
1

Glossary I

Glossary I: QCard/QScreen/Handheld Control-C
Glossary

This Glossary provides detailed descriptions of all of the library routines that customize Con-
trol-C for use with the QCard, QScreen Controller, and QED Handheld. These C library rou-
tines are defined and declared in a set of header files in the compiler's
\FABIUS\INCLUDE\MOSAIC directory. These products carry an operating system firmware
version number of the form V4.4x, where x is a numeric value. This Glossary contains the
following:

An introduction presents an overview of the header files and explains how to interpret the
information that is presented in the Main Control-C Glossary and the Interactive Debug-
ger Glossary section.

A Categorized List of All Control-C Library Functions;

 A Categorized List of QED-Forth Debugger and System Configuration Functions;

 A Listing of Library Functions That Disable Interrupts;

A Comparison of Operating System Firmware V4.4x versus Prior V4.08 Firmware;

A Main Glossary of the Control-C Library Functions; and,

A Glossary of Interactive Debugger Functions.

Introduction to the Control-C Glossary
Library Routines Are Defined and Declared in the Header Files

The names and contents of the header files are summarized in the following table. To access the
five new C-callable functions in V4.40, you must #include V4_4Update.c and its companion header
file V4_4Update.h as explained below.

Header File Contents

ANALOG.H Device drivers for the 8-bit A/D and SPI

ARRAY.H Routines that dimension, access and manipulate Forth Arrays in paged memory

2 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Header File Contents
COMM.H Serial communications driver functions

FLASH.H Flash memory functions

HEAP.H Heap memory manager functions

INTERUPT.H Interrupt identifiers and functions to facilitate posting interrupt handlers

INTRFACE.H Device drivers for the keypad and LCD display interfaces

MTASKER.H Multitasking executive and elapsed-time clock routines

NUMBERS.H Formatted output for QED floating point numbers, and ANSI/QED conversion

QEDREGS.H Macro definitions for all of the 68HC11F1 registers

QEDSYS.H Operating system functions for initialization, autostarting, and error handling

STEPPER.H Stepper motor control primitives

TYPES.H Useful type definitions

USER.H Declarations of USER_AREA and TASK structures, and user variable definitions

UTILITY.H Defines macros such as MIN(), MAX(), ABS(), TRUE and FALSE

V4_4UPDATE.H BufferToSPI, BytesToDisplay, CalcChecksum, ClearBootVector, SetBootVector

WATCH.H Routines that set and read the battery-backed real-time “smart watch”

XMEM.H Fetch, store and bit manipulation functions for extended memory and EEPROM

The “Categorized List of QED Library Functions” section of this glossary is organized according to
these header files. To examine these files, use TextPad (the Mosaic IDE Editor) to open the files in
the compiler's \MOSAIC\FABIUS\INCLUDE\MOSAIC directory.

How To Interpret the Glossary Definitions

Each entry in the Main Glossary of Control-C Library Functions includes the following elements:

1. A declaration of the routine. If it is a constant or a macro that does not require any arguments,
then the name of the routine is simply presented. If it is a function, or a macro that behaves
like a function, then the declaration looks like an ANSI-C function prototype, such as:
 void Emit(uchar c)

where void tells us that there is no return value, and uchar c tells us that there is a single in-
put parameter that is an unsigned character.

2. A detailed definition of what the routine does.

3. A “Type:” field that specifies whether the routine is a _forth function, a C function, a macro,
a constant, or a typedef.

4. A “Related QED-Forth name” field that specifies the name of a closely related function or
constant that is accessible via the QED-Forth interpreter/compiler using QED-Forth syntax.

5. A “Header file” field that specifies where the routine is defined or declared.

Introduction to the Control-C Glossary 3

Type Abbreviations Used in Function Declarations

Standard type specifiers such as char, int, long, and float are used in the glossary declarations. In
addition, we use four convenient typedefs that are defined in the TYPES.H header file:

typedef unsigned char uchar;

typedef unsigned int uint;

typedef unsigned long ulong;

typedef unsigned long xaddr;

The meanings of the first three typedefs are obvious; they are abbreviations for unsigned types. The
“xaddr” typedef stands for “extended address”, and is used when a 32-bit address must be passed as
a parameter.

Routines That Disable Interrupts

This section summarizes the functions and macros that temporarily disable interrupts. These rou-
tines are summarized to assist you in planning the time-critical aspects of your application.

Comparison with Prior QED-Forth Firmware

This section summarizes the changes to the V4.4x operating system firmware compared to the prior
V4.08 firmware.

The Main Glossary of Control-C Library Functions

The Main Glossary section of this document presents definitions of all of the functions, constants
and macros that are defined and declared in the \FABIUS\INCLUDE\ MOSAIC header files. This
glossary does not describe standard ANSI-C library functions (such as functions in stdio.h); consult
any ANSI-C text for descriptions of the ANSI standard library functions.

The routines described in the Main Glossary facilitate control of all of the hardware on the QED
Board, including the analog and digital I/O lines, serial communications ports, keypad scanner,
character and graphics display interfaces, and battery-backed real-time clock. In addition, the rou-
tines provide complete control over the built-in multitasking executive, heap memory manager,
interrupt handling capabilities, and operating system features including Autostarting of your appli-
cation program.

The Interactive Debugger Glossary

The Interactive Debugger Glossary describes a set of useful routines that allow you to interactively
call C functions and manipulate variables and FORTH_ARRAY data. These versatile routines
make it easy to thoroughly test each function in your program over its full range of allowed input
parameters.

The environment for the interactive debugger is the QED-Forth interpreter. Thus, while the syntax
of the debugger commands is similar to C function prototypes and assignment statements, you will

4 Glossary I: QCard/QScreen/Handheld Control-C Glossary

in fact be “talking to” the debugger using the QED-Forth language. The Debugging chapter of the
QVGA Manual explains how to use QED-Forth and the debugger routines.

In addition to the debugger keywords that were created for debugging C programs, the Debugger
Glossary also describes some QED-Forth functions that can be interactively called. These useful
functions let you write to EