1\-1] or [-1\col#1]\matrix.xpfa1

and places the final result in the corresponding element of the destination row/col
specified by

[row#3\-1] or [-1\col#3]\matrix.xpfa3
Thus for each element, dest <- src1 + r1*src2. The destination may be either of the
sources. If the destination is in the same matrix as one or both of the sources, the
destination should not intersect either of the sources. The scalar r1 is left on the stack.
Pronunciation: "row-or-col-star-plus" Attributes: S

ROW/COL+ ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2\
 [row#3\-1] or [-1\col#3]\matrix.xpfa3 --)
Adds each element of the source1 row/col specified by

[row#1\-1] or [-1\col#1]\matrix.xpfa1
to the corresponding element of the source2 row/col specified by

[row#2\-1] or [-1\col#2]\matrix.xpfa2
and stores the result in the corresponding element of the destination row/col specified
by

[row#3\-1] or [-1\col#3]\matrix.xpfa3
The destination row/col may be one of the sources. If the destination is in the same
matrix as one or both of the sources, the destination should not intersect either of the
sources.
Pronunciation: "row-or-col-plus" Attributes: S

ROW/COL- ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2\
 [row#3\-1] or [-1\col#3]\matrix.xpfa3 --)
Subtracts each element of the source2 row/col specified by

[row#2\-1] or [-1\col#2]\matrix.xpfa2
from the corresponding element of the source1 row/col specified by

[row#1\-1] or [-1\col#1]\matrix.xpfa1

142 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

and stores the result in the corresponding element of the destination row/col specified
by

[row#3\-1] or [-1\col#3]\matrix.xpfa3
The destination row/col may be one of the sources. If the destination is in the same
matrix as one or both of the sources, the destination should not intersect either of the
sources.
Pronunciation: "row-or-col-minus" Attributes: S

ROW/COL->V ([row#\-1] or [-1\col#]\matrix.xpfa -- xvaddr1\sep\d.#el)
Converts a row/col specified by

[row#\-1] or [-1\col#]\matrix.xpfa
into the equivalent vector representation specified by

xvaddr1\sep\d.#el
To specify a row in the matrix, use row#\-1\matrix.xpfa. To specify a column in the
matrix, use -1\col#\matrix.xpfa. The proper xvaddr, separation, and (32-bit) number of
elements that specify the vector representation are returned.
Note: xvaddr is the base address of the vector, sep is the element separation expressed
as a multiple of 4 bytes (e.g., sep=1 means a vector of contiguous floating point
numbers, sep=2 means elements are separated by 8 bytes, etc.) and double number
d.#el is the number of elements in the vector. Note that xvaddr must be 4-byte aligned
(i.e., must be an even multiple of 4). The heap manager and array and matrix
dimensioning words automatically perform the required 4-byte alignment.
Pronunciation: "row-or-col-to-v"

 ROW/COL.ALL= ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2 -- flag)

Compares each element of the source1 row/col specified by
[row#1\-1] or [-1\col#1]\matrix.xpfa1

with the corresponding element of the source2 row/col specified by
[row#2\-1] or [-1\col#2]\matrix.xpfa2

and returns a true flag if all of the corresponding elements are equal. Otherwise returns
a false flag.
Pronunciation: "row-or-col-all-equal"

ROW/COL.ANY= ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2 -- flag)

Compares each element of the source1 row/col specified by
[row#1\-1] or [-1\col#1]\matrix.xpfa1

with the corresponding element of the source2 row/col specified by
[row#2\-1] or [-1\col#2]\matrix.xpfa2

and returns a true flag if any of the corresponding elements are equal. Otherwise
returns a false flag.
Pronunciation: "row-or-col-any-equal"

ROW/COL.CENTERED ([row#\-1] or [-1\col#]\matrix.xpfa -- r)
Finds the arithmetic mean r of the specified row or column in the matrix, and subtracts
this value from each element in the row or column, leaving the mean value on the data
stack.
Pronunciation: "row-or-col-centered" Attributes: S

Main Glossary 143

ROW/COL.COPY ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2 --)

Copies the source row/col specified by
[row#1\-1] or [-1\col#1]\matrix.xpfa1

to the destination row/col specified by
[row#2\-1] or [-1\col#2]\matrix.xpfa2.

Pronunciation: "row-or-col-copy"

ROW/COL.DELETED ([row#1\-1] or [-1\col#1]\matrix.xpfa1\matrix.xpfa2 --)
Copies all but the specified row or column of the source matrix matrix.xpfa1 to the
destination specified by matrix.xpfa2. The destination may be the source.

ROW/COL.DOT.PRODUCT ([row#1\-1] or [col#1\-1]\matrix.xpfa1\
 [row#2\-1] or [col#2\-1]\matrix.xpfa2 -- r)

r is the dot product of the 2 specified row/cols. The dot product is calculated by
multiplying each element in the row/col specified by

[row#1\-1] or [-1\col#1]\ matrix.xpfa1
by the corresponding element in the row/col specified by

[row#2\-1] or [-1\col#2]\ matrix.xpfa2
and summing the results to produce r.
Pronunciation: "row-or-col-dot-product" Attributes: S

 ROW/COL.FILL (r\[row#\-1] or [-1\col#]\matrix.xpfa --)
Stores r into each element of the specified row or column in the matrix.
Pronunciation: "row-or-col-fill"

ROW/COL.INSERTED ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2 --)

Inserts the source row/col specified by
[row#1\-1] or [-1\col#1]\matrix.xpfa1

into the destination matrix specified by matrix.xpfa2 as the row or column specified by
[row#2\-1] or [-1\col#2]\matrix.xpfa2

The source row/col is unchanged unless it is also the destination. The source may be
within the destination matrix.

ROW/COL.IS.UNITY.LENGTH ([row#\-1] or [-1\col#]\matrix.xpfa -- r)
Calculates the length r of the specified row or column and divides each element in the
row/column by r so that the row/column has unity length. The old length is left on the
stack. The length is defined as the square root of the sum of the squares of the
elements in the row or column.
Pronunciation: "row-or-col-is-unity-length" Attributes: S

ROW/COL.MAX ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2\
 [row#3\-1] or [-1\col#3]\matrix.xpfa3 --)

Performs the function FMAX on each pair of corresponding elements in the two source
row/cols specified by

[row#1\-1] or [-1\col#1]\matrix.xpfa1

144 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

and [row#2\-1] or [-1\col#2]\matrix.xpfa2
and places the result in the destination row/col specified by

[row#3\-1] or [-1\col#3]\matrix.xpfa3
The destination may be either of the sources. If the destination is in the same matrix as
one or both of the sources, the destination should not intersect either of the sources.
Pronunciation: "row-or-col-max"

ROW/COL.MIN ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2\
 [row#3\-1] or [-1\col#3]\matrix.xpfa3 --)

Performs the function FMIN on each pair of corresponding elements in the two source
row/cols specified by

[row#1\-1] or [-1\col#1]\matrix.xpfa1
and [row#2\-1] or [-1\col#2]\matrix.xpfa2
and places the result in the destination row/col specified by

[row#3\-1] or [-1\col#3]\matrix.xpfa3
The destination may be either of the sources. If the destination is in the same matrix as
one or both of the sources, the destination should not intersect either of the sources.
Pronunciation: "row-or-col-min"

ROW/COL.SUM ([row#\-1] or [-1\col#]\matrix.xpfa -- r)
r is the sum of all of the elements in the specified row or column in the matrix.
Pronunciation: "row-or-col-sum" Attributes: S

ROW/COL.SWAP ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2 --)

Swaps the contents of the row/col specified by
[row#1\-1] or [-1\col#1]\matrix.xpfa1

with the contents of the row/col specified by
[row#2\-1] or [-1\col#2]\matrix.xpfa2.

Pronunciation: "row-or-col-swap"

ROW/COL.TRANSFORMED ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2\ xcfa --)

xcfa specifies a function that transforms a single floating point number into a floating
point result. ROW/COL.TRANSFORMED applies this transformation to each element of
the source row or column specified by

[row#1\-1] or [-1\col#1]\matrix.xpfa1
and places the result in the destination row or column specified by

[row#2\-1] or [-1\col#2]\matrix.xpfa2
The source row/col can equal the destination.
Pronunciation: "row-or-col-transformed" Attributes: S

ROW/COL.VARIANCE ([row#\-1] or [-1\col#]\matrix.xpfa -- r)
r is the variance, or length squared of the specified row or column in the matrix. It is
calculated by performing the dot product of the row or column with itself, which squares
each element and sums the squares to produce r.
Pronunciation: "row-or-col-variance" Attributes: S

Main Glossary 145

ROW/COL/ ([row#1\-1] or [-1\col#1]\matrix.xpfa1\
 [row#2\-1] or [-1\col#2]\matrix.xpfa2\
 [row#3\-1] or [-1\col#3]\matrix.xpfa3 --)
Divides each element of the source1 row/col specified by

[row#1\-1] or [-1\col#1]\matrix.xpfa1
by the corresponding element of the source2 row/col specified by

[row#2\-1] or [-1\col#2]\matrix.xpfa2
and stores the result in the corresponding element of the destination row/col specified
by

[row#3\-1] or [-1\col#3]\matrix.xpfa3
The destination row/col may be one of the sources. If the destination is in the same
matrix as one or both of the sources, the destination should not intersect either of the
sources.
Pronunciation: "row-or-col-slash" Attributes: S

 RP! (--)
Return Stack: (R: [...] --)
Initializes the return stack pointer to be equal to the value in the user variable R0, thus
clearing the return stack. The first return stack item will be stored in the two bytes below
the value in R0, and the stack grows downward in memory. For example, if R0 =
0x9000, the first stack item is at memory locations 0x8FFE and 0x8FFF. Forces a
COLD restart if R0 is not in common RAM.
Pronunciation: "r-p-store"

RS485.RECEIVE (--)
Clears bit 4 in PPC (of the PIA) to the logic 0 state. If upper PPC has been configured
as an output port, this places the RS485 transceiver in the receive mode. (Make sure
that the onboard RS485/RS232 jumper is properly set before attempting to use the
RS485 interface). See INIT.RS485 and RS485.TRANSMIT.
Pronunciation: "R-S-four-eighty-five-receive"

RS485.TRANSMIT (--)
Sets bit 4 in PPC (of the PIA) to the logic 1 state. If upper PPC has been configured as
an output port, this places the RS485 transceiver in the transmit mode. (Make sure that
the onboard RS485/RS232 jumper is properly set before attempting to use the RS485
interface). See INIT.RS485 and RS485.RECIEVE.
Pronunciation: "R-S-four-eighty-five-transmit"

RTI.ID (-- n)
Returns the interrupt identity code for the real time interrupt. Used as an argument for
ATTACH.
Pronunciation: "r-t-i-i-d"

 S*MATRIX (r\matrix.xpfa1\matrix.xpfa2 --)
Multiplies the scalar r by each element in the source matrix specified by matrix.xpfa1
and stores the result in the corresponding element of the destination matrix specified by
matrix.xpfa2. The source and destination matrices may be the same.
Pronunciation: "s-star-matrix" Attributes: S

146 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

S+MATRIX (r\matrix.xpfa1\matrix.xpfa2 --)
Adds the scalar r to each element in the source matrix specified by matrix.xpfa1 and
stores the result in the corresponding element of the destination matrix specified by
matrix.xpfa2. The source and destination matrices may be the same.
Pronunciation: "s-plus-matrix" Attributes: S

S-MATRIX (r\matrix.xpfa1\matrix.xpfa2 --)
Subtracts each element in the source matrix specified by matrix.xpfa1 from the scalar r
and stores the result in the corresponding element of the destination matrix specified by
matrix.xpfa2. The source and destination matrices may be the same.
Pronunciation: "s-minus-matrix" Attributes: S

S.ROW/COL* (r\[row#\-1] or [-1\col#]\matrix.xpfa --)
Multiplies r by each element in the specified row or column in the matrix and stores the
result back into the element.
Pronunciation: "s-row-or-col-star" Attributes: S

S.ROW/COL+ (r\[row#\-1] or [-1\col#]\matrix.xpfa --)
Adds the scalar r to each element in the specified row or column in the matrix and
stores the result back into the element.
Pronunciation: "s-row-or-col-plus" Attributes: S

S.ROW/COL- (r\[row#\-1] or [-1\col#]\matrix.xpfa --)
Subtracts each element in the specified row or column in the matrix from r and stores
the result back into the element.
Pronunciation: "s-row-or-col-plus" Attributes: S

S.ROW/COL/ (r\[row#\-1] or [-1\col#]\matrix.xpfa --)
Divides r by each element in the specified row or column in the matrix and stores the
result back into the element.
Pronunciation: "s-row-or-col-divide" Attributes: S

S.ROW/COL< (r\[row#\-1] or [-1\col#]\matrix.xpfa -- flag)
flag is true if r is less than each element in the specified row or column in the matrix.
Alternate interpretation: flag is true if all elements in the row or column are greater than
or equal to r.
Pronunciation: "s-row-or-col-less-than"

S.ROW/COL> (r\[row#\-1] or [-1\col#]\matrix.xpfa -- flag)
flag is true if r is greater than each element in the specified row or column in the matrix.
Alternate interpretation: flag is true if all elements in row or column are less than or
equal to r.
Pronunciation: "s-row-or-col-greater-than"

S.V* (r\xvaddr\sep\d.#el --)
Multiplies r (a scalar) by each element in the vector specified by xvaddr\sep\d.#el.
Pronunciation: "s-v-star" Attributes: S

S.V+ (r\xvaddr\sep\d.#el--)

Main Glossary 147

Adds r (a scalar) to each element in the vector specified by xvaddr\sep\d.#el.
Pronunciation: "s-v-plus" Attributes: S

S.V- (r\xvaddr\sep\d.#el--)
Subtracts each element in the vector specified by xvaddr\sep\d.#el from the scalar r.
Pronunciation: "s-v-minus" Attributes: S

S.V.ALL= (r\xvaddr\sep\d.#el -- flag)
Compares the scalar r to each element of the vector specified by xvaddr\sep\d.#el. flag
is TRUE if r is equal to each of the elements in the vector; otherwise, flag is FALSE.
Pronunciation: "s-v-all-equal"

S.V.ANY= (r\xvaddr\sep\d.#el -- flag)
Compares the scalar r to each element of the vector specified by xvaddr\sep\d.#el. flag
is TRUE if r is equal to any of the elements in the vector; otherwise, flag is FALSE.
Pronunciation: "s-v-any-equal"

S.V/ (r\xvaddr\sep\d.#el --)
Divides the scalar r by each element in the vector specified by xvaddr\sep\d.#el.
Pronunciation: "s-v-slash" Attributes: S

S.V< (r\xvaddr\sep\d.#el -- flag)
Compares the scalar r to each element of the vector specified by xvaddr\sep\d.#el. flag
is true if r is less than each of the elements in the vector; otherwise, flag is FALSE.
Pronunciation: "s-v-less-than"

S.V> (r\xvaddr\sep\d.#el -- flag)
Compares the scalar r to each element of the vector specified by xvaddr\sep\d.#el. flag
is true if r is greater than each element in the vector; otherwise, flag is false.
Pronunciation: "s-v-greater-than"

S/MATRIX (r\matrix.xpfa1\matrix.xpfa2 --)
Divides the scalar r by each element in the source matrix specified by matrix.xpfa1 and
stores the result in the corresponding element of the destination matrix specified by
matrix.xpfa2. The source and destination matrices may be the same.
Pronunciation: "s-slash-matrix" Attributes: S

 S0 (-- xaddr)
User variable that contains the 16-bit address which is used by SP! to initialize the data
stack pointer. The first cell on the data stack occupies the 2 bytes below the address
contained in S0, and the stack grows downward in memory. After changing the
contents of S0, the next ABORT or restart loads the value into the stack pointer (the Y
register) to change the position of the stack. The data stack is allocated in a 768 byte
region in common memory after each COLD restart. See SP!.
Pronunciation: "s-zero" Attributes: U

S>D (n -- d)
Sign-extends a single precision integer to a double precision equivalent.
Pronunciation: "s-to-d"

148 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

SAVE (--)
Saves the current memory map so that it may be restored later. Saves the DP, NP, VP,
last xnfa in the FORTH vocabulary, and CURRENT.HEAP in a reserved area in
EEPROM (0xAE0C to 0xAE1A). RESTORE fetches these quantities and places them
in the appropriate user variables to restore the saved state. Useful for dictionary
management and for recovery from crashes. Consult the "Program Development
Techniques" chapter in the Software Manual for a detailed description of use. See
(EEC!).

SCALE (n1\n2 -- n3)
Arithmetically (i.e., preserving sign) shifts n1 by n2 bit places to yield signed result n3. If
n2 is positive, n1 is shifted left; if n2 is negative, n1 is shifted right. The absolute value
of n2 determines the number of bits of shifting. For example, 1 SCALE is equivalent to
2* and -1 SCALE is equivalent to 2/ . There is an unchecked error if the absolute value
of n2 is greater than 15.

SCAN (xaddr1\u1\char -- xaddr2\u2)
xaddr2 is the extended address of the first instance of the specified char in the u1 bytes
following xaddr1. u2 is the count remaining in the string after the first non-char bytes
have been skipped:

 u2 = u1 - (xaddr2 - xaddr1)
u1 and u2 are 16 bit counts. The string may cross a page boundary. SCAN is used by
WORD to locate the trailing delimiter of the next word in the input stream.

SCI.ID (-- n)
Returns the interrupt identity code for the asynchronous serial communications
interface. Used as an argument for ATTACH.
Pronunciation: "s-c-i-i-d"

SCIENTIFIC (--)
Sets the default printing format used by F. to scientific. See F>SCIENTIFIC$

SCIENTIFIC. (r --)
Prints r using SCIENTIFIC format. See F>SCIENTIFIC$
Pronunciation: "scientific-dot" Attributes: M, S

SCR (-- xaddr)
A user variable containing the block number of the last block (also known as a screen)
listed. The name is derived from the first 3 letters of screen. See LIST.
Pronunciation: "s-c-r" Attributes: U

SELECT.COLUMNS (n1\...\nN\#cols\matrix.xpfa1\matrix.xpfa2 --)
Dimensions the destination matrix specified by matrix.xpfa2 to have #cols columns and
the same number of rows as the source specified by matrix.xpfa1. Copies #cols
columns having column indices n1\...\nN from the source matrix to the destination. The
destination may be the source.

SEND (wd\xmailbox --)

Main Glossary 149

PAUSEs until the mailbox with extended address xmailbox is empty (i.e., contains 0\0)
and then stores the 32-bit message wd in xmailbox. The message wd can be any 32-bit
quantity except 0\0. For example, the message can be an xaddress that points to a
block of data. To ensure that the state of the mailbox is correctly determined, SEND
disables interrupts for 16 to 50 cycles (4 to 12.5 microseconds). See ?SEND,
RECEIVE, ?RECEIVE, and MAILBOX:.
Attributes: M

SERIAL (-- xresource)
A resource variable associated with the primary serial I/O port. A synonym for
SERIAL1.RESOURCE. See SERIAL1.RESOURCE.

SERIAL.ACCESS (-- xaddr)
A user variable containing a flag that controls when a task GETs and RELEASEs
access to the serial resource. If more than one task needs access to the serial I/O port,
this flag can help specify which task (if any) gets priority use. If SERIAL.ACCESS
contains the value RELEASE.ALWAYS, then each I/O operation by KEY EMIT or ?KEY
GETs the active serial resource before each I/O operation and RELEASEs the active
serial resource after each character I/O operation is complete. If SERIAL.ACCESS
contains the value RELEASE.NEVER, then I/O operations called by the task always
GET but never RELEASE the serial resource variable. If SERIAL.ACCESS contains the
value RELEASE.AFTER.LINE, then KEY EMIT and ?KEY never GET or RELEASE the
serial resource. Rather, the QED-Forth interpreter (that is, QUIT) GETs the serial
resource before each line is received and RELEASEs the serial resource after each line
is interpreted. This virtually eliminates the overhead required to GET and RELEASE
during downloads, and allows the interpreter to run at sustainable baud rates to 19200
baud. The default value stored in SERIAL.ACCESS after a COLD restart is
RELEASE.AFTER.LINE.
CAUTION: In multitasking systems using both serial ports SERIAL1 and SERIAL2, the
application code should include the command

RELEASE.ALWAYS SERIAL.ACCESS !
or RELEASE.NEVER SERIAL.ACCESS !
before building the tasks. This prevents contention that can occur if the default
RELEASE.AFTER.LINE option is installed in the SERIAL.ACCESS user variable. See
SERIAL1.RESOURCE, SERIAL2.RESOURCE, GET, RELEASE, KEY, EMIT, ?KEY,
and QUIT.
Attributes: U

SERIAL1.AT.STARTUP (--)
Initializes a flag in EEPROM which installs the primary serial port (serial1) as the default
serial port used by the QED-Forth interpreter after each reset or restart. The serial1
port is supported by the 68HC11's on-chip hardware UART.
Implementation detail: Sets the contents of address AE1DH in EEPROM to 0xFF.
Upon each reset or restart, the QED-Forth startup routine checks this byte, and
contents of 0xFF cause the USE.SERIAL1 routine to be executed. See USE.SERIAL1
and SERIAL2.AT.STARTUP.
Pronunciation: "serial-one-at-startup"

SERIAL1.RESOURCE (-- xaddr)

150 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

A resource variable that mediates access to the primary serial port (serial1) associated
with the 68HC11's on-chip hardware UART. Should be accessed only by the words
GET ?GET and RELEASE. Initialized to 0\0 by USE.SERIAL1 and USE.SERIAL2 and
at each reset or restart. See RESOURCE.VARIABLE:.
Pronunciation: "serial-one-resource"

 SERIAL2.AT.STARTUP (u -- | u = baud.rate)
Initializes a flag in EEPROM which installs the secondary serial port (serial2) at the
specified baud rate u as the default serial port used by the QED-Forth interpreter after
each reset or restart. The serial2 port is supported by QED-Forth's software UART
using hardware pins PA3 (input) and PA4 (output). The specified baud rate u must a
power of 2 times 75 baud up to a maximum of 9600 baud. Thus the allowed baud rates
for this routine are 75, 150, 300, 600, 1200, 2400, 4800, and 9600 baud. The effect of
this routine is canceled by executing SERIAL1.AT.STARTUP. Note that the serial2 port
can support many more baud rates, but the options have been limited to facilitate
setting a reasonable startup baud rate based on a simple implementation as described
below. Note also that the maximum baud rate that can be sustained by the serial2 port
is less than 9600 baud; see the glossary entry for BAUD2.
Implementation detail: Sets the contents of address AE1DH in EEPROM equal to u/75.
Upon each reset or restart, the QED-Forth startup routine checks this byte, and
contents equal to an exact power of two cause the USE.SERIAL2 routine to be
executed before control is passed to the interpreter or to an autostart routine. Note that
USE.SERIAL2 globally enables interrupts during the startup process. If you wish to use
the secondary serial port while avoiding this side-effect and maintaining control over the
global enabling of interrupts, don't execute SERIAL2.AT.STARTUP. Rather, have your
autostart routine explicitly call USE.SERIAL2 after ensuring that all interrupt service
routines are properly initialized.
Pronunciation: "serial-two-at-startup"

SERIAL2.RESOURCE (-- xaddr)
A resource variable that mediates access to the secondary serial port (serial2). The
serial2 port is supported by QED-Forth's software UART using hardware pins PA3
(input) and PA4 (output). Should be accessed only by the words GET ?GET and
RELEASE. Initialized to 0\0 by USE.SERIAL1 and USE.SERIAL2 and at each reset or
restart. See RESOURCE.VARIABLE:.
Pronunciation: "serial-two-resource"

SET.BITS (byte1\xaddr --)
For each bit of byte1 that is set, sets the corresponding bit of the 8 bit value at xaddr.
Disables interrupts for ten cycles (2.5 microseconds) to ensure an uninterrupted
read/modify/write operation. See also (SET.BITS) and CLEAR.BITS.

SET.BOOT.VECTOR (xcfa --)
Compiles a 6-byte sequence at locations 0x7FFA-0x7FFF on page 0x0C so that upon
subsequent restarts and ABORTs, the function having the specified xcfa (execution
address) will be executed BEFORE any other autostart routines are executed. The
execution order at startup is: boot_vector, then priority_autostart, then autostart. Note
that the “page C write protect” jumper must be removed for this function to be effective.
The boot vector is most useful for extending the kernel in a "bullet-proof" way that

Main Glossary 151

cannot be overwritten unless the page C write protect jumper is removed. For example,
suppose that you want to allow fail-safe field firmware upgrades using Compact Flash
(CF) cards via Mosaic's CF Wildcard. This can be accomplished by removing the page
C hardware write protect jumper, loading the CF Wildcard kernel extension on page
0x0C, and compiling a startup function on page C that checks for the presence of an
"AUTOEXEC.QED" file that will be automatically executed (loaded) if present. Using
Set.Boot.Vector, the startup function can be declared as a boot vector, and then the
page C write protect jumper can be installed. The boot vector will be able check for the
presence of a firmware upgrade file, and the hardware write protection of page C
prevents the erasure of the boot vector or its code. To remove the boot vector, take off
the page C write protect jumper and call CLEAR.BOOT.VECTOR, or perform a “factory
cleanup”.

SET.WATCH (u1\u2\u3\u4\u5\u6\u7\u8 --)
meaning: (100ths.sec\sec\min\hr\day\date\month\yr --)
Sets the battery-operated real-time clock (if present) to the time, day, and date specified
by u1 through u8. The stack items and their allowed ranges are:

item description range (decimal)
u8 year 0 - 99
u7 month 1 - 12
u6 date 1 - 31
u5 day of week 1 - 7
u4 hour of day 0 - 23
u3 minute after the hour 0 - 59
u2 seconds after the minute 0 - 59
u1 hundredths of seconds 0 - 99

Due to a hardware limitation, the hundredths of second parameter is ignored; it is
included in the stack picture to maintain backward compatibility with prior code.
SET.WATCH uses the top 16 bytes of on-chip RAM at B3F0-B3FF as a scratchpad
buffer. Once correctly set, the watch handles the differing numbers of days in each
month, and correctly handles leap years. See READ.WATCH.

SIGN (n --)
If n is negative, inserts a minus sign into the pictured output to the left of the previous
character. Used between <# and #>.
Attributes: S

SIGNED.D>S (d -- n)
n is the signed 16-bit representation of d. FP.ERROR is set if d cannot be represented
as a 16-bit signed integer.
Pronunciation: "signed-d-to-s" Attributes: S

SINGLE.STEP (-- xaddr)
A user variable that holds a flag. If the flag is true, a definition that has been compiled
with TRACE ON stops and enters a special BREAK interpreter before each instruction
during the trace. If the flag is false, the BREAK interpreter is not automatically entered
before each instruction during the trace. (Even if the flag is false, a keystroke from the
terminal may still be used to enter the BREAK mode while the trace is in progress.) See
BREAK.

152 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Attributes: U

SIZE.OF (-- u)
Compile Time: (<name> --)
Removes <name> from the input stream, where <name> is a heap structure instance
defined using D.INSTANCE: or H.INSTANCE: or V.INSTANCE: (an unchecked error
occurs if <name> was not created by one of these three defining words). SIZE.OF
returns the size in bytes of <name>. If executing, leaves u on the stack. If compiling,
SIZE.OF compiles u as a literal in the current definition.
Attributes: I

 SKIP (xaddr1\u1\char -- xaddr2\u2)
Skips the leading specified chars in the string whose first character is at xaddr1 and
whose count is u1, returning the string specification xaddr2\u2. xaddr2 is the address of
the first byte not equal to char found after searching from xaddr1 to at most xaddr1+u1 .
u2 is the count remaining after the leading chars have been skipped:

u2 = u1 - (xaddr2 - xaddr1)
u1 and u2 are 16 bit counts. The string may cross a page boundary. This routine is
used by WORD to skip leading spaces when parsing the input stream.

SKIP> (xaddr\u1\char -- xaddr\u2)
Strips the trailing characters specified by char from the string located at xaddr by
adjusting the count of the string. Returns the new character count, u2, of the text string
with trailing chars removed. The string may cross a page boundary.
Pronunciation: "skip-back"

SMUDGE (--)
Toggles (i.e., reverses the state of) the smudge bit in the header of the most recently
defined word in the CURRENT vocabulary. If the smudge bit is set, the word cannot be
found during a search of the dictionary. The smudge bit is used to prevent execution of
incomplete definitions. Used by : ; CODE and END.CODE.

SOLVE.EQUATIONS
 (coefficient.matrix.xpfa\residue.matrix.xpfa\solution.matrix.xpfa --)

Solves a set of simultaneous linear equations.
Example of use:
If the system of equations is represented by the matrix equation

M X = B
where M is a matrix of coefficients, X is a column matrix of unknown quantities (to be
solved for), and B is a column matrix representing the right hand side (residue) of the
equations, first define matrices M B and X using the MATRIX: command, initialize M
and B, and then execute

' M ' B ' X SOLVE.EQUATIONS
which dimensions the matrix X and stores into it the solution for the unknown quantities.
Attributes: S

SP! ([...] --)
Initializes the data stack pointer to be equal to the value in the user variable S0, thus
clearing all items off the data stack. The first stack item will be stored in the two bytes

Main Glossary 153

below the value in S0, and the stack grows downward in memory. For example, if S0 =
0x9000, the first stack item will be at memory locations 0x8FFE and 0x8FFF. Forces a
COLD restart if S0 is not in common RAM.
Pronunciation: "s-p-store"

SPACE (--)
Emits one space character. Equivalent to BL EMIT
Attributes: M

SPACES (+byte --)
Emits +byte spaces. Does nothing if +byte is negative.
Attributes: M

SPAN (-- xaddr)
A user variable that contains the number of characters received by the last execution of
EXPECT.
Attributes: U

SPEED.TO.DUTY (steps_per_second\ticks_per_second -- duty_cycle)
Returns an integer representation of a duty cycle which specifies the step rate of the
stepper motor. The first input parameter is the integer number of steps per second if full
stepping, or the number of halfsteps per second if half stepping. The second input
parameter is the integer number of clock ticks per second; the default is 1000 ticks per
second. The integer output parameter can be interpreted as a fraction with the radix
point to the left of the most significant bit. A 100% duty cycle is represented by 0xFFFF,
and this tells the STEP.MANAGER to output a new step pattern on every tick of the
interrupt clock (e.g., once per millisecond, corresponding to 1000 (half) steps per
second). A duty cycle of 0x8000 means a new step pattern is written to the motor port
every other clock tick; a duty cycle of 0x0100 dictates one step every 256 clock ticks;
and a duty cycle of 0000 means corresponds to a stopped state with no step pattern
updates. See the high level source file steppers.4th in the Demos_and_Drivers
directory of the distribution.

SPI.ID (-- n)
Returns the interrupt identity code for the synchronous serial peripheral interface (SPI).
Used as an argument for ATTACH. Note that the SPI communicates with the onboard
12 bit A/D and 8 bit D/A if they are installed. See INIT.SPI, SPI.ON, and SPI.OFF.
Pronunciation: "s-p-i-i-d"

SPI.OFF (--)
Disables the serial peripheral interface (SPI) by clearing the SPI enable (SPE) bit in the
SPI control register (SPCR). After execution of this routine, PORTD pins PD2-PD5 may
be used as standard digital I/O subject to the data direction specified in the
PORTD.DIRECTION register. See INIT.SPI.
Pronunciation: "init-S-P-I"

SPI.RESOURCE (-- xaddr)
A resource variable associated with the serial peripheral interface (SPI) which is used
for data transfer to and from the 12 bit analog to digital converter and 8 bit digital to

154 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

analog converter. Should be accessed only by the words GET ?GET and RELEASE.
Initialized to 0\0 by INIT.SPI and INIT.A/D12&DAC and at each reset or restart.
SPI.RESOURCE is automatically invoked by many of the A/D12 and DAC device driver
routines. See RESOURCE.VARIABLE:.
Pronunciation: "S-P-I-resource"

SQRT(2) (-- r)
Places the floating point representation of the square root of 2 (1.41421) on the stack.
Pronunciation: "square-root-of-two"

STACK.FRAME (+n -- [+n bytes]\xaddr)
Reserves +n bytes of room on the data stack and leaves xaddr that points to the top
(lowest in memory) reserved byte of the data stack frame. xaddr is equal to the stack
pointer before the xaddr is placed on the stack. xaddr is the base address of the stack
frame. If +n is odd it is incremented to reserve an integer number of cells (of two bytes
each) on the stack. STACK.FRAME is typically used to create a temporary variable
space within colon definitions so that re-entrant code may be written. FRAME.DROP is
used to drop the stack frame off the data stack.

STANDARD.MAP (--)
Sets a flag in EEPROM and changes the state of a latch in the onboard PALs to put the
standard memory map into effect on flash-equipped QED-FLASH Boards. After
execution of this routine, and upon each subsequent reset or restart, pages 1, 2, and 3
are addressed in the S2 RAM, and pages 4, 5, and 6 are addressed in the S1 flash
memory. After code is downloaded to RAM and transferred to flash using the
PAGE.TO.FLASH function, establishing the standard map allows code resident on
pages 4, 5 and 6 to be executed. To establish the download memory map, see the
glossary entry for DOWNLOAD.MAP. Note that the standard map is active after a
"factory cleanup" operation.

STANDARD.RESET (--)
Undoes the effect of the COLD.ON.RESET command so that subsequent resets will
result in the standard warm-or-cold startup sequence. Implementation detail: sets the
flag at location AE1CH in EEPROM to 0xFF.

START.HEAP (-- xaddr)
A variable that holds the extended address of the start of the current heap. The xaddr
left on the stack by START.HEAP is equal to CURRENT.HEAP - 4. Initialized by
IS.HEAP.

START.TIMESLICER (--)
Starts the timeslice clock and begins timeslice multitasking. Initializes the OC2 interrupt
vector (if it wasn't already initialized) so that the multitasking executive/elapsed-time
clock routine services the interrupt. Enables the OC2 interrupt mask and globally
enables interrupts by clearing the I bit in the condition code register of each built task.
Notes:
1. The default timeslice clock period of 5 msec can be changed with the command
*100US=TIMESLICE.PERIOD.

Main Glossary 155

2. START.TIMESLICER does not initialize the value in TIMESLICE.COUNT; execute
INIT.ELAPSED.TIME if you wish to initialize the clock count to 0\0.
3. After a restart, the system is configured so that timeslice multitasking can begin at
any time; if no other tasks have been built, the main QED-Forth task is the only task in
the task loop.
4. The timeslice clock must be running to use the BENCHMARK: function.
5. The timeslicer's interrupt service routine disables interrupts for the duration of a task
switch which requires 25 microseconds plus 3.25 microseconds for each ASLEEP task
encountered in the task list.

STATE (-- xaddr)
A user variable that indicates the compilation state. If the contents of STATE equal 0,
the system is in execution mode. If the contents equal -1, the system is in compilation
mode. STATE is modified by the commands [and].
Attributes: U

STATUS (-- xaddr | xaddr is also the task's xtask.id)
A user variable that contains the status of a task. Typically contains one of the 16-bit
constants AWAKE or ASLEEP. An ASLEEP task does not run as the multitasking
executive goes around the round robin task list. STATUS is the first user variable in the
user area, so the extended address returned by executing STATUS is also the base
address of the user area. This base address is also referred to as the "task identifier" or
"task id"; it is the address in common memory used to identify a particular task. See
also (STATUS).
Attributes: U

 STEP.MANAGER (--)
Expects the base address of the STATUS.ARRAY in the Y register. Based on the
information in the STATUS.ARRAY and the RAMP.ARRAY, for each enabled motor
STEP.MANAGER writes the appropriate step pattern at the specified duty cycle to the
motor port to attain the speed specified in the motor's RAMP.ARRAY. This function is
meant to be called from a periodic interrupt service routine typically associated with an
output compare (OC) interrupt; the default time base is once per millisecond generated
by the OC3 interrupt, with a resulting maximum speed of 1000 full- or half-steps per
second. This assembly coded routine executes in approximately 120 µs per enabled
stepper motor. Thus running four stepper motors at a maximum speed of 1000 full- or
half-steps per second requires approximately half of the 68HC11's available time (480
µs interrupt service time every 1000 µs). See the high level source file steppers.4th in
the Demos_and_Drivers directory of the distribution. CAUTION: The presence of other
interrupt service routines can affect the timing of the step manager, and may affect the
smoothness of the stepper motor operation.

STOP.TIMESLICER (--)
Stops the multitasker's timeslice clock by disabling the local OC2 timer interrupt mask.
Cooperative (PAUSE-invoked) task switching is not affected. See
START.TIMESLICER. Note that this command also stops QED-Forth's elapsed-time
clock, and that the timing feature of the BENCHMARK: command cannot be used
unless the timeslice clock is running.

156 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

STRING-> (u1\u2 -- u3)
Adds a named member to the structure being defined and reserves room for a counted
string in the structure. u2 is the number of characters in the string; u2+1 bytes are
reserved to allow room for the string's count byte. Removes <name> from the input
stream and creates a structure field called <name>. u1 is the structure offset initialized
by STRUCTURE.BEGIN:. u3 is the updated offset to be used by the next member
defining word or by STRUCTURE.END. When <name> is later executed, it adds its
offset u1 to the extended address found on the data stack which is typically the start
xaddress of an instance of the data structure; the result is the xaddress of the desired
member in the structure.
Pronunciation: "string" Attributes: D

STRUCT-> (u1\u2 <name> -- u3)
Adds a named member to the structure being defined and reserves room for a
(sub)structure of size u2 bytes in the structure being defined. Removes <name> from
the input stream and creates a structure field called <name>. u1 is the structure offset
initialized by STRUCTURE.BEGIN:. u3 is the updated offset to be used by the next
member defining word or by STRUCTURE.END. When <name> is later executed, it
adds its offset u1 to the extended address found on the data stack which is typically the
start xaddress of an instance of the data structure; the result is the xaddress of the
desired member in the structure.
Pronunciation: "struct" Attributes: D

STRUCTS-> (u1\u2\u3 <name> -- u4)
Adds a named member to the structure being defined and reserves room for u2
(sub)structures in the structure. Removes <name> from the input stream and creates a
structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u3 is the size of the (sub)structure, and u4 is the updated offset
to be used by the next member defining word or by STRUCTURE.END. When <name>
is later executed, it adds its offset u1 to the extended address found on the data stack
which is typically the start xaddress of an instance of the data structure; the result is the
xaddress of the desired member in the structure.
Pronunciation: "structs" Attributes: D

 STRUCTURE.BEGIN: (<name> -- xpfa\0)
Begins a structure definition and creates a named constant <name> which, when
executed, returns the size of the structure in bytes. See the "Structures" chapter in the
Software Manual for a detailed description and examples of use.
Implementation detail: <name>'s parameter field is at xpfa, and its initial contents equal
0. STRUCTURE.BEGIN: leaves the xpfa and the initial size on the stack. The size is
incremented throughout the structure's definition. STRUCTURE.END stores the total
size of the structure into the xpfa of the structure constant <name>.
Pronunciation: "structure-begin" Attributes: D

STRUCTURE.END (xpfa\u -- | u is the structure's size)
Marks the end of a structure definition. Stores u, the total number of bytes in the
structure being defined, into the xpfa of the structure constant created by
STRUCTURE.BEGIN:. See STRUCTURE.BEGIN:.
Attributes: D

Main Glossary 157

SWAP (w1\w2 -- w2\w1)
Exchanges the top two stack cells.

SWAP.ARRAYS (array.xpfa1\array.xpfa2 --)
Interchanges the contents of the parameter fields of the two specified arrays and leaves
the heap undisturbed, thus rapidly swapping the two arrays.

SWAP.MATRIX (matrix.xpfa1\matrix.xpfa2 --)
Interchanges the contents of the parameter fields of the two specified matrices and
leaves the heap undisturbed, thus rapidly swapping the two matrices.

SWI.ID (-- n)
Returns the interrupt identity code for the software interrupt (SWI). Used as an
argument for ATTACH. See the SWI instruction in the assembler glossary.
Pronunciation: "s-w-i-i-d"

TAB.WIDTH (-- xaddr)
A user variable that contains the number of spaces that EXPECT places in the TIB to
replace each incoming TAB character (ascii 09). Replacing tabs with spaces ensures
that tab-delimited words can be interpreted. The default is 4. See EXPECT.
Pronunciation: "tab-width" Attributes: U

TASK'S.USER.VAR (xaddr1\xtask.id -- xaddr2)
Converts the xaddress of a specified user variable xaddr1 in the current task to the
xaddress of the equivalent user variable xaddr2 in the task specified by xtask.id.
Facilitates the modification of user variables in other tasks. Use with care. For
example, to put a task named OTHER.TASK asleep, execute

ASLEEP STATUS OTHER.TASK TASK'S.USER.VAR !
Pronunciation: "task's-user-variable"

 TASK: (xtask.id <name> --)
Removes the next <name> from the input stream and creates an XCONSTANT that,
when executed, leaves the task identifier xtask.id on the stack. xtask.id is the base
xaddress of the user area of the new task being defined. An error is issued if xtask.id is
not in common RAM. xtask.id is also referred to as the task's STATUS address. See
STATUS.
Attributes: D

TEN (-- r)
Pushes the floating point number 10. onto the data stack.

THEN (--)
Synonym for ENDIF . Used inside a colon definition to mark the end of an IF ... ELSE
... THEN or IF ... THEN conditional structure. The word following THEN is executed
after the IF or ELSE (if present) part of the conditional executes. An error is issued if
THEN is not paired with IF or ELSE in a colon definition. See IF and ELSE.
Attributes: C, I

158 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

THIS.PAGE (-- byte)
Returns the contents of the page latch which indicates the current page. THIS.PAGE is
equivalent to (PAGE.LATCH) (C@)

TIB (-- xaddr | xaddr is the start of the terminal input buffer)
Returns the starting xaddr of the terminal input buffer. Equivalent to UTIB X@. The
terminal input buffer may be on any page, but may not cross a page boundary. The
default size of the terminal input buffer is 96 bytes. See QUERY.
Attributes: U

TIMER.OVERFLOW.ID (-- n)
Returns the interrupt identity code for the free-running timer overflow interrupt. Used as
an argument for ATTACH.
Pronunciation: "timer-overflow-i-d"

TIMESLICE.COUNT (-- xaddr)
Returns the extended address of the system variable TIMESLICE.COUNT. It contains
a 32-bit count of the number of clock ticks on the timeslicer clock. The period of the
clock is set by *100US=TIMESLICE.PERIOD. See READ.ELAPSED.SECONDS and
READ.ELAPSED.TIME.

 TO ([n] or [r] or [xaddr] or [d] -- | depends on type of self fetchers or locals)
Compile Time: (<name> --)
Stores a value into the named self-fetching or local variable. Removes <name> from the
input stream. If in compilation mode, compiles code that, when later executed, will store
the value on top of the stack into the self-fetching or local variable. If in execution mode,
stores the value on top of the stack into the self-fetching or local variable. If <name>
represents a 32-bit self-fetching variable (i.e., created by REAL: DOUBLE: or XADDR:)
or a 32-bit local variable (i.e., one whose name begins with D& or F& or X&), then a 32-
bit value is removed from the stack and stored; otherwise, a 16-bit value is removed
from the stack and stored.
Attributes: I

TO.FLASH (xaddr1\xaddr2\u -- success_flag | xaddr1=src, xaddr2=dest, u = byte count)
Transfers num bytes (0 <= num <= 65,535) starting at the specified source extended
address, to the specified destination extended address in flash. The source may be
anywhere in memory; it may even be in the flash which is being programmed. The
destination must be in flash. Returns a flag equal to -1 if the programming was
successful, or 0 if the programming failed. The most common reason for failure is a
destination that is not in a programmable page in flash memory. (If any locations in the
flash are programmed more than 10,000 times, the cell may wear out causing a failure
flag to be returned.) Assuming that the standard 512 Kbyte flash is present on the
board, writable flash pages include pages hex 4, 5, 6, 7, 0xC, 0xD, and 0x10-17 in the
standard map, and pages 1, 2, 3, 0xC, 0xD, and 0x18-1F in the download memory map.
Page 7 is always in flash and writable; it provides an excellent location for data or
graphics storage. Page 0x0D is also writeable flash, and is often used to hold kernel
extension code. Page 0x0C can be optionally write protected with a jumper, enabling
the installation of “bullet-proof” kernel extensions that cannot be erased until the jumper
is removed. This TO.FLASH function uses the 68HC11's on-chip RAM at 0xB200 to

Main Glossary 159

0xB3CF to manage the write to the flash (the real-time clock and C/Forth interrupt stack
reserve the bytes at 0xB3D0 to 0xB3FF). The remaining on-chip RAM at 0xB000 to
0xB1FF remains available to the user. Caution: the prolonged disabling of interrupts by
TO.FLASH can adversely affect real-time servicing of interrupts including those
associated with the secondary serial line. See PAGE.TO.FLASH.

TO.HEAP (xhandle -- flag)
If xhandle is a valid 32-bit handle in the current heap, the heap item associated with the
xhandle is returned to the heap (de-allocated), the heap is compacted, and a true flag
is returned. If xhandle is not a valid handle in the current heap, no action is taken and
a false flag is returned.

TOGGLE.BITS (byte1\xaddr --)
For each bit of byte1 that is set, reverses the state of the corresponding bit of the 8 bit
value at xaddr. Disables interrupts for ten cycles (2.5 microseconds) to ensure an
uninterrupted read/modify/write operation. See also (TOGGLE.BITS).

TRACE (-- xaddr)
A user variable that contains a flag. If true, this flag causes a call to a trace routine to
be compiled before each compiled word in a colon or code definition. The trace
instruction (a headerless routine called DO.TRACE) can facilitate debugging. If a
definition has been compiled while TRACE is ON, then when the word is executed (if
DEBUG is ON) the compiled trace routine prints out the name of each called subroutine
in the definition as it executes, along with the stack picture after that step in the
definition. If DUMP.REGISTERS is ON, the contents of the 68HC11's registers are
printed; this aids in the debugging of assembly coded routines. If SINGLE.STEP is ON,
the BREAK mode is entered after each step in the definition. The BREAK mode is also
entered if any character is received by QED-Forth while a trace is in progress. To add
even more flexibility and power to the debugger, the first thing that DO.TRACE does is
to execute the code whose xcfa is stored in the user variable TRACE.ACTION. The
default action is NO.OP, but the programmer can define any action and install it using
IS.TRACE.ACTION; see IS.TRACE.ACTION for further details. See also BREAK,
DEBUG, DUMP.REGISTERS, and SINGLE.STEP.
Attributes: U

TRAILING.ZEROS (-- xaddr)
A user variable that contains a flag. If the flag is false, trailing zeroes are not printed
when a floating point number is displayed in fixed or floating format. If true, trailing
zeros are displayed. See F>FIXED$ and F>FLOATING$.
Attributes: U

 TRANSFER.HEAP.ITEM (xhandle1\xaddr -- [xhandle2] or [0\0])
Copies the heap item specified by xhandle1 in the current heap into the heap whose
CURRENT.HEAP is equal to xaddr. If the operation is successful, returns the 32-bit
handle xhandle2 of the new heap item; if unsuccessful, does nothing and returns 0\0.
To copy a heap item within a single heap, see DUP.HEAP.ITEM.

TRANSFORM.MATRIX (matrix.xpfa1\matrix.xpfa2\xcfa --)

160 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

xcfa specifies a unary operator that transforms a floating point number into another
floating point number. TRANSFORM.MATRIX applies the specified transformation to
each element of the source matrix specified by matrix.xpfa1 and places the result in the
destination matrix specified by matrix.xpfa2. The source and destination matrices may
be the same.
For example, to replace each element in a matrix named MAT.A with its base 10
logarithm, execute:

' MAT.A XDUP CFA.FOR FLOG10 TRANSFORM.MATRIX
Pronunciation: "transform-matrix" Attributes: S

TRANSMITTING (-- xaddr)
Returns the extended address of a system variable that holds a flag. The flag is true if
the secondary serial port (serial2) is in the process of transmitting a character. If the
serial2 transmitter is active, the TRANSMITTING flag stays true until the serial2 output
buffer is empty. The serial2 port is supported by QED-Forth's software UART using
hardware pins PA3 (input) and PA4 (output).

TRANSPOSED (matrix.xpfa1\matrix.xpfa2 --)
Properly dimensions the destination matrix and places the transpose of the source
matrix.xpfa1 in the destination matrix.xpfa2. (Matrix transposition changes rows in the
source into columns in the destination, and columns in the source into rows in the
destination). The source and the destination may be the same.
Attributes: S

TRUE (-- flag | flag = -1)
Puts a boolean true flag equal to -1 on the data stack.

TUCK (w1\w2 -- w2\w1\w2)
Copies the top data stack cell to below the next data stack cell. TUCK is equivalent to
SWAP OVER.

TYPE (xaddr\cnt --)
If cnt is greater than zero, emits cnt characters beginning at location xaddr. xaddr is
typically the beginning of a text string and cnt is the text string's character count. There
is an unchecked error if cnt is outside the range 0 to 255. The string may cross a page
boundary. See COUNT.TYPE.
Attributes: M

TYPE.END (u1\u2\u3 -- max{u1,u2,u3})
Marks the end of a TYPE.OF: construct within a structure definition. See TYPE.OF: and
OR.TYPE.OF:
Attributes: D

TYPE.OF: (u -- u\u\u)
Marks the beginning of a TYPE.OF: construct within a structure definition. This allows
fields to be defined for variant data types. Each variant type is designated by an
OR.TYPE.OF: declaration, and the TYPE.OF: construct is terminated by TYPE.END.
For example, the following structure allows a member to be referred to either as a 32-bit
xhandle or as a separate handle and page:

Main Glossary 161

STRUCTURE.BEGIN: HEAP.STRUCTURE.PF
TYPE.OF:

XHNDL-> +XHANDLE
OR.TYPE.OF:

PAGE-> +HNDL.PAGE
ADDR-> +HNDL.ADDR

TYPE.END
ADDR-> +END.HEAP

STRUCTURE.END
Pronunciation: "type-of" Attributes: D

U*/MOD (u1\u2\u3 -- u4\u5 | do u1*u2/u3; u4 = remainder; u5 = quotient)
Multiplies two unsigned integers u1 and u2 producing an intermediate unsigned double
number result which is divided by unsigned integer u3 to yield an integer remainder u4
and quotient u5. An unchecked error occurs on overflow. Division by zero (u2=0)
yields u4 = u5 = -1 . See */MOD.
Pronunciation: "u-star-slash-mod"

U. (u --)
Prints unsigned integer u with no leading spaces and 1 trailing space.
Pronunciation: "u-dot" Attributes: M, S

U.INVERTED (matrix.xpfa1\matrix.xpfa2 --)
Inverts an upper triangular matrix specified by matrix.xpfa1 and puts the inverse in the
destination matrix.xpfa2. Ignores the lower half of the source matrix so it doesn't matter
if the elements are not truly zero. The source and destination may be the same.
Pronunciation: "u-inverted" Attributes: S

U/ (u1\u2 -- u3 | u3 = u1/u2)
Divides unsigned integer u1 by unsigned integer u2, giving the unsigned integer
quotient u3. Division by 0 (u2 = 0) results in a quotient of -1. This is the fastest integer
divide command. See /.
Pronunciation: "u-slash"

U/MOD (u1\u2 -- u3\u4 | u3 = remainder, u4 = quotient)
Divides unsigned integer u1 by u2, giving the unsigned integer quotient u4 and
remainder u3. Division by 0 (u2 = 0) results in a quotient of -1 and an indeterminant
remainder. This is the fastest integer divide with remainder. See /MOD.
Pronunciation: "u-slash-mod"

 U2/ (u1 -- u2 | u2 = u1 / 2)
Divides the unsigned number u1 by 2 giving u2. See 2/.
Pronunciation: "u-two-slash"

U< (u1\u2 -- flag)
Flag is TRUE if unsigned integer u1 is less than unsigned integer u2 and FALSE
otherwise.
Pronunciation: "u-less-than"

162 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

U> (u1\u2 -- flag)
Flag is TRUE if unsigned integer u1 is greater than unsigned integer u2 and FALSE
otherwise.
Pronunciation: "u-greater-than"

U>D (u -- ud)
Converts unsigned integer u to its double number equivalent ud by placing a 0 on the
data stack above u.
Pronunciation: "u-to-d"

U?KEY (-- xaddr)
A user variable that contains the extended code field address of the ?KEY routine. See
?KEY.
Pronunciation: "u-question-key" Attributes: U

UABORT (-- xaddr)
A user variable that contains the extended code field address of the user-supplied abort
routine that is executed if the CUSTOM.ABORT flag is TRUE. If CUSTOM.ABORT is
FALSE, ABORT executes the default (ABORT) routine. UABORT is initialized by COLD
to contain the xcfa of (ABORT). See (ABORT) and CUSTOM.ABORT.
Pronunciation: "u-abort" Attributes: U

UD*S (ud1\u -- ud2 | ud2 = ud1 * u)
Multiplies unsigned double number ud1 by unsigned single precision number u giving
the unsigned double number result ud2. An unchecked error occurs on overflow.
Pronunciation: "u-d-star-s"

UD.R (ud\+byte -- | +byte = width)
Prints the unsigned double number ud right-justified in a field of +byte characters. If
+byte is less than or equal to the number of characters to be printed, the number is
printed with no extra spaces. See D.R
Pronunciation: "u-d-dot-r" Attributes: M, S

UEMIT (-- xaddr)
A user variable that contains the extended code field address of the EMIT routine. See
EMIT.
Pronunciation: "u-emit" Attributes: U

UERROR (-- xaddr)
A user variable that contains the extended code field address of the error routine that is
executed if the CUSTOM.ERROR flag is TRUE. If CUSTOM.ERROR is FALSE, all
system errors call the default (ERROR) routine which prints descriptive error messages.
UERROR is initialized by COLD to contain the xcfa of a simple default error handler that
prints the hexadecimal system error number and executes ABORT. See ((ERROR)),
(ERROR), CUSTOM.ERROR, and ABORT, and consult the error message appendix in
the Software Manual.
Pronunciation: "u-error" Attributes: U

UFIRST (-- xaddr)

Main Glossary 163

A user variable that holds the extended address of the first byte of the first block buffer.
Executing UFIRST X@ places the xaddress of the first byte of the block buffers on the
stack. Initialized by BLOCK.BUFFERS.
Pronunciation: "u-first" Attributes: U

UFIXX (r -- u)
Rounds the positive floating point number r to the nearest unsigned integer u.
Equivalent to DFIXX D>S. Overflow errors are not checked. See DFIXX.
Attributes: S

UFLOT (u -- r)
Converts the 16 bit unsigned integer u to its floating point representation r. See DFLOT
and FLOT.
Pronunciation: "u-float" Attributes: S

UKEY (-- xaddr)
A user variable that contains the extended code field address of the KEY routine. See
KEY.
Pronunciation: "u-key" Attributes: U

ULIMIT (-- xaddr)
A user variable that contains the extended address of the last+1 byte in the last block
buffer. Initialized by BLOCK.BUFFERS.
Pronunciation: "u-limit" Attributes: U

UM* (u1\u2 -- ud | ud = u1 * u2)
Multiplies unsigned integers u1 and u2 giving the unsigned double precision product ud.
Pronunciation: "u-m-star"

UM/MOD (ud1\u1 -- u2\ud2 | u2 = remainder, ud2 = quotient)
Divides unsigned double number ud1 by unsigned integer u1 to give an unsigned
single-precision remainder u2 and an unsigned double number quotient ud2. Division
by 0 (u1=0) yields u2 = -1 and ud2 = -1.
Pronunciation: "u-m-slash-mod"

 UMAX (u1\u2 -- [u1] or [u2])
Retains the greater of two unsigned integers and drops the other. See MAX.
Pronunciation: "u-max"

UMIN (u1\u2 -- [u1] or [u2])
Retains the lesser of two unsigned integers and drops the other. See MIN.
Pronunciation: "u-min"

UMOD (u1\u2 -- u3 | u3 = remainder of u1/u2)
Divides unsigned integer u1 by unsigned integer u2, giving the unsigned remainder u3.
Division by zero results in an indeterminant remainder. This is the fastest modulus
function. See MOD.
Pronunciation: "u-mod"

164 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

UNDERFLOW (--)
Sets the user variable FP.ERROR to 1 to indicate an underflow error.

UNIQUE.MSG (-- xaddr)
A user variable that contains a flag. If the flag is true (the default condition), BEEP is
executed and a warning message is printed each time a word is defined that already
exists in the CURRENT or CONTEXT vocabularies. If the flag is false, no warning is
issued when non-unique words are added to the dictionary.
Pronunciation: "unique-message"

UNLOOP (--)
Return Stack: (R: w1\w2 -- | discards the loop limit and index)
Removes the top two cells from the return stack. If you need to immediately EXIT a
word definition from inside a DO...LOOP, call UNLOOP to discard the loop index and
limit before executing EXIT to exit the definition. To exit a definition from within nested
do loops, execute one UNLOOP for each level of nesting. Make sure that there are no
additional items on the return stack (e.g., resulting from a >R command). UNLOOP is a
synonym for XR>DROP which drops two cells from the return stack.
Attributes: C

UNTIL (flag --)
Used inside a colon definition to mark the end of a BEGIN ... UNTIL loop structure
which terminates based on the value of flag. If flag is true, the loop terminates and
execution continues with the word following UNTIL. If flag is false, looping continues
and execution passes to the word following BEGIN. Use as:

BEGIN ... words to be executed ...
flag UNTIL

An error is issued if BEGIN and UNTIL are not properly paired within a definition.
Attributes: C, I

 UP (-- xhandle | xhandle contains 16-bit user pointer)
Places on the stack the 32-bit extended address that contains the 16-bit base address
of the current task's user area. Executing UP @ is equivalent to executing (STATUS) ;
both return the 16-bit base address (in common memory) of the current task.
Pronunciation: "u-p"

UPAD (-- xaddr)
User variable that holds the 32 bit xaddr of PAD. The contents of UPAD must point to
modifiable RAM, and there must be at least 32 bytes of RAM below PAD for
number/string conversion. PAD may be on any page, but may not cross a page
boundary. To change the location of PAD, store the new xaddress into UPAD using X!.
See PAD.
Pronunciation: "u-pad" Attributes: U

UPDATE (--)
Marks the current buffer as updated.
Implementation detail: Sets the top bit in the buffer's 32-bit status flag. The current
buffer is pointed to by PREV.

Main Glossary 165

UPDATE.DISPLAY (--)
Writes the contents of the DISPLAY.BUFFER to the LCD display. When finished,
leaves the display cursor pointing at the first position in the first line. For character
displays, the cursor is turned off during the write to the display and is restored to its prior
state after the update is complete, thus avoiding "flickering" of the cursor. Intermittently
disables interrupts for 28 cycles (7 microseconds) per byte to implement clock
stretching. See also (UPDATE.DISPLAY) and UPDATE.DISPLAY.LINE.

UPDATE.DISPLAY.LINE (n -- | n = line#)
Writes the contents of the specified line number n in the DISPLAY.BUFFER to the LCD
display. n is zero-based, and is clamped to a maximum of 1 less than LINES/DISPLAY.
Writes CHARS/DISPLAY.LINE characters to the display. When finished, leaves the
display cursor pointing at the first position in the line following n. For character displays,
the cursor is blanked during the write to the display and is restored to its prior state after
the update is complete, thus avoiding "flickering" of the cursor. The line# n1 follows the
same rules explained in the description of BUFFER.POSITION: for a graphics-style
display the line# n1 is interpreted differently depending on whether the display is being
used in "text mode" or "graphics mode". In text mode, n1 corresponds to the character
line#; in graphics mode, n1 corresponds to the pixel line#. Intermittently disables
interrupts for 28 cycles (7 microseconds) per byte to implement clock stretching.

UPOCKET (-- xaddr)
User variable that holds the 16-bit addr of POCKET which is in common memory. To
change the location of POCKET, store the new xaddress into UPOCKET using !. Note
that FIND executes COLD if POCKET is not in the common RAM.
Pronunciation: "u-pocket" Attributes: U

UPPER.CASE (x$addr -- x$addr)
Converts all of the characters in the counted string at x$addr to upper case letters. The
string may not cross a page boundary.

URANGE (u1\u2\u3 -- u1\flag)
Flag is TRUE if u1 is greater than or equal to u2 and less than or equal to u3.
Otherwise flag is FALSE. Uses unsigned comparison. See RANGE.
Pronunciation: "u-range"

URANGE.OF (u1\u2\u3 -- [u1] or [])
Used inside a CASE ... ENDCASE structure to mark the beginning of a conditional
statement. If u2 <= u1 <= u3 (using unsigned math) then u1, u2, and u3 are dropped
and execution continues with the words between URANGE.OF and ENDOF and then
skips to the word after ENDCASE. Otherwise, u2 and u3 are dropped and execution
continues after the next ENDOF. Use as:

n1 CASE
u2 u3 URANGE.OF executed if n1 in range (u2,u3) ENDOF
u4 u5 URANGE.OF executed if n1 in range (u4,u5) ENDOF
words to be executed if not in range (u2,u3) or (u4,u5)
ENDCASE

An error is issued if URANGE.OF and ENDOF are not properly paired. See CASE, OF,
RANGE.OF.

166 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "u-range-of" Attributes: C, I

UREAD/WRITE (-- xaddr)
A user variable that contains the extended code field address of the mass memory
read/write word called by the command READ/WRITE. Its default contents equal the
xcfa of the ram disk utility. See READ/WRITE.
Pronunciation: "u-read-slash-write" Attributes: U

USE (-- xaddr)
A user variable containing the extended address of the next block buffer to use (that is,
the least most recently accessed buffer).
Attributes: U

USE.PAGE (page --)
Sets up a useful default memory map in the specified page of RAM, and places the
heap area in the top 14.5K of page fifteen and the variable area in common RAM. The
locations of the user area, data stack, return stack, TIB, POCKET and PAD are not
changed (they are typically in the common RAM). The memory map is initialized as
follows:

20 Kbyte definitions area starts at 0x0000 on the specified page
12 Kbyte name area starts at 0x5000 on the specified page
Variable area starts at 0x8E00 in common memory
14.5 Kbyte heap occupies 0x4600\F-0x7FFF\F

The dictionary and names areas are on the specified page and may be write-protectable
(pages 4, 5, 6, and 7 are write-protectable). The heap is on page 0x0F (non-write-
protectable RAM) and the variable area is in common RAM, so the variable and heap
areas will never be mistakenly ROMmed or write protected. This routine is provided as
a convenience to users who need to set up a reasonable memory map immediately
after start up. It is strongly recommended that the programmer execute

ANEW <name>
immediately after using this word. Doing so will properly reset the necessary pointers
when forgetting compiled words during debugging. Implementation detail example:
Executing 4 USE.PAGE is equivalent to:

HEX 0000 04 DP X! 5000 04 NP X!
8E00 00 VP X! 4600 0F 7FFF 0F IS.HEAP

USE.SERIAL1 (--)
Installs the primary serial port (serial1) as the serial link used by the QED-Forth
interpreter and called by EMIT, ?KEY, and KEY. The serial1 port is associated with the
68HC11's on-chip hardware UART. Stores the xcfa of KEY1 in UKEY, the xcfa of
?KEY1 in U?KEY, and the xcfa of EMIT1 in UEMIT. Thus the vectored routines KEY,
?KEY, and EMIT will automatically execute the serial1 routines KEY1, ?KEY1, and
EMIT1 respectively. Initializes the resource variable SERIAL1.RESOURCE to 0\0, and
initializes the resource variable associated with the prior serial channel in use (typically
either SERIAL1.RESOURCE or SERIAL2.RESOURCE) to 0\0. Does not disable the
serial2 port.
Pronunciation: "use-serial-one"

USE.SERIAL2 (--)

Main Glossary 167

Installs the secondary serial port (serial2) as the serial link used by the QED-Forth
interpreter and called by EMIT, ?KEY, and KEY, calls INIT.SERIAL2 to initialize the
serial2 port, and globally enables interrupts to allow the serial2 port to operate. The
serial2 port is supported by QED-Forth's software UART using hardware pins PA3
(input) and PA4 (output). USE.SERIAL2 stores the xcfa of KEY2 in UKEY, the xcfa of
?KEY2 in U?KEY, and the xcfa of EMIT2 in UEMIT. Thus the vectored routines KEY,
?KEY, and EMIT will automatically execute the serial2 routines KEY2, ?KEY2, and
EMIT2 respectively. Initializes the resource variable SERIAL2.RESOURCE to 0\0, and
initializes the resource variable associated with the prior serial channel in use (typically
either SERIAL1.RESOURCE or SERIAL2.RESOURCE) to 0\0. Does not disable the
serial1 port. See BAUD2.
Pronunciation: "use-serial-two"

USER (+byte <name> -- | +byte = offset from user area base address)
Removes the next <name> from the input stream and creates a user variable called
<name> which when executed places on the stack an extended address equal to the
user base address (i.e., the value in UP) plus the specified offset +byte. Use as:

+byte USER <name>
The user area holds system variables. The kernel word #USER.BYTES returns the
number of bytes in the user area that are already used by the QED-Forth system. Thus
when defining a new user variable, +byte should be greater than or equal to
#USER.BYTES and less than 255 (the maximum size of the user area).
Attributes: D

UTIB (-- xaddr)
User variable that holds the 32 bit xaddr of the TIB (terminal input buffer). To change
the location of TIB, store the new xaddress into UTIB using X!. The terminal input buffer
may be on any page, but may not cross a page boundary.
Pronunciation: "u-t-i-b" Attributes: U

V* (xvaddr1\sep1\xvaddr2\sep2\xvaddr3\sep3\d.#el --)
Multiplies each element of the source1 vector specified by xvaddr1\sep1\d.#el with the
corresponding element in the source2 vector specified by xvaddr2\sep2\d.#el and
places the result in the corresponding element of the destination vector specified by
xvaddr3\sep3\d.#el. The destination vector may be one of the source vectors.
Pronunciation: "v-star" Attributes: S

V*+ (r1\xvaddr1\sep1\xvaddr2\sep2\xvaddr3\sep3\d.#el -- r1)
Multiplies the scalar r1 by each element in the source2 vector specified by
xvaddr2\sep2\d.#el and adds the result to the corresponding element in the source1
vector specified by xvaddr1\sep1\d.#el, and places the final result in the corresponding
element of the destination vector specified by xvaddr3\sep3\d.#el. Thus for each
element,

dest <- src1 + r1*src2
The destination vector may be one of the source vectors. The scalar r1 is left on the
stack.
Pronunciation: "v-star-plus" Attributes: S

V+ (xvaddr1\sep1\xvaddr2\sep2\xvaddr3\sep3\d.#el --)

168 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Adds each element of the source1 vector specified by xvaddr1\sep1\d.#el with the
corresponding element in the source2 vector specified by xvaddr2\sep2\d.#el and
places the result in the corresponding element of the destination vector specified by
xvaddr3\sep3\d.#el. The destination vector may be one of the source vectors.
Pronunciation: "v-plus" Attributes: S

 V, (w --)
Stores w at the next available location in the variable area and increments the variable
pointer VP by 2. An error occurs if w is not correctly stored; e.g. if VP does not point to
RAM. An error occurs if the V, operation causes VP to be incremented across the
boundary between 0x7FFF (the last valid address in a given page) and 0x8000 (the
start of the register area).
Pronunciation: "v-comma"

V- (xvaddr1\sep1\xvaddr2\sep2\xvaddr3\sep3\d.#el --)
Subtracts each element of the source2 vector specified by xvaddr2\sep2\d.#el from the
corresponding element in the source1 vector specified by xvaddr1\sep1\d.#el and
places the result in the corresponding element of the destination vector specified by
xvaddr3\sep3\d.#el. The destination vector may be one of the source vectors.
Pronunciation: "v-minus" Attributes: S

V.ALL= (xvaddr1\sep1\xvaddr2\sep2\d.#el -- flag)
flag is true if each element in the source1 vector specified by xvaddr1\sep1\d.#el is
equal to the corresponding element in the source2 vector specified by
xvaddr2\sep2\d.#el.
Pronunciation: "v-all-equal"

V.ANY= (xvaddr1\sep1\xvaddr2\sep2\d.#el -- flag)
flag is true if any element in the source1 vector specified by xvaddr1\sep1\d.#el is equal
to the corresponding element in the source2 vector specified by xvaddr2\sep2\d.#el.
Pronunciation: "v-any-equal"

V.COPY (xvaddr1\sep1\xvaddr2\sep2\d.#el --)
Copies the contents of the source vector specified by xvaddr1\sep1\d.#el to the
destination vector specified by xvaddr2\sep2\d.#el.
Pronunciation: "v-copy"

V.FILL (r\xvaddr\sep\d.#el --)
Stores r into each element of the vector specified by xvaddr\sep\d.#el.
Pronunciation: "v-fill"

 V.INSTANCE: (u <name> -- | u is the size of the structure)
Removes <name> from the input stream, creates a structure instance called <name>,
and allocates u bytes in the variable area starting at VHERE for the structure instance
(the "V" in "V.INSTANCE:" refers to the Variable area where the instance is allocated).
Compare with D.INSTANCE:. When <name> is executed, the base address of the
allocated structure instance is placed on the data stack. Typical use:

<structure.name> V.INSTANCE: <name>
where <structure.name> was defined using

Main Glossary 169

STRUCTURE.BEGIN: <structure.name> ... STRUCTURE.END
Executing <structure.name> leaves the structure size n on the stack, and V.INSTANCE:
<name> allocates and names the instance. Executing

SIZE.OF <name>
places the allocated size of the instance on the stack. Note that the instance may cross
page boundaries, and may increment the variable pointer VP so that it points to a new
page.
Pronunciation: "v-instance" Attributes: D

V.MAX (xvaddr1\sep1\xvaddr2\sep2\xvaddr3\sep3\d.#el --)
Performs the function FMAX on each pair of corresponding elements in the two source
vectors specified by xvaddr1\sep1\d.#el and xvaddr2\sep2\d.#el and places the result in
the destination vector specified by xvaddr3\sep3\d.#el. The destination vector may be
one of the sources.
Pronunciation: "v-max"

V.MIN (xvaddr1\sep1\xvaddr2\sep2\xvaddr3\sep3\d.#el --)
Performs the function FMIN on each pair of corresponding elements in the two source
vectors specified by xvaddr1\sep1\d.#el and xvaddr2\sep2\d.#el and places the result in
the destination vector specified by xvaddr3\sep3\d.#el. The destination vector may be
one of the sources.

V.SUM (xvaddr\sep\d.#el -- r | r = sum of elements in vector)
Returns the sum of elements r in the vector specified by xvaddr\sep\d.#el.
Pronunciation: "v-sum" Attributes: S

V.SWAP (xvaddr1\sep1\xvaddr2\sep2\d.#el --)
Exchanges the contents of the vector specified by xvaddr1\sep1\d.#el with the contents
of the vector specified by xvaddr2\sep2\d.#el.
Pronunciation: "v-swap"

V.TRANSFORM (xvaddr1\sep1\xvaddr2\sep2\d.#el\xcfa --)
xcfa specifies a unary operation that transforms one floating point number into another
floating point number. V.TRANSFORM performs the unary operation indicated by xcfa
on each of the elements in the source vector specified by xvaddr1\sep1\d.#el and stores
the result in the destination vector specified by xvaddr2\sep2\d.#el. The source vector
may equal the destination vector.
Pronunciation: "v-transform" Attributes: S

 V/ (xvaddr1\sep1\xvaddr2\sep2\xvaddr3\sep3\d.#el --)
Divides each element of the source1 vector specified by xvaddr1\sep1\d.#el by the
corresponding element in the source2 vector specified by xvaddr2\sep2\d.#el and
places the result in the corresponding element of the destination vector specified by
xvaddr3\sep3\d.#el. The destination vector may be one of the source vectors.
Pronunciation: "v-divide" Attributes: S

V< (xvaddr1\sep1\xvaddr2\sep2\d.#el -- flag)
flag is true if every element in the source1 vector specified by xvaddr1\sep1\d.#el is less
than the corresponding element in the source2 vector specified by xvaddr2\sep2\d.#el.

170 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "v-less-than"

V> (xvaddr1\sep1\xvaddr2\sep2\d.#el -- flag)
flag is true if every element in the source1 vector specified by xvaddr1\sep1\d.#el is
greater than the corresponding element in the source2 vector specified by
xvaddr2\sep2\d.#el.
Pronunciation: "v-greater-than"

VALLOT (n --)
Reserves n bytes in the variable area by incrementing the variable pointer VP by n. An
error occurs if the VALLOT operation causes VP to be incremented across the
boundary between 0x7FFF (the last valid address in a given page) and 0x8000 (the
start of the register area).
Pronunciation: "v-allot"

VARIABLE (<name> --)
Removes the next <name> from the input stream, defines a child word called <name>,
and VALLOTs a cell in the variable area. When <name> is executed, it leaves the
extended address xaddr of a the cell reserved in the variable area to hold the variable's
contents. <name> is referred to as a "variable". Use as:

VARIABLE <name>
Attributes: D

VC, (byte --)
Stores byte at the next available location in the variable area and increments the
variable pointer VP by 1. An error occurs if byte is not correctly stored; e.g. if VP does
not point to RAM. An error occurs if the VC, operation causes VP to be incremented
across the boundary between 0x7FFF (the last valid address in a given page) and
0x8000 (the start of the register area).
Pronunciation: "v-c-comma"

 VFORTH (-- xaddr)
A user variable that contains the xnfa (extended name field address) of the top word in
the FORTH vocabulary, which is the default vocabulary to which the programmer's
definitions are typically appended. In turnkeyed (autostarted) applications that require
the interpreter to run in the final application, the autostart word should initialize VFORTH
to contain the xnfa of the last word defined. For an example of use, see the definition of
the application's autostart routine in the "Putting It All Together" chapter in the Software
Manual. See LATEST, CONTEXT, CURRENT, FIND, and NFA.FOR.
Attributes: U

VHERE (-- xaddr)
Places on the stack the xaddr of the next available location in the variable area.
Equivalent to VP X@.
Pronunciation: "v-here" Attributes: U

VOCABULARY (<name> --)

Main Glossary 171

Creates and initializes to LATEST a 32 bit xhandle in the variable area. When <name>
executes, this xhandle is stored into the user variable CONTEXT so that the <name>
vocabulary branch is searched first during dictionary searches. See FIND.
Attributes: D

VP (-- xaddr)
User variable that contains the 32-bit Variable Pointer. The contents of VP are placed
on the stack by VHERE and are modified by VALLOT. The command VP X@ is
equivalent to VHERE; it yields the xaddr of the next available location in the variable
area. The command VP @ is equivalent to VPAGE; it yields the page of the definitions
area.
Pronunciation: "v-p" Attributes: U

WARM (--)
Restarts the QED-Forth system and clears the data and return stacks and executes
ABORT. Unlike COLD, WARM does not initialize all of the user variables to their default
values. See the "Program Development Techniques" chapter in the Software Manual
for a detailed discussion of WARM and COLD restarts.

WHICH.MAP (-- [0] or [1])
Returns a 0 if the current memory map is the "standard map", and returns a 1 if the
current map is the "download map" on flash-carrying boards. If the standard map is
active, pages 4, 5, and 6 are addressed in flash, and pages 1, 2, and 3 are addressed in
RAM. If the download map is active, pages 4, 5, and 6 are addressed in RAM, and
pages 1, 2, and 3 are addressed in flash memory. This routine allows a user or
program to verify which map is currently being used. After a "factory cleanup"
operation, the standard map is active. See STANDARD.MAP and DOWNLOAD.MAP.

WHILE (flag --)
Used inside a colon definition to mark the beginning of the "while true" portion of a
BEGIN ... WHILE ... REPEAT loop. If flag is TRUE, the loop continues and the words
between WHILE and REPEAT are executed, after which control is transferred to the
word following BEGIN. If flag is FALSE, the loop terminates and execution continues
with the word following REPEAT. Use as:

BEGIN
words to be iteratively executed

flag WHILE words to be iteratively executed
REPEAT

An error is issued if BEGIN WHILE and REPEAT are not properly paired inside a colon
definition.
Attributes: C, I

WIDTH (-- xaddr)
A user variable that contains the number of characters saved in a name entry by
CREATE. Minimum value is 2, maximum is 31.
Attributes: U

WORD (char1 -- xaddr | char1 is delimiter, xaddr = POCKET)

172 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Parses the next word delimited by the specified char1 from the input stream. Moves the
parsed word as a counted string to the buffer at POCKET in common memory, and
places the xaddr of POCKET on the data stack. If the word has more than 31
characters, only the first 31 characters are moved and the count is clamped to 31.
WORD appends a space to the counted string in POCKET; the space is not included in
the string's count. If the input stream is exhausted when WORD executes, the count left
at POCKET equals 0. If the specified delimiter char1 is a space, then leading spaces
are ignored. If BLK = 0, the input stream is the terminal input buffer TIB. Otherwise
WORD executes BLOCK so that the input stream is available in a block buffer. The
value of >IN specifies the offset from the start of the input stream to the first character to
be parsed. WORD leaves >IN pointing 1 byte past the terminating delimiter unless the
input stream is exhausted, in which case >IN is left pointing 1 byte past the last valid
location in the input stream. The interpreter executes BL WORD to parse input
commands, and then calls (#FIND) to search for the parsed command in the dictionary.
To parse strings longer than 31 characters, use PARSE.
Attributes: M

WORDS (--)
Prints all words in the CURRENT vocabulary. WORDS incorporates PAUSE.ON.KEY,
so the printout can be terminated by typing a carriage return or . (dot); it can be
suspended and resumed by typing other characters, and it responds to XON/XOFF
handshaking (see PAUSE.ON.KEY). Each word is printed left justified in a field of 16 or
32 characters, 3 names per line. Characters that are not saved in the headers are
represented by the appropriate number of _ characters.
Attributes: M

X! (xaddr1\xaddr2 -- | xaddr1 is stored at xaddr2)
Stores the extended address xaddr1 at xaddr2. A synonym for 2!.
Pronunciation: "x-store"

X.OVER.N (xaddr\w -- xaddr\w\xaddr)
Copies the extended address located under the top data stack cell to the top of the data
stack.
Pronunciation: "x-over-n"

X1-X2>D (xaddr1\xaddr2 -- d)
Subtracts xaddr2 from xaddr1 to yield the signed double number result d. There is an
unchecked error if one of the xaddresses is in common memory (addr >= 0x8000) and
the other is in paged memory (addr <= 0x7FFF). Note that in paged memory, the
address immediately following 0x7FFF is address 0000 on the following page.
Pronunciation: "x-one-minus-x-two-to-d"

X1-X2>N (xaddr1\xaddr2 -- n)
Subtracts xaddr2 from xaddr1 to yield the signed integer result n. There is an
unchecked error if one of the xaddresses is in common memory (addr >= 0x8000) and
the other is in paged memory (addr <= 0x7FFF), or if the difference can not be
represented as a signed 16-bit integer. Note that in paged memory, the address
immediately following 0x7FFF is address 0000 on the following page.
Pronunciation: "x-one-minus-x-two-to-n"

Main Glossary 173

X2DROP (xaddr1\xaddr2 --)
Drops two extended addresses (4 cells) from the data stack.
Pronunciation: "x-two-drop"

X2DUP (xaddr1\xaddr2 -- xaddr1\xaddr2\xaddr1\xaddr2)
Duplicates the top two extended addresses on the data stack.
Pronunciation: "x-two-dupe"

X< > (xaddr1\xaddr2 -- flag)
Flag is TRUE if the two extended addresses are not equal and FALSE otherwise.
Pronunciation: "x-not-equal"

X= (xaddr1\xaddr2 -- flag)
Flag is TRUE if the two extended addresses are equal and FALSE otherwise.
Pronunciation: "x-equals"

X>R (xaddr --)
Return Stack: (R: -- xaddr)
Transfers the top extended address on the data stack to the return stack.
Pronunciation: "x-to-r" Attributes: C

X@ (xaddr1 -- xaddr2)
Fetches an extended address xaddr2 from memory location xaddr1. A synonym for
2@.
Pronunciation: "x-fetch"

XADDR-> (u1 <name> -- u2)
Adds a named member to the structure being defined and reserves room for a 32-bit
extended address field in the structure. Removes <name> from the input stream and
creates a structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u2 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "x-address" Attributes: D

 XADDR: (<name> --)
XADDR: is a synonym for DOUBLE:. It defines a 32-bit self-fetching variable called
<name> which holds a 32-bit extended address. See the glossary entry for DOUBLE:.
Use as:

XADDR: <name>
Pronunciation: "x-address-colon" Attributes: D

XADDRS-> (u1\u2 <name> -- u3)
Adds a named member to the structure being defined and reserves room for u2
extended addresses in the structure. Removes <name> from the input stream and
creates a structure field called <name>. u1 is the structure offset initialized by

174 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

STRUCTURE.BEGIN:. u3 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "x-addresses" Attributes: D

XALIGN (xaddr1 -- xaddr2)
If xaddr1 is not an even multiple of 4 bytes, increases xaddr1 by 1, 2, or 3 bytes to yield
xaddr2 which is an even multiple of 4 bytes. The vector and matrix operations require
data structures to be 4-byte aligned; the heap manager and DIM.CONSTANT.MATRIX:
and DIM.CONSTANT.ARRAY: use XALIGN to ensure that heap items, arrays, and
matrices are 4-byte aligned.
Pronunciation: "x-align"

XCONSTANT (xaddr <name> --)
Removes the next <name> from the input stream and defines a child word called
<name> which when executed leaves the specified extended address xaddr on the data
stack. xaddr is stored in the definitions area of the dictionary. <name> is referred to as
an "xconstant". Use as:

xaddr XCONSTANT <name>
Pronunciation: "x-constant" Attributes: D

XD+ (xaddr1\d -- xaddr2)
Adds signed double number d to xaddr1 to yield xaddr2. Note that in paged memory,
the address immediately following 0x7FFF is address 0000 on the following page.
Pronunciation: "x-d-plus"

XD- (xaddr1\d -- xaddr2)
Subtracts signed double number d from xaddr1 to yield xaddr2. Note that in paged
memory, the address immediately preceding 0000 is address 0x7FFF on the preceding
page.
Pronunciation: "x-d-minus"

XDROP (xaddr --)
Drops an extended address (two cells) from the data stack.
Pronunciation: "x-drop"

XDUP (xaddr -- xaddr\xaddr)
Duplicates the top extended address (two cells) on the data stack.
Pronunciation: "x-dupe"

XDUP>R (xaddr -- xaddr)
Return Stack: (R: -- xaddr)
Copies the top extended address on the data stack to the return stack.
Pronunciation: "x-dup-to-r" Attributes: C

XHNDL-> (u1 <name> -- u2)

Main Glossary 175

Adds a named member to the structure being defined and reserves room for a 32-bit
extended handle field in the structure. Removes <name> from the input stream and
creates a structure field called <name>. u1 is the structure offset initialized by
STRUCTURE.BEGIN:. u2 is the updated offset to be used by the next member defining
word or by STRUCTURE.END. When <name> is later executed, it adds its offset u1 to
the extended address found on the data stack which is typically the start xaddress of an
instance of the data structure; the result is the xaddress of the desired member in the
structure.
Pronunciation: "x-handle" Attributes: D

XIRQ.ID (-- n)
Returns the interrupt identity code for the external non-maskable interrupt called XIRQ.
Used as an argument for ATTACH. The XIRQ interrupt is activated by an active-low
signal on the XIRQ input pin and is enabled by the X bit in the condition code register.
Pronunciation: "x-i-r-q-i-d"

XMIT.DISABLE (-- xaddr)
A user variable that contains a flag that is set each time that EXPECT receives an
XOFF character (ascii 19) and is cleared upon startup and each time EXPECT receives
the XON character (ascii 17). XON and XOFF are standard handshaking characters
used to control the flow of data between computers. The XMIT.DISABLE flag is not
used by QED-Forth; it is provided in case the programmer needs to implement an
XON/XOFF handshaking protocol. Note that inserting PAUSE.ON.KEY in the inner loop
of a data dump word provides a very easy way to emulate XON/XOFF control of data
dumps. See EXPECT and PAUSE.ON.KEY.
Pronunciation: "transmit-disable" Attributes: U

XN+ (xaddr1\n -- xaddr2)
Adds signed integer n to xaddr1 to yield xaddr2. Note that in paged memory, the
address immediately following 0x7FFF is address 0000 on the following page.
Pronunciation: "x-n-plus"

XN- (xaddr1\n -- xaddr2)
Subtracts signed integer n from xaddr1 to yield xaddr2. Note that in paged memory, the
address immediately preceding 0000 is address 0x7FFF on the preceding page.
Pronunciation: "x-n-minus"

XOR (w1\w2 -- w3)
w3 is the result of a logical bit-by-bit exclusive-or of w1 and w2.
Pronunciation: "x-or"

XOVER (xaddr1\xaddr2 -- xaddr1\xaddr2\xaddr1)
Places a copy of xaddr1 on top of the data stack.
Pronunciation: "x-over"

XPICK (xaddr\wn-1\...w1\w0\+n -- xaddr\wn-1\...\w1\w0\xaddr)
Copies to the top of the stack the extended address whose most significant cell is the
+nth item on the stack (0-based, not including +n). An unchecked error occurs if there
are fewer than +n+2 cells on the data stack or if +n is outside the range 0 to 255,

176 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

inclusive. 0 XPICK is equivalent to XDUP, 1 XPICK is equivalent to X.OVER.N, 2
XPICK is equivalent to XOVER.
Pronunciation: "x-pick"

XR> (-- xaddr)
Return Stack: (R: xaddr --)
Transfers the top extended address on the return stack to the data stack.
Pronunciation: "x-r-from" Attributes: C

XR>DROP (--)
Return Stack: (R: xaddr --)
Removes the top extended address from the return stack.
Pronunciation: "x-r-from-drop" Attributes: C

XR@ (-- xaddr)
Return Stack: (R: xaddr -- xaddr)
Copies the top extended address on the return stack to the data stack.
Pronunciation: "x-r-fetch" Attributes: C

XRANGE (xaddr1\xaddr2\xaddr3 -- xaddr1\flag)
Flag is TRUE if xaddr1 is greater than or equal to xaddr2 and less than or equal to
xaddr3. Otherwise flag is FALSE. There is an unchecked error if one or two of the
xaddresses are in common memory (addr >= 0x8000) and other(s) are in paged
memory (addr <= 0x7FFF). In other words, XRANGE works properly only if all three
xaddresses are in paged memory, or if all three are in common memory. Note that in
paged memory, the address immediately following 0x7FFF is address 0000 on the
following page.
Pronunciation: "x-range"

 XROT (xaddr1\xaddr2\xaddr3 -- xaddr2\xaddr3\xaddr1)
Rotates the top three extended addresses on the data stack.
Pronunciation: "x-rote"

XSWAP (xaddr1\xaddr2 -- xaddr2\xaddr1)
Exchanges the top two extended addresses on the data stack.
Pronunciation: "x-swap"

XU+ (xaddr1\u -- xaddr2)
Adds unsigned integer u to xaddr1 to yield xaddr2. Note that in paged memory, the
address immediately following 0x7FFF is address 0000 on the following page.
Pronunciation: "x-u-plus"

XU- (xaddr1\u -- xaddr2)
Subtracts unsigned integer u from xaddr1 to yield xaddr2. Note that in paged memory,
the address immediately preceding 0000 is address 0x7FFF on the preceding page.
Pronunciation: "x-u-minus"

XU< (xaddr1\xaddr2 -- flag)

Main Glossary 177

Flag is TRUE if xaddr1 is less than xaddr2. Note that in paged memory, the address
immediately following 0x7FFF is address 0000 on the following page.
Pronunciation: "x-u-less-than"

XU> (xaddr1\xaddr2 -- flag)
Flag is TRUE if xaddr1 is greater than xaddr2. Note that in paged memory, the address
immediately following 0x7FFF is address 0000 on the following page.
Pronunciation: "x-u-greater-than"

XVARIABLE (<name> --)
Removes the next <name> from the input stream, defines a child word called <name>,
and VALLOTs 2 cells in the variable area. When <name> is executed, it leaves the
extended address xaddr of the two cells reserved in the variable area to hold <name>'s
contents. <name> is referred to as an "xvariable". Use as:

XVARIABLE <name>
Pronunciation: "x-variable" Attributes: D

ZERO (-- r | r = 0.0)
Puts the floating point representation for zero (= 0\0) on the data stack.

ZERO.ARRAY (array.xpfa --)
Stores 0 into each byte of the specified array.

ZERO.MATRIX (matrix.xpfa --)
Stores 0 into each byte of the specified matrix.

 [(--)
Sets STATE equal to 0 and enters the execution mode so that subsequent text from the
input stream is executed. See] and STATE.
Pronunciation: "left-bracket" Attributes: I

[0] (array.xpfa -- [xaddr] or [0\0] | xaddr is array base address)
Returns the base address (that is, the address of the first element) of the array or matrix
indicated by array.xpfa. Returns 0\0 if the array or matrix is undimensioned. No error
checking is performed.
Pronunciation: "bracket-zero"

[COMPILE] (<word> --)
Removes the next <name> from the input stream and compiles a call to <name> into
the current definition. Use as:

: <namex>
... [COMPILE] <name> ...

;
where <namex> is typically not immediate and <name> is typically immediate.
[COMPILE] forces the immediate word <name> to be compiled into the definition of
<namex> instead if executing while <namex> is being defined. Consult the Advanced
Topics chapter of the Software Manual for further description. See COMPILE.
Pronunciation: "bracket-compile" Attributes: C, I

178 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

[] (n1...nn\array.xpfa -- xaddr | n1...nn = indices)
Returns the extended address xaddr of the element whose indices are n1...nn in the
array specified by array.xpfa. If DEBUG is on, ABORTs if the indices are invalid.
Typical use:

<indices> ' <array.name> []
Pronunciation: "brackets"

\ (--)
Ignores all remaining input on the current line. Very useful for inserting descriptive
comments into QED-Forth source code. See (.
Pronunciation: "back-slash" Attributes: I

] (--)
Sets STATE equal to -1 and enters the compilation mode so that subsequent text from
the input stream is compiled instead of being executed. See [and STATE.
Pronunciation: "right-bracket" Attributes: I

 |2!| (w1\w2\xaddr -- | [xaddr] gets w2, [xaddr+2] gets w1)
Stores two 16 bit integers at xaddr. Disables interrupts during the store to ensure that
an interrupting routine or task will read valid data. w2 is stored at xaddr and w1 is
stored at xaddr+2. Can also be used to store a double number at xaddr. Disables
interrupts for 28 cycles (7 microseconds) unless the specified 4 bytes straddle a page
boundary, in which case interrupts are disabled for approximately 260 cycles. Note that
in paged memory, the address immediately following 0x7FFF is address 0000 on the
following page.
Pronunciation: "bar-two-store"

|2@| (xaddr -- w1\w2)
Fetches two 16 bit integers from xaddr. Disables interrupts during the fetch to ensure
that an interrupting routine or task does not modify the contents while the fetch is in
process. w2 is taken from xaddr and w1 is from xaddr+2. Can also be used to fetch a
double number from xaddr. Disables interrupts for 28 cycles (7 microseconds) unless
the specified 4 bytes straddle a page boundary, in which case interrupts are disabled for
approximately 260 cycles. Note that in paged memory, the address immediately
following 0x7FFF is address 0000 on the following page.
Pronunciation: "bar-two-fetch"

|F!| (r\xaddr --)
Stores a floating point number at xaddr. Disables interrupts during the store to ensure
that an interrupting routine or task will read valid data. A synonym for |2!|.
Pronunciation: "bar-f-store"

|F@| (xaddr -- r)
Fetches a floating point number from xaddr. Disables interrupts during the fetch to
ensure that an interrupting routine or task does not modify the contents while the fetch
is in process. A synonym for |2@|.
Pronunciation: "bar-f-fetch"

|X!| (xaddr1\xaddr2 --)

Main Glossary 179

Stores the extended address xaddr1 at xaddr2. Disables interrupts to ensure that an
interrupting routine or task will read valid contents. A synonym for |2!|.
Pronunciation: "bar-x-store"

|X1-X2|>U (xaddr1\xaddr2 -- n)
Subtracts xaddr2 from xaddr1 and takes the absolute value of the result to yield the
unsigned integer difference u. There is an unchecked error if one of the xaddresses is
in common memory (addr >= 0x8000) and the other is in paged memory (addr <=
0x7FFF). Note that in paged memory, the address immediately following 0x7FFF is
address 0000 on the following page.
Pronunciation: "abs-of-x-one-minus-x-two-to-u"

|X@| (xaddr1 -- xaddr2)
Fetches an extended address xaddr2 from memory location xaddr1. Disables interrupts
during the fetch to ensure that an interrupting routine or task does not modify the
contents while the fetch is in process. A synonym for |2@|.
Pronunciation: "bar-x-fetch"

180 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Assembler Glossary
(Alphabetized in ASCII Order)

>ASSM (--)
Consult the main glossary.

>FORTH (--)
Consult the main glossary.

ABA (--)
Compiles the opcode sequence for the ABA instruction into the dictionary. When later
executed, this code adds the contents of accumulator A and accumulator B, and stores
the result in accumulator A.
Pronunciation: "add-b-to-a"

ABX (--)
Compiles the opcode sequence for the ABX instruction into the dictionary. When later
executed, this code adds the unsigned 8 bit contents of accumulator B to the contents
of register X and leaves the result in X.
Pronunciation: "add-b-to-x"

ABY (--)
Compiles the opcode sequence for the ABY instruction into the dictionary. When later
executed, this code adds the unsigned 8 bit contents of accumulator B to the contents
of register Y and leaves the result in Y.
Pronunciation: "add-b-to-y"

ADCA (arg\mode--)
Compiles the opcode sequence for the ADCA instruction into the dictionary. When later
executed, this code adds the carry bit to the sum of the operand (specified by arg and
mode) and the contents of accumulator A, and places the result in accumulator A.

Pronunciation: "add-with-carry-to-a"

ADCB (arg\mode--)
Compiles the opcode sequence for the ADCB instruction into the dictionary. When later
executed, this code adds the carry bit to the sum of the operand (specified by arg and
mode) and the contents of accumulator B, and places the result in accumulator B.

Pronunciation: "add-with-carry-to-b"

ADDA (arg\mode --)
Compiles the opcode sequence for the ADDA instruction into the dictionary. When later
executed, this code adds the operand (specified by arg and mode) and the contents of
accumulator A, and places the result in accumulator A.
Pronunciation: "add-a"

 ADDB (arg\mode--)

Assembler Glossary 181

Compiles the opcode sequence for the ADDB instruction into the dictionary. When later
executed, this code adds the operand (specified by arg and mode) and the contents of
accumulator B, and places the result in accumulator B.
Pronunciation: "add-b"

ADDD (arg\mode--)
Compiles the opcode sequence for the ADDD instruction into the dictionary. When later
executed, this code adds the operand (specified by arg and mode) and the contents of
accumulator D, and places the result in accumulator D.
Pronunciation: "add-d"

AGAIN, (--)
Used within a code definition to designate the end of an assembly coded infinite loop.
Use as:
 BEGIN, <code to be iterated>

AGAIN,
The words between BEGIN, and AGAIN, are executed indefinitely. AGAIN, is
equivalent to NEVER UNTIL,
Pronunciation: "again-comma"

ALWAYS (-- condition)
Within a code definition, leaves a condition flag on the data stack. Indicates an "always
true" condition.

ANDA (arg\mode--)
Compiles the opcode sequence for the ANDA instruction into the dictionary. When later
executed, this code performs the logical AND of the operand (specified by arg and
mode) and the contents of accumulator A, and places the result in accumulator A.
Pronunciation: "and-a"

ANDB (arg\mode--)
Compiles the opcode sequence for the ANDB instruction into the dictionary. When later
executed, this code performs the logical AND of the operand (specified by arg and
mode) and the contents of accumulator B, and places the result in accumulator B.
Pronunciation: "and-b"

ANY.BITS.CLR (-- condition)
Within a code definition, leaves a condition flag on the data stack. Used in conjunction
with a single-byte argument (which we'll designate as P) and a bit mask (designated as
Q). The condition is true if any bits are clear in the result obtained by performing the
logical AND operation P AND Q. This condition code is associated with the test and
branch instructions BRSET and BRCLR.
Pronunciation: "any-bits-clear"

 ANY.BITS.SET (-- condition)
Within a code definition, leaves a condition flag on the data stack. Used in conjunction
with a single-byte argument (which we'll designate as P) and a bit mask (designated as
Q). The condition is true if any bits are set in the result obtained by performing the

182 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

logical AND operation P AND Q. This condition code is associated with the test and
branch instructions BRSET and BRCLR.

ASL (arg\mode--)
Compiles the opcode sequence for the ASL instruction into the dictionary. When later
executed, this code causes an arithmetic shift left of the 8-bit operand which is specified
by arg and mode. The C (carry) bit in the CCR is loaded from the most significant bit of
arg, and 0 is shifted into the least significant bit.
Pronunciation: "arithmetic-shift-left"

ASLA (--)
Compiles the opcode sequence for the ASLA instruction into the dictionary. When later
executed, this code causes an arithmetic shift left of the contents of accumulator A. The
C (carry) bit in the CCR is loaded from the most significant bit of accumulator A, and 0 is
shifted into the least significant bit.
Pronunciation: "arithmetic-shift-left-a"

ASLB (--)
Compiles the opcode sequence for the ASLB instruction into the dictionary. When later
executed, this code causes an arithmetic shift left of the contents of accumulator B. The
C (carry) bit in the CCR is loaded from the most significant bit of accumulator B, and 0 is
shifted into the least significant bit.
Pronunciation: "arithmetic-shift-left-b"

ASLD (--)
Compiles the opcode sequence for the ASLD instruction into the dictionary. When later
executed, this code causes an arithmetic shift left of the contents of accumulator D.
The C (carry) bit in the CCR is loaded from the most significant bit of accumulator D,
and 0 is shifted into the least significant bit.
Pronunciation: "arithmetic-shift-left-d"

ASR (arg\mode--)
Compiles the opcode sequence for the ASR instruction into the dictionary. When later
executed, this code causes an arithmetic shift right of the operand specified by arg and
mode. The C (carry) bit in the CCR is loaded from the least significant bit of arg. The
most significant bit is held constant.
Pronunciation: "arithmetic-shift-right"

ASRA (--)
Compiles the opcode sequence for the ASRA instruction into the dictionary. When later
executed, this code causes an arithmetic shift right of the contents of accumulator A.
The C (carry) bit in the CCR is loaded from the least significant bit of accumulator A.
The most significant bit is held constant.
Pronunciation: "arithmetic-shift-right-a"

 ASRB (--)
Compiles the opcode sequence for the ASRB instruction into the dictionary. When later
executed, this code causes an arithmetic shift right of the contents of accumulator B.

Assembler Glossary 183

The C (carry) bit in the CCR is loaded from the least significant bit of accumulator B.
The most significant bit is held constant.
Pronunciation: "arithmetic-shift-right-b"

ASSEMBLER (--)
Consult the main glossary.

BCC (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BCC instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if C in
CCR is clear.
Pronunciation: "branch-if-carry-clear"

BCLR (byte1\arg\mode-- | byte1 = mask)
Compiles the opcode sequence for the BCLR instruction into the dictionary. When later
executed, this code clears bits in the operand (specified by arg and mode) which are set
in the mask byte1.
Pronunciation: "bit-clear"

BCS (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BCS instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if C in
CCR is set.
Pronunciation: "branch-if-carry-set"

BEGIN, (--)
Used within a code definition to designate the beginning of a looping structure. Use as:

BEGIN, condition.flag UNTIL,
or

BEGIN, condition.flag WHILE, REPEAT,
or

BEGIN, AGAIN,
The words after UNTIL, or REPEAT, are executed after the loop structure terminates.
BEGIN, AGAIN, is an infinite loop.
Pronunciation: "begin-comma"

BEQ (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BEQ instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if Z in CCR
is set.
Pronunciation: "branch-if-equal"

 BGE (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BGE instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if either N
and V in the CCR are both set, or N and V are both clear. Typically used after a
subtraction or comparison of signed numbers, causes a branch if the result is greater
than or equal to 0.
Pronunciation: "branch-if-greater-than-or-equal-to"

184 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

BGT (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BGT instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if Z is
clear, and either N and V in the CCR are both set, or N and V are both clear. Typically
used after a subtraction or comparison of signed numbers, causes a branch if the result
is greater than 0.
Pronunciation: "branch-if-greater-than"

BHI (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BHI instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if C and Z
in CCR are both clear. Typically used after a subtraction or comparison of unsigned
numbers, causes a branch if the result is greater than 0.
Pronunciation: "branch-if-higher"

BHS (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BHS instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if C in
CCR is clear. Typically used after a subtraction or comparison of unsigned numbers,
causes a branch if the result is greater than or equal to 0.
Pronunciation: "branch-if-higher-or-same"

BITA (arg\mode--)
Compiles the opcode sequence for the BITA instruction into the dictionary. When later
executed, this code modifies the bits in the condition code register according to the
result of performing a logical AND between the operand (specified by arg and mode)
and accumulator A. Neither the contents of accumulator A nor the operand are
affected.
Pronunciation: "bit-test-a"

BITB (arg\mode--)
Compiles the opcode sequence for the BITB instruction into the dictionary. When later
executed, this code modifies the bits in the condition code register according to the
result of performing a logical AND between the operand (specified by arg and mode)
and accumulator B. Neither the contents of accumulator B nor the operand are
affected.
Pronunciation: "bit-test-b"

 BLE (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BLE instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if Z is set,
or N is set and V is clear, or N is clear and V is set in the CCR. Typically used after a
subtraction or comparison of signed numbers, causes a branch if the result is less than
or equal to 0.
Pronunciation: "branch-if-less-than-or-equal-to"

BLO (arg\mode-- | mode must be REL)

Assembler Glossary 185

Compiles the opcode sequence for the BCS instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if C in
CCR is set. Typically used after a subtraction or comparison of unsigned numbers,
causes a branch if the result is less than 0.
Pronunciation: "branch-if-lower or same"

BLS (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BLS instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if either C
or Z in CCR is set. Typically used after a subtraction or comparison of unsigned
numbers, causes a branch if the result is less than or equal to 0.
Pronunciation: "branch-if-lower-or-same"

BLT (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BLT instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if either N
is set and V is clear in the CCR, or N is clear and V is set. Typically used after a
subtraction or comparison of signed numbers, causes a branch if the result is less than
0.
Pronunciation: "branch-if-less-than"

BMI (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BMI instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if N in
CCR is set.
Pronunciation: "branch-if-minus"

BNE (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BNE instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if Z in CCR
is clear.
Pronunciation: "branch-if-not-equal"

BPL (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BPL instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if N in
CCR is clear.
Pronunciation: "branch-if-plus"

 BRA (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BRA instruction into the dictionary. When later
executed, this code executes an unconditional branch to the address equal to PC + arg
+ 2.
Pronunciation: "branch-always"

BRCLR (byte1\mode1\byte2\arg\mode2-- | byte1=offset, mode1=REL, byte2 =mask)
Compiles the opcode sequence for the BRCLR instruction into the dictionary. When
later executed, this code causes a branch to an address if the bits set in the mask byte2

186 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

are clear in the operand specified by arg and mode2. The address branched to is equal
to

PC + 4 + byte1
when mode2 is DIR or IND,X. When mode2 is IND,Y the address branched to is

PC + 5 + byte1
Pronunciation: "branch-if-bits-clear"

BRN (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BRN instruction into the dictionary. When later
executed, this code acts as a two byte NOP instruction.
Pronunciation: "branch-never"

BRSET (byte1\mode1\byte2\arg\mode2-- | byte1=offset, mode1=REL, byte2=mask)
Compiles the opcode sequence for the BRSET instruction into the dictionary. When
later executed, this code causes a branch to an address if the bits set in the mask byte2
are also set in the operand specified by arg and mode2. The address branched to is
equal to

PC + 4 + byte1
when mode2 is DIR or IND,X. When mode2 is IND,Y the address branched to is

PC + 5 + byte1
Pronunciation: "branch-if-bits-set"

BSET (byte1\arg\mode-- | byte1 = mask)
Compiles the opcode sequence for the BSET instruction into the dictionary. When later
executed, this code sets bits in the operand (specified by arg and mode) which are set
in the mask byte1.
Pronunciation: "bit-set"

BSR (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BSR instruction into the dictionary. When later
executed, this code causes the PC to be incremented by 2 and pushed onto the return
stack, and then branches to the address equal to PC + arg.
Pronunciation: "branch-to-subroutine"

BVC (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BVC instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if V in CCR
is clear.
Pronunciation: "branch-if-overflow-clear"

 BVS (arg\mode-- | mode must be REL)
Compiles the opcode sequence for the BVS instruction into the dictionary. When later
executed, this code executes a branch to the address equal to PC + arg + 2, if V in CCR
is set.
Pronunciation: "branch-if-overflow-set"

CALL (<name> --)
Consult the main glossary.

Assembler Glossary 187

CBA (--)
Compiles the opcode sequence for the CBA instruction into the dictionary. When later
executed, this code modifies the bits in the condition code register according to the
comparison A - B. The contents of accumulators A and B are not affected.
Pronunciation: "compare-b-to-a"

CC (-- condition)
Used within a code definition, leaves a condition flag on the data stack. The condition is
true when the carry flag in the condition code register is 0. Note: if you wish to use the
hex number CC within an assembly definition, type it as 0CC to avoid confusion with
this condition code.
Pronunciation: "carry-clear"

CLC (--)
Compiles the opcode sequence for the CLC instruction into the dictionary. When later
executed, this code clears the C (carry) bit in the condition code register.
Pronunciation: "clear-carry"

CLI (--)
Compiles the opcode sequence for the CLI instruction into the dictionary. When later
executed, this code clears the I (global interrupt enable) bit in the condition code
register. Maskable interrupts are enabled when the I bit is clear.
Pronunciation: "clear-interrupt-mask"

CLR (arg\mode--)
Compiles the opcode sequence for the CLR instruction into the dictionary. When later
executed, this code clears the contents of the operand specified by arg and mode.
Pronunciation: "clear"

CLRA (--)
Compiles the opcode sequence for the CLRA instruction into the dictionary. When later
executed, this code clears the contents of accumulator A.
Pronunciation: "clear-a"

CLRB (--)
Compiles the opcode sequence for the CLRB instruction into the dictionary. When later
executed, this code clears the contents of accumulator B.
Pronunciation: "clear-b"

 CLV (--)
Compiles the opcode sequence for the CLV instruction into the dictionary. When later
executed, this code clears the V bit (the 2s complement overflow bit) in the CCR.
Pronunciation: "clear-overflow-bit"

CMPA (arg\mode--)
Compiles the opcode sequence for the CMPA instruction into the dictionary. When later
executed, this code subtracts the operand specified by arg and mode from the contents
of accumulator A and sets the condition code register bits accordingly. The operand
and accumulator A are unaffected.

188 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "compare-a"

CMPB (arg\mode--)
Compiles the opcode sequence for the CMPB instruction into the dictionary. When later
executed, this code subtracts the operand specified by arg and mode from the contents
of accumulator B and sets the condition code register bits accordingly. The operand
and accumulator B are unaffected.
Pronunciation: "compare-b"

CODE (<name> --)
Consult the main glossary.

COM (arg\mode --)
Compiles the opcode sequence for the COM instruction into the dictionary. When later
executed, this code replaces the operand specified by arg and mode with its ones
complement.
Pronunciation: "complement"

COMA (--)
Compiles the opcode sequence for the COMA instruction into the dictionary. When
later executed, this code replaces the contents of accumulator A with its ones
complement (which is formed by complementing the state of each bit).
Pronunciation: "complement-a"

COMB (--)
Compiles the opcode sequence for the COMB instruction into the dictionary. When
later executed, this code replaces the contents of accumulator B with its ones
complement (which is formed by complementing the state of each bit).
Pronunciation: "complement-b"

CPD (arg\mode--)
Compiles the opcode sequence for the CPD instruction into the dictionary. When later
executed, this code subtracts the operand specified by arg and mode from the contents
of accumulator D and sets the condition code register bits accordingly. The operand
and accumulator D are unaffected.
Pronunciation: "compare-d"

 CPX (arg\mode--)
Compiles the opcode sequence for the CPX instruction into the dictionary. When later
executed, this code subtracts the operand specified by arg and mode from the contents
of accumulator X and sets the condition code register bits accordingly. The operand
and accumulator X are unaffected.
Pronunciation: "compare-x"

CPY (arg\mode--)
Compiles the opcode sequence for the CPY instruction into the dictionary. When later
executed, this code subtracts the operand specified by arg and mode from the contents
of accumulator Y and sets the condition code register bits accordingly. The operand
and accumulator Y are unaffected.

Assembler Glossary 189

Pronunciation: "compare-y"

CS (-- condition)
Used within a code definition, leaves a condition flag on the data stack. The condition is
true when the carry flag in the condition code register is 1.
Pronunciation: "carry-set"

DAA (--)
Compiles the opcode sequence for the DAA instruction into the dictionary. When later
executed, this code decimal adjusts the contents of accumulator A to facilitate binary-
coded-decimal calculations. For a detailed description of operation, consult the DAA
entry in the Motorola HC11 manual.
Pronunciation: "decimal-adjust-a"

DEC (arg\mode--)
Compiles the opcode sequence for the DEC instruction into the dictionary. When later
executed, this code subtracts one from the operand specified by arg and mode.
Pronunciation: "decrement"

DECA (--)
Compiles the opcode sequence for the DECA instruction into the dictionary. When later
executed, this code subtracts one from the contents of accumulator A.
Pronunciation: "decrement-a"

DECB (--)
Compiles the opcode sequence for the DECB instruction into the dictionary. When later
executed, this code subtracts one from the contents of accumulator B.
Pronunciation: "decrement-b"

DES (--)
Compiles the opcode sequence for the DES instruction into the dictionary. When later
executed, this code subtracts one from the contents of the S register which is the return
stack pointer.
Pronunciation: "decrement-s"

 DEX (--)
Compiles the opcode sequence for the DEX instruction into the dictionary. When later
executed, this code subtracts one from the contents of the index register X.
Pronunciation: "decrement-x"

DEY (--)
Compiles the opcode sequence for the DEY instruction into the dictionary. When later
executed, this code subtracts one from the contents of the index register Y.
Pronunciation: "decrement-y"

DIR (-- mode)
Used within a code definition, leaves a constant on the stack indicating that the direct
addressing mode should be used by an instruction opcode.
Pronunciation: "direct"

190 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

ELSE, (--)
ELSE, is used in assembly coded routines to mark the beginning of the "else portion" of
a conditional structure. Use as:

condition IF,
ELSE,
ENDIF, (or THEN,)

When executed, ELSE, causes a branch instruction to be compiled into the dictionary
and resolves IF,'s branch. When the compiled code is later executed, the code between
ELSE, and ENDIF, is executed if the condition is not met.
Pronunciation: "else-comma"

END-CODE (sys -- | balances CODE)
A synonym for END.CODE. Consult the main glossary.

END.CODE (sys -- | balances CODE)
Consult the main glossary.

ENDIF, (--)
ENDIF, is used in assembly coded routines to mark the end of a conditional IF,
structure. ENDIF, and THEN, are synonyms. Use as:

condition IF,
ELSE,
ENDIF,

When executed, ENDIF, resolves the branch instructions used in the conditional
structure. When the code compiled by the control structure is executed, the code
between IF, and ELSE, is executed if the condition is true, and then control passes to
the code following ENDIF,. If the condition is false, the code between ELSE, and
ENDIF, is executed, and execution continues with the code following ENDIF,. An
alternate form is

condition IF, ENDIF,
When the code compiled by this control structure is executed, the code between IF, and
ENDIF, is executed if the condition is true, and is not executed if the condition is false.
Pronunciation: "end-if-comma"

 EORA (arg\mode--)
Compiles the opcode sequence for the EORA instruction into the dictionary. When later
executed, this code performs a logical exclusive or between the contents of accumulator
A and the operand specified by arg and mode. The result is stored in accumulator A.
Pronunciation: "exclusive-or-a"

EORB (arg\mode--)
Compiles the opcode sequence for the EORB instruction into the dictionary. When later
executed, this code performs a logical exclusive or between the contents of accumulator
B and the operand specified by arg and mode. The result is stored in accumulator B.
Pronunciation: "exclusive-or-b"

EQ (-- condition)

Assembler Glossary 191

Used within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P = Q. Alternate interpretation:
Condition is true if the Z bit in the condition code register is set.
Pronunciation: "equal"

EXT (-- mode)
Used within a code definition, leaves a constant on the stack indicating that the
extended addressing mode should be used by an instruction opcode.
Pronunciation: "extended"

FDIV (--)
Compiles the opcode sequence for the FDIV instruction into the dictionary. When later
executed, this code performs an unsigned fractional divide of the 16-bit numerator in
accumulator D by the 16-bit denominator in the index register X. The quotient is stored
in index register X and the remainder is stored in accumulator D.
Pronunciation: "fractional-divide"

GE (-- condition)
Within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P >= Q using signed math.
Alternate interpretation: Condition is true if the N and V bits in the condition code
register are either both set or both clear.
Pronunciation: "greater-than-or-equal-to"

GT (-- condition)
Within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P > Q using signed math.
Alternate interpretation: Condition is true if the Z bit is clear, and the N and V bits are
either both set or both clear in the condition code register.
Pronunciation: "greater-than"

 HI (-- condition)
Within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P > Q using unsigned math.
Alternate interpretation: Condition is true if C and Z in the condition code register are
zero.
Pronunciation: "higher"

HS (-- condition)
Within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P >= Q using unsigned math.
Alternate interpretation: Condition is true if the C (carry) bit in the condition code register
is clear.
Pronunciation: "higher-or-same"

IDIV (--)
Compiles the opcode sequence for the IDIV instruction into the dictionary. When later
executed, this code performs an unsigned integer divide of the 16-bit numerator in

192 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

accumulator D by the 16-bit denominator in the index register X. The quotient is stored
in index register X and the remainder is stored in accumulator D.
Pronunciation: "integer-divide"

IF, (condition --)
IF, is used in assembly coded routines to mark the start of a conditional structure. Use
as:

condition IF,
ELSE,
ENDIF, (or THEN,)

or
condition IF,
ENDIF, (or THEN,)

When the branch compiled by IF, is executed, the code following IF, is executed if the
condition is met, otherwise control is transferred to the code following ELSE, or ENDIF,.
(THEN, and ENDIF, are synonyms).
Pronunciation: "if-comma"

IMM (-- mode)
Used within a code definition, leaves a constant on the stack indicating that the
immediate addressing mode should be used by an instruction opcode.
Pronunciation: "immediate"

INC (arg\mode--)
Compiles the opcode sequence for the INC instruction into the dictionary. When later
executed, this code adds one to the operand specified by arg and mode.
Pronunciation: "increment"

INCA (--)
Compiles the opcode sequence for the INCA instruction into the dictionary. When later
executed, this code adds one to the contents of accumulator A.
Pronunciation: "increment-a"

 INCB (--)
Compiles the opcode sequence for the INCB instruction into the dictionary. When later
executed, this code adds one to the contents of accumulator B.
Pronunciation: "increment-b"

IND,X (-- mode)
Used within a code definition, leaves a constant on the stack indicating that the index
register X addressing mode should be used by an instruction opcode.
Pronunciation: "indexed-x"

IND,Y (-- mode)
Used within a code definition, leaves a constant on the stack indicating that the index
register Y addressing mode should be used by an instruction opcode.
Pronunciation: "indexed-y"

INH (--)

Assembler Glossary 193

Defined as a no-op. May be used within a code definition if desired to indicate the
inherent addressing mode.
Pronunciation: "inherent"

INS (--)
Compiles the opcode sequence for the INS instruction into the dictionary. When later
executed, this code adds one to the S register which is the return stack pointer.
Pronunciation: "increment-s"

INX (--)
Compiles the opcode sequence for the INX instruction into the dictionary. When later
executed, this code adds one to index register X.
Pronunciation: "increment-x"

INY (--)
Compiles the opcode sequence for the INY instruction into the dictionary. When later
executed, this code adds one to index register Y.
Pronunciation: "increment-y"

JMP (arg\mode--)
Compiles the opcode sequence for the JMP instruction into the dictionary. When later
executed, this code transfers control to the instruction stored at the effective address
specified by arg and mode.
Pronunciation: "jump"

JSR (arg\mode--)
Compiles the opcode sequence for the JSR instruction into the dictionary. When later
executed, this code increments PC properly and pushes it onto the return stack.
Program control is then transferred to the effective address specified by arg and mode.
Pronunciation: "jump-to-subroutine"

 LDAA (arg\mode--)
Compiles the opcode sequence for the LDAA instruction into the dictionary. When later
executed, this code loads the operand specified by arg and mode into accumulator A.
Pronunciation: "load-accumulator-a"

LDAB (arg\mode--)
Compiles the opcode sequence for the LDAB instruction into the dictionary. When later
executed, this code loads the operand specified by arg and mode into accumulator B.
Pronunciation: "load-accumulator-b"

LDD (arg\mode--)
Compiles the opcode sequence for the LDD instruction into the dictionary. When later
executed, this code loads the operand specified by arg and mode into accumulator D.
Pronunciation: "load-d"

LDS (arg\mode--)

194 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Compiles the opcode sequence for the LDS instruction into the dictionary. When later
executed, this code loads the operand specified by arg and mode into the S register
which is the return stack pointer.
Pronunciation: "load-s"

LDX (arg\mode--)
Compiles the opcode sequence for the LDX instruction into the dictionary. When later
executed, this code loads the contents of the operand specified by arg and mode into
index register X.
Pronunciation: "load-x"

LDY (arg\mode--)
Compiles the opcode sequence for the LDY instruction into the dictionary. When later
executed, this code loads the contents of the operand specified by arg and mode into
index register Y.
Pronunciation: "load-y"

LE (-- condition)
Used within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P <= Q using signed math.
Alternate interpretation: Condition is true if the Z bit is set, or the N bit is set and V bit is
clear, or the N bit is clear and the V bit is set in the condition code register.
Pronunciation: "less-than-or-equal-to"

LO (-- condition)
Used inside a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P < Q using unsigned math.
Alternate interpretation: Condition is true if the C (carry) bit in the condition code register
is set.
Pronunciation: "lower"

 LS (-- condition)
Used within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P <= Q using unsigned math.
Alternate interpretation: Condition is true if either C or Z in the condition code register is
set.
Pronunciation: "lower-or-same"

LSL (arg\mode--)
Compiles the opcode sequence for the LSL instruction into the dictionary. When later
executed, this code causes a logical shift left of the 8-bit operand which is specified by
arg and mode. The C (carry) bit in the CCR is loaded from the most significant bit of
arg, and 0 is shifted into the least significant bit.
Pronunciation: "logical-shift-left"

LSLA (--)
Compiles the opcode sequence for the LSLA instruction into the dictionary. When later
executed, this code causes a logical shift left of the contents of accumulator A. The C

Assembler Glossary 195

(carry) bit in the CCR is loaded from the most significant bit of accumulator A, and 0 is
shifted into the least significant bit.
Pronunciation: "logical-shift-left-a"

LSLB (--)
Compiles the opcode sequence for the LSLB instruction into the dictionary. When later
executed, this code causes a logical shift left of the contents of accumulator B. The C
(carry) bit in the CCR is loaded from the most significant bit of accumulator B, and 0 is
shifted into the least significant bit.
Pronunciation: "logical-shift-left-b"

LSLD (--)
Compiles the opcode sequence for the LSLD instruction into the dictionary. When later
executed, this code causes a logical shift left of the contents of accumulator D. The C
(carry) bit in the CCR is loaded from the most significant bit of accumulator D, and 0 is
shifted into the least significant bit.
Pronunciation: "logical-shift-left-d"

LSR (arg\mode--)
Compiles the opcode sequence for the LSR instruction into the dictionary. When later
executed, this code causes a logical shift right of the contents of the operand specified
by arg and mode. The C (carry) bit in the CCR is loaded from the least significant bit of
arg. A 0 is shifted into the most significant bit.
Pronunciation: "logical-shift-right"

LSRA (--)
Compiles the opcode sequence for the LSRA instruction into the dictionary. When later
executed, this code causes a logical shift right of the contents of accumulator A. The C
(carry) bit in the CCR is loaded from the least significant bit of accumulator A. A 0 is
shifted into the most significant bit.
Pronunciation: "logical-shift-right-a"

 LSRB (--)
Compiles the opcode sequence for the LSRB instruction into the dictionary. When later
executed, this code causes a logical shift right of the contents of accumulator B. The C
(carry) bit in the CCR is loaded from the least significant bit of accumulator B. A 0 is
shifted into the most significant bit.
Pronunciation: "logical-shift-right-b"

LSRD (--)
Compiles the opcode sequence for the LSRD instruction into the dictionary. When later
executed, this code causes a logical shift right of the contents of accumulator D. The C
(carry) bit in the CCR is loaded from the least significant bit of accumulator D. A 0 is
shifted into the most significant bit.
Pronunciation: "logical-shift-right-d"

LT (-- condition)
Used within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P < Q using signed math.

196 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Alternate interpretation: Condition is true if the N bit is set and V bit is clear, or the N bit
is clear and the V bit is set in the condition code register.
Pronunciation: "less-than"

MI (-- condition)
Used within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q = R, indicates the condition R < 0 using signed math.
Alternate interpretation: Condition is true if the N bit in the condition code register is set.
Pronunciation: "minus"

MUL (--)
Compiles the opcode sequence for the MUL instruction into the dictionary. When later
executed, this code multiplies the contents of accumulator A by the contents of
accumulator B and stores the result in accumulator D.
Pronunciation: "multiply"

NE (-- condition)
Used within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q, indicates the condition P not equal to Q. Alternate
interpretation: Condition is true if the Z bit in the condition code register is clear.
Pronunciation: "not-equal"

NEG (arg\mode--)
Compiles the opcode sequence for the NEG instruction into the dictionary. When later
executed, this code replaces the contents of the operand specified by arg and mode
with its twos complement which is formed by inverting the state of each bit and adding
1.
Pronunciation: "negate"

 NEGA (--)
Compiles the opcode sequence for the NEGA instruction into the dictionary. When later
executed, this code replaces the contents of accumulator A with its twos complement
which is formed by inverting the state of each bit and adding 1.
Pronunciation: "negate-a"

NEGB (--)
Compiles the opcode sequence for the NEGB instruction into the dictionary. When later
executed, this code replaces the contents of accumulator B with its twos complement
which is formed by inverting the state of each bit and adding 1.
Pronunciation: "negate-b"

NEVER (-- condition)
Used within a code definition, leaves a condition flag on the data stack. Indicates a
"never true" condition.

NOP (--)
Compiles the opcode sequence for the NOP instruction into the dictionary. When later
executed, this code does nothing.
Pronunciation: "no-op"

Assembler Glossary 197

ORAA (arg\mode--)
Compiles the opcode sequence for the ORAA instruction into the dictionary. When later
executed, this code performs a logical OR operation between the contents of
accumulator A and the contents of the operand specified by arg and mode. The result
is stored in accumulator A.
Pronunciation: "or-accumulator-a"

ORAB (arg\mode--)
Compiles the opcode sequence for the ORAB instruction into the dictionary. When later
executed, this code performs a logical OR operation between the contents of
accumulator B and the contents of the operand specified by arg and mode. The result
is stored in accumulator B.
Pronunciation: "or-accumulator-b"

PL (-- condition)
Used within a code definition, leaves a condition flag on the data stack. Used after a
comparison of the form P - Q = R, indicates the condition R >= 0 using signed math.
Alternate interpretation: Condition is true if the N bit in the condition code register is
clear.
Pronunciation: "plus"

PSHA (--)
Compiles the opcode sequence for the PSHA instruction into the dictionary. When later
executed, this code stores the contents of accumulator A at the next available location
on the return stack pointed to by the S register and decrements the S register.
Pronunciation: "push-a"

 PSHB (--)
Compiles the opcode sequence for the PSHB instruction into the dictionary. When later
executed, this code stores the contents of accumulator B at the next available location
on the return stack pointed to by the S register and decrements the S register.
Pronunciation: "push-b"

PSHX (--)
Compiles the opcode sequence for the PSHX instruction into the dictionary. When later
executed, this code stores the contents of index register X at the next available
locations on the return stack pointed to by the S register and decrements the S register
by 2.
Pronunciation: "push-x"

PSHY (--)
Compiles the opcode sequence for the PSHY instruction into the dictionary. When later
executed, this code stores the contents of index register Y at the next available
locations on the return stack pointed to by the S register and decrements the S register
by 2.
Pronunciation: "push-y"

PULA (--)

198 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Compiles the opcode sequence for the PULA instruction into the dictionary. When later
executed, this code pops the top value off the return stack (pointed to by the S register)
into accumulator A and increments the S register.
Pronunciation: "pull-a"

PULB (--)
Compiles the opcode sequence for the PULB instruction into the dictionary. When later
executed, this code pops the top value off the return stack (pointed to by the S register)
into accumulator B and increments the S register.
Pronunciation: "pull-b"

PULX (--)
Compiles the opcode sequence for the PULX instruction into the dictionary. When later
executed, this code pops the top 2 bytes off the return stack (pointed to by the S
register) into index register X and increments the S register by 2.
Pronunciation: "pull-x"

PULY (--)
Compiles the opcode sequence for the PULY instruction into the dictionary. When later
executed, this code pops the top 2 bytes off the return stack (pointed to by the S
register) into index register Y and increments the S register by 2.
Pronunciation: "pull-y"

REL (-- mode)
Used within a code definition, leaves a constant on the stack indicating that the relative
addressing mode should be used by an instruction opcode.
Pronunciation: "relative"

 REPEAT, (--)
REPEAT, is used to designate the end of an assembly coded

BEGIN,
condition.flag WHILE,
REPEAT,

structure. See BEGIN, and WHILE, .
Pronunciation: "repeat-comma"

ROL (arg\mode--)
Compiles the opcode sequence for the ROL instruction into the dictionary. When later
executed, this code shifts the bits in the operand specified by arg and mode left by one
bit. The C (carry) bit is shifted into the least significant bit of arg, and the most
significant bit in arg is shifted into C.
Pronunciation: "rotate-left"

ROLA (--)
Compiles the opcode sequence for the ROLA instruction into the dictionary. When later
executed, this code shifts the bits in accumulator A left by one bit. The C (carry) bit is
shifted into the least significant bit of accumulator A, and the most significant bit in
accumulator A is shifted into C.
Pronunciation: "rotate-left-a"

Assembler Glossary 199

ROLB (--)
Compiles the opcode sequence for the ROLB instruction into the dictionary. When later
executed, this code shifts the bits in accumulator B left by one bit. The C (carry) bit is
shifted into the least significant bit of accumulator B, and the most significant bit in
accumulator B is shifted into C.
Pronunciation: "rotate-left-b"

ROR (arg\mode--)
Compiles the opcode sequence for the ROR instruction into the dictionary. When later
executed, this code shifts the bits in the operand specified by arg and mode right by one
bit. The C (carry) bit is shifted into the most significant bit of arg, and the least
significant bit in arg is shifted into C.
Pronunciation: "rotate-right"

RORA (--)
Compiles the opcode sequence for the RORA instruction into the dictionary. When later
executed, this code shifts the bits in accumulator A right by one bit. The C (carry) bit is
shifted into the most significant bit of accumulator A, and the least significant bit in
accumulator A is shifted into C.
Pronunciation: "rotate-right-a"

 RORB (--)
Compiles the opcode sequence for the RORB instruction into the dictionary. When later
executed, this code shifts the bits in accumulator B right by one bit. The C (carry) bit is
shifted into the most significant bit of accumulator B, and the least significant bit in
accumulator B is shifted into C.
Pronunciation: "rotate-right-b"

RTI (--)
Compiles the opcode sequence for the RTI instruction into the dictionary. When later
executed, this code restores accumulators A and B, and registers X, Y and PC with
values pulled from the stack.
Pronunciation: "return-from-interrupt"

RTS (--)
Compiles the opcode sequence for the RTS instruction into the dictionary. When later
executed, this code restores the program counter with a value pulled from the stack,
thereby resuming execution just after the point where the subroutine was called.
Pronunciation: "return-from-subroutine"

SBA (--)
Compiles the opcode sequence for the SBA instruction into the dictionary. When later
executed, this code subtracts the contents of accumulator B from accumulator A and
stores the result in accumulator A. The contents of accumulator B are not affected.
Pronunciation: "subtract-b-from-a"

SBCA (arg\mode--)

200 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Compiles the opcode sequence for the SBCA instruction into the dictionary. When later
executed, this code subtracts the contents of the operand specified by arg and mode
and the contents of C from accumulator A and stores the result in accumulator A.
Pronunciation: "subtract-with-carry-a"

SBCB (arg\mode--)
Compiles the opcode sequence for the SBCB instruction into the dictionary. When later
executed, this code subtracts the contents of the operand specified by arg and mode
and the contents of C from accumulator B and stores the result in accumulator B.
Pronunciation: "subtract-with-carry-b"

SEC (--)
Compiles the opcode sequence for the SEC instruction into the dictionary. When later
executed, this code sets the C (carry) bit in the condition code register.
Pronunciation: "set-carry"

 SEI (--)
Compiles the opcode sequence for the SEI instruction into the dictionary. When later
executed, this code sets the I (global interrupt enable) bit in the condition code register.
When the I bit is set, all maskable interrupts are disabled.
Pronunciation: "set-interrupt-mask"

SEV (--)
Compiles the opcode sequence for the SEV instruction into the dictionary. When later
executed, this code sets the V (2's complement overflow) bit in the condition code
register.
Pronunciation: "set-overflow-bit"

STAA (arg\mode--)
Compiles the opcode sequence for the STAA instruction into the dictionary. When later
executed, this code stores the contents of accumulator A into the effective address
specified by arg and mode.
Pronunciation: "store-accumulator-a"

STAB (arg\mode--)
Compiles the opcode sequence for the STAB instruction into the dictionary. When later
executed, this code stores the contents of accumulator B into the effective address
specified by arg and mode.
Pronunciation: "store-accumulator-b"

STD (arg\mode--)
Compiles the opcode sequence for the STD instruction into the dictionary. When later
executed, this code stores the contents of accumulator D into the effective address
specified by arg and mode.
Pronunciation: "store-d"

STOP (--)
Compiles the opcode sequence for the STOP instruction into the dictionary. When later
executed, this code halts all system clocks and places the system in a minimum power

Assembler Glossary 201

consumption mode if the S bit in the CCR register is clear. If the S bit is set, STOP is
disabled and acts like a NOP. Recovery is accomplished by a reset, or an active low
signal on XIRQ, or a non-masked IRQ interrupt.

STS (arg\mode--)
Compiles the opcode sequence for the STS instruction into the dictionary. When later
executed, this code stores the contents of the S register (which is the return stack
pointer) at the effective address specified by arg and mode.
Pronunciation: "store-s"

STX (arg\mode--)
Compiles the opcode sequence for the STX instruction into the dictionary. When later
executed, this code stores the contents of index register X at the effective address
specified by arg and mode.
Pronunciation: "store-x"

 STY (arg\mode--)
Compiles the opcode sequence for the STY instruction into the dictionary. When later
executed, this code stores the contents of index register Y at the effective address
specified by arg and mode.
Pronunciation: "store-y"

SUBA (arg\mode--)
Compiles the opcode sequence for the SUBA instruction into the dictionary. When later
executed, this code subtracts the operand specified by arg and mode from the contents
of accumulator A and places the result in accumulator A.
Pronunciation: "subtract-a"

SUBB (arg\mode--)
Compiles the opcode sequence for the SUBB instruction into the dictionary. When later
executed, this code subtracts the operand specified by arg and mode from the contents
of accumulator B and places the result in accumulator B.
Pronunciation: "subtract-b"

SUBD (arg\mode--)
Compiles the opcode sequence for the SUBD instruction into the dictionary. When later
executed, this code subtracts the contents of the operand specified by arg and mode
from the contents of accumulator D and places the result in accumulator D.
Pronunciation: "subtract-d"

SWI (--)
Compiles the opcode sequence for the SWI instruction into the dictionary. When later
executed, this code invokes a software interrupt. It stores the CCR, accumulators A
and B, and registers X, Y and PC on the stack. The stack pointer is decremented by 1
for each byte stored on the stack. The I bit in the CCR register is set. The PC register
is then loaded with the address located at the interrupt vector for SWI, and instruction
execution resumes at this location.
Pronunciation: "software interrupt"

202 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

TAB (--)
Compiles the opcode sequence for the TAB instruction into the dictionary. When later
executed, this code transfers the contents of accumulator A to accumulator B.
Pronunciation: "transfer-a-to-b"

TAP (--)
Compiles the opcode sequence for the TAP instruction into the dictionary. When later
executed, this code transfers the contents of accumulator A to the condition code
register.
Pronunciation: "transfer-a-to-condition-code-register"

TBA (--)
Compiles the opcode sequence for the TBA instruction into the dictionary. When later
executed, this code transfers the contents of accumulator B to accumulator A.
Pronunciation: "transfer-b-to-a"

 TEST (--)
Compiles the opcode sequence for the TEST instruction into the dictionary. When later
executed, this code causes the PC to be continuously incremented. This instruction can
only be executed when the CPU is configured to operate in test mode. If executed in
any mode other than test, the instruction is treated as an illegal opcode.

THEN, (--)
THEN, is used in assembly coded routines to mark the end of a conditional IF, structure.
It is a synonym for ENDIF,. See ENDIF,.
Pronunciation: "then-comma"

TPA (--)
Compiles the opcode sequence for the TPA instruction into the dictionary. When later
executed, this code transfers the contents of the condition code register into
accumulator A.
Pronunciation: "transfer-condition-code-register-to-a"

TST (arg\mode--)
Compiles the opcode sequence for the TST instruction into the dictionary. When later
executed, this code subtracts zero from the contents of the operand specified by arg
and mode and sets the condition code register's bits accordingly. The operand is
unaffected by the subtraction.
Pronunciation: "test"

TSTA (--)
Compiles the opcode sequence for the TSTA instruction into the dictionary. When later
executed, this code subtracts zero from the contents of accumulator A and sets the
condition code register's bits accordingly. Accumulator A is unaffected.
Pronunciation: "test-a"

TSTB (--)

Assembler Glossary 203

Compiles the opcode sequence for the TSTB instruction into the dictionary. When later
executed, this code subtracts zero from the contents of accumulator B and sets the
condition code register's bits accordingly. Accumulator B is unaffected.
Pronunciation: "test-b"

TSX (--)
Compiles the opcode sequence for the TSX instruction into the dictionary. When later
executed, this code loads index register X with one plus the contents of the S register
(which is the return stack pointer). After this operation the X register points to the top
item on the return stack.
Pronunciation: "transfer-stack-to-x"

 TSY (--)
Compiles the opcode sequence for the TSY instruction into the dictionary. When later
executed, this code loads index register Y with one plus the contents of the S register
(which is the return stack pointer). After this operation the Y register points to the top
item on the return stack.
Pronunciation: "transfer-s-to-y"

TXS (--)
Compiles the opcode sequence for the TXS instruction into the dictionary. When later
executed, this code loads the S register (which is the return stack pointer) with the
contents of the index register X minus one.
Pronunciation: "transfer-x-to-s"

TYS (--)
Compiles the opcode sequence for the TYS instruction into the dictionary. When later
executed, this code loads the S register (which is the return stack pointer) with the
contents of the index register Y minus one.
Pronunciation: "transfer-y-to-s"

UNTIL, (condition --)
UNTIL, designates the end of an assembly coded looping structure and resolves branch
instructions according to the specified condition. Use as:

BEGIN, . . . code to be executed . . .
condition UNTIL,

If the condition is true, the loop terminates and execution continues with the code
following UNTIL,. If the condition is false, looping continues and execution passes to
the code following BEGIN,.
Pronunciation: "until-comma"

VC (-- condition)
Used within a code definition, leaves a condition flag on the data stack. The condition is
true when the V (2's complement overflow) flag in the condition code register is 0.
Pronunciation: "overflow-clear"

VS (-- condition)
Used within a code definition, leaves a condition flag on the data stack. The condition is
true when the V (2's complement overflow) flag in the condition code register is 1.

204 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Pronunciation: "overflow-set"

 WAI (--)
Compiles the opcode sequence for the WAI instruction into the dictionary. When later
executed, this code saves the condition code register, accumulators A and B, and
register X, Y and PC on the stack. The stack pointer is decremented for each byte
stored. The CPU the enters a lower power consumption mode, while waiting for an
interrupt which has not been masked. When an interrupt is recognized, the CPU sets
the I bit in the CCR, and execution resumes at the address stored in the appropriate
interrupt vector.
Pronunciation: "wait-for-interrupt"

WHILE, (condition --)
WHILE, is used in assembly coded routines to mark the beginning of a the "while true"
portion of a BEGIN, . . . WHILE, . . . REPEAT, loop. Use as:

BEGIN,
condition WHILE,
REPEAT,

When executed, WHILE, causes a branch instruction to be compiled into the dictionary.
When the compiled code is executed:
If the condition is true, the loop continues and the code between WHILE, and REPEAT,
are executed, after which control is transferred to the code following BEGIN,. If the
condition is false, the loop terminates and execution continues with the code following
REPEAT,.
Pronunciation: "while-comma"

XGDX (--)
Compiles the opcode sequence for the XGDX instruction into the dictionary. When later
executed, this code exchanges the contents of accumulator D with the contents of index
register X.
Pronunciation: "exchange-d-and-x"

XGDY (--)
Compiles the opcode sequence for the XGDY instruction into the dictionary. When later
executed, this code exchanges the contents of accumulator D with the contents of index
register Y.
Pronunciation: "exchange-d-and-y"

C Debugger Glossary 205

C Debugger Glossary
This glossary summarizes functions and keywords that assist those who are programming the QED
Board using the Control C language. These keywords can be interactively typed at the terminal and
interpreted by the QED-Forth debugger and operating system to assist in the calling and debugging
of C functions. In general, those who program exclusively in the QED-Forth language will not use
these functions.

Entries (Alphabetized in ASCII Order):

=CHAR ([addr] or [xaddr] <name> --)
=CHAR is a QED-Forth function that acts as an interactive assignment operator. It is
used in the form:

<destination> =CHAR <char_specifier>
where <destination> is a 16-bit address left on the data stack by a variable name, or a
32-bit xaddress left on the data stack by a FORTH_ARRAY element. <char_specifier>
is either a valid number or a variable name or FORTH_ARRAY element that contains a
byte. =CHAR assigns the byte specified by the right-hand-side (RHS) to the memory
location specified by the left-hand-side (LHS). The syntax is similar to a C assignment
statement.

=FLOAT ([addr] or [xaddr] <name> --)
=FLOAT is a QED-Forth function that acts as an interactive assignment operator. It is
used in the form:

<destination> =FLOAT <float_specifier>
where <destination> is a 16-bit address left on the data stack by a variable name, or a
32-bit xaddress left on the data stack by a FORTH_ARRAY element. <float_specifier>
is either a valid floating point number or a variable name or FORTH_ARRAY element
that contains a floating point number. =FLOAT assigns the float specified by the right-
hand-side to the memory location specified by the left-hand-side. The syntax is similar
to a C assignment statement.

=INT ([addr] or [xaddr] <name> --)
=INT is a QED-Forth function that acts as an interactive assignment operator. It is used
in the form:

<destination> =INT <integer_specifier>
where <destination> is a 16-bit address left on the data stack by a variable name, or a
32-bit xaddress left on the data stack by a FORTH_ARRAY element.
<integer_specifier> is either a valid number or a variable name or FORTH_ARRAY
element that contains an integer. =INT assigns the integer specified by the right-hand-
side to the memory location specified by the left-hand-side. The syntax is similar to a C
assignment statement.

 =LONG ([addr] or [xaddr] <name> --)
=LONG is a QED-Forth function that acts as an interactive assignment operator. It is
used in the form:

<destination> =LONG <long_specifier>

206 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

where <destination> is a 16-bit address left on the data stack by a variable name, or a
32-bit xaddress left on the data stack by a FORTH_ARRAY element. <long_specifier>
is either a valid number or a variable name or FORTH_ARRAY element that contains an
long. =LONG assigns the long specified by the right-hand-side to the memory location
specified by the left-hand-side. The syntax is similar to a C assignment statement.

C$>COUNTED$ (xaddr1 -- x$addr2)
Converts the specified null-terminated string at xaddr1 into a Forth-style counted string
at x$addr2 with the count in the first byte and the non-null-terminated string in the
remaining bytes. x$addr2 is the 32-bit address of PAD which is where the converted
counted string is located. Note that the size of the PAD buffer puts a limit on the string
size; the input string length should be less than 86 bytes. See STRINGMOVE() and
PAD.
Pronunciation: "c-string-to-counted-string"

CALL.CFN (xaddr <input_parameter_list> --)
A low-level function inserted by the "Make" utility in the .TXT download file created by
the Control C compiler. When properly inserted in a QED-Forth function, enables
interactive calls to C functions that were declared using the _Q keyword. CALL.CFN
expects on the data stack a 32-bit xaddress representing the execution address of the
function to be called. CALL.CFN removes from the input stream a list of comma-
delimited parameters terminated by the) character. It then sets up the proper stack
frame for a "pascal" type function (i.e., a function declared using the _Q or _pascal
keyword) that has been compiled by the Control C compiler. CALL.CFN calls the
designated function, then prints the return values (passed in the D and Y registers):

in the current number base as two 16-bit integers;
as a 32-bit hexadecimal number; and,
as a floating point number.

It is up to the programmer to decide which (if any) of these return value summaries is
relevant based on the declared type of the called function's return value.
Pronunciation: "call-c-function"

CHAR (<name> -- char)
CHAR is a QED-Forth function that examines the next token; if it is a valid number such
as 5 or 3.2, CHAR simply converts it to the nearest 8-bit byte. There is an unchecked
error if the input is not in the range 0-255 (unsigned char) or -128 to _127 (signed char).
If the next token is a named 16-bit address (such as a variable name) or a 32-bit
xaddress (such as a FORTH_ARRAY element xaddress), CHAR extracts the 8-bit
contents stored at the specified memory location. CHAR is also used to specify the
type of an input parameter when interactively calling a function.

 CHAR* (<name> -- char)
CHAR* is a QED-Forth function that examines the next token; if it is a named 16-bit
address (such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY
element xaddress), CHAR* extracts the 16-bit pointer stored at the specified memory
location, and in turn extracts the 8-bit byte pointed to by the pointer.

DO[] (addr <input_parameter_list> -- xaddr)

C Debugger Glossary 207

A low-level function inserted by the "Make" utility in the .TXT download file by the
Control C compiler. When properly inserted in a QED-Forth function, enables
interactive examination and modification of FORTH_ARRAY elements. Expects on the
data stack a 16-bit address representing the pfa (parameter field address) of a
FORTH_ARRAY. DO[] removes from the input stream a row specifier, a comma, a
column specifier, and a terminating]. It leaves on the stack the 32-bit xaddress of the
specified element in the specified FORTH_ARRAY.
Pronunciation: "do-brackets"

FLOAT (<name> -- r | r is an ANSI-C floating point number)
FLOAT is a QED-Forth function that examines the next token; if it is a valid integer or
QED-formatted floating point number such as 5 or 3.2, FLOAT simply converts it to an
ANSI-C-formatted floating point number. If the next token is a named 16-bit address
(such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY element
xaddress), FLOAT extracts the 32-bit (float) contents stored at the specified memory
location. FLOAT is also used to specify the type of an input parameter when
interactively calling a function.

FLOAT* (<name> -- r | r is an ANSI-C floating point number)
FLOAT* is a QED-Forth function that examines the next token; if it is a named 16-bit
address (such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY
element xaddress), FLOAT* extracts the 16-bit pointer stored at the specified memory
location, and in turn extracts the 32-bit float pointed to by the pointer.

FPtoString (r -- addr | r is an ANSI-C floating point number)
Converts the specified ansi input floating point number to a null-terminated ascii string,
and returns the 16-bit address of the string. If the conversion fails, returns 0. The
specified number is converted into one of three formats: FIXED, SCIENTIFIC, or
FLOATING. FLOATING format is the default after a COLD restart.

FP_CtoQ (r1 -- r2 | r1 is in ANSI C format; r2 is in QED format)
Converts the ANSI/IEEE-standard formatted input floating point number into the QED-
Forth floating point format. Converts denormalized input numbers to zero; that is, if the
biased exponent = 0, the returned QED-formatted floating point number = zero. NAN
(not a number) inputs are converted to +/- infinity depending on their sign bit. The least
significant bit (lsb) of the mantissa is not rounded, resulting in up to 1 lsb error during
the conversion.

FP_QtoC (r1 -- r2 | r1 is in QED format; r2 is in ANSI C format)
Converts the QED-Forth formatted input floating point format into an ANSI/IEEE-
standard formatted floating point number.

INT (<name> -- n)
INT is a QED-Forth function that examines the next token; if it is a valid integer or
floating point number such as 5 or 3.2, INT simply converts it to the nearest integer. If
the next token is a named 16-bit address (such as a variable name) or a 32-bit xaddress
(such as a FORTH_ARRAY element xaddress), INT extracts the 16-bit contents stored
at the specified memory location. INT is also used to specify the type of an input
parameter when interactively calling a function.

208 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

INT* (<name> -- n)
INT* is a QED-Forth function that examines the next token; if it is a named 16-bit
address (such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY
element xaddress), INT* extracts the 16-bit pointer stored at the specified memory
location, and in turn extracts the 16-bit integer pointed to by the pointer.

LONG (<name> -- d)
LONG is a QED-Forth function that examines the next token; if it is a valid number such
as 5 or 1234567 or 453.2, LONG simply converts it to the nearest 32-bit long number. If
the next token is a named 16-bit address (such as a variable name) or a 32-bit xaddress
(such as a FORTH_ARRAY element xaddress), LONG extracts the 32-bit (long)
contents stored at the specified memory location. LONG is also used to specify the
type of an input parameter when interactively calling a function.

LONG* (<name> -- d)
LONG* is a QED-Forth function that examines the next token; if it is a named 16-bit
address (such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY
element xaddress), LONG* extracts the 16-bit pointer stored at the specified memory
location, and in turn extracts the 32-bit long pointed to by the pointer.

MAIN (--)
Executes the main() function which is located at address 0x0000 on page 0x04. Each
compiled C program must contain one and only one definition of the main() function.

PrintFP (r -- | r is an ANSI-C floating point number)
Prints the input ANSI-C floating point parameter using the format specified by the most
recent execution of FIXED, SCIENTIFIC, or FLOATING.

Source Form Glossary 209

Source Form Glossary
This glossary describes some little-used routines that used to reside in QED-Forth V2.xx Kernel
PROM, but are now provided instead as source code files on diskette.

Entries (Alphabetized in ASCII Order):

--> (--)
When encountered while interpreting a block, causes the next block to be interpreted.
Sets >IN = 0 and increments BLK.
Pronunciation: "to-next-block"

.LINE (n1\n2 -- | n1 = line#, n2 = block#)
Prints the specified line in the specified block.
Pronunciation: "dot-line" Attributes: M

2xN.MATRIX* (2x2.matrix.xpfa\2xN.matrix.xpfa --)
Multiplies a 2x2 source1 matrix specified by 2x2.matrix.xpfa times a 2xN source2 matrix
specified by 2xN.matrix.xpfa to produce a destination 2xN matrix that is stored into the
source2 matrix specified by 2xN.matrix.xpfa. No error checking is performed, so the
source matrices must be properly dimensioned. Multiplies two 2x2 matrices in just 2.7
msec.
Pronunciation: "two-by-n-matrix-star" Attributes: S

3xN.MATRIX* (3x3.matrix.xpfa\3xN.matrix.xpfa --)
Multiplies a 3x3 source1 matrix specified by 3x3.matrix.xpfa times a 3xN source2 matrix
specified by 3xN.matrix.xpfa to produce a destination 3xN matrix that is stored into the
source2 matrix specified by 3xN.matrix.xpfa. No error checking is performed, so the
source matrices must be properly dimensioned. Multiplies two 3x3 matrices in just 13.5
msec.
Pronunciation: "three-by-n-matrix-star" Attributes: S

>L (n <text> -- | n = line#)
Removes remaining text from the input line and puts it in the block (screen) designated
by the user variable SCR at the specified line number n. Intended for use from terminal
only (not from inside a block)!
Pronunciation: "to-l"

 BLOCK.BUFFERS (xaddr\n -- | xaddr = start, n = #blocks)
Allocates a contiguous region of memory for use as block buffers. This command must
be executed before using the mass memory interface. xaddr is the extended starting
address of the first buffer, and n is the number of block buffers. n is typically equal to 2,
although allocating more buffers reduces the time to load a new block when a slow
mass memory device is used. BLOCK.BUFFERS restricts n to the range 2 <= n <= 63.
The size of each buffer is 1028 (hex 404) bytes, and the buffers may cross page
boundaries. BLOCK.BUFFERS initializes FIRST, LIMIT, PREV, and USE. See also
IS.RAMDISK.

EMPTY.BUFFERS (--)

210 Glossary I: QCard/QScreen/Handheld QED-Forth Functions

Unassigns and blanks all block buffers. Does not write to mass memory.

FLUSH (--)
Unassigns all block buffers, writing to mass memory any UPDATEd blocks.

INIT.UREAD/WRITE (--)
Revectors READ/WRITE to execute the RAMDISK function which treats a specified
block of RAM as a mass memory device. To use the RAMDISK, execute
INIT.UREAD/WRITE in your AUTOSTART or PRIORITY.AUTOSTART routine so it is
installed after each restart. To use an external mass memory device, define a routine
with the same stack picture as READ/WRITE (see the main glossary) that accesses the
mass memory device, and install its extended code field address (xcfa) in the
UREAD/WRITE user variable.

IS.RAMDISK (xaddr\u -- | xaddr = start, u = number of 1K blocks)
Declares an area of memory starting with xaddr and totaling (1024*u) bytes as a ram
disk, and stores 0\0 into OFFSET. The specified ram disk memory may cross page
boundaries and may occupy multiple contiguous pages. This word must be executed
before using the ram disk feature of the mass memory (blocks) interface. Note that
BLOCK.BUFFERS must also be executed before using the blocks interface.
Implementation detail: Initializes the headerless system variables RAMDISK.START
and #RAMDISK.BLOCKS appropriately, and zeroes the user variable OFFSET.
Pronunciation: "is-ram-disk"

LINE>$ (n1\n2 -- xaddr\cnt | n1 = line#, n2 = block#)
Converts line# n1 and block# (screen#) n2 into a string specification xaddr\cnt.
Pronunciation: "line-to-string"

LIST (n -- | n = block#)
Displays the specified block and stores n into the user variable SCR. The block is
printed as 16 lines of 64 characters per line.
Attributes: M, S

LOAD (n -- | n = block#)
Loads (i.e., interprets) the specified block. Block 0 cannot be loaded.

SAVE.BUFFERS (--)
Transfers the contents of all UPDATEd block buffers to mass storage. Marks all
buffers as unmodified.

SUBSTRING (xaddr1\cnt1\xaddr2\cnt2--xaddr3\cnt3\flag)
Searches for a substring specified by xaddr1\cnt (i.e., the address of the first character
under the character count) in the larger string xaddr2\cnt2, and returns the closest
match xaddr3\cnt3 in the larger string. When checking for a match, comparison starts
with the first character in the smaller string. flag is TRUE if a full match is found, and
FALSE if a partial or no match is found. If no match is found, flag is FALSE and cnt3
equals 0.

THRU (u1\u2 -- | u1 = starting.block#, u2 = ending.block#)

Source Form Glossary 211

Loads (i.e., interprets) from the starting block u1 through the ending block u2, inclusive.
Pronunciation: "through"

	Glossary I: QCard/QScreen/Handheld QED-Forth Functions
	Categorized Word List
	Stack Symbols and Naming Conventions
	Stack Conventions and Notation
	Stack Symbols
	Stack Representations of Data Structures
	Naming Conventions
	Attributes

	Words that Disable Interrupts
	Comparison with Prior QED-Forth Firmware
	
	Summary of Modified Functions

	Main Glossary
	Assembler Glossary
	C Debugger Glossary
	Source Form Glossary

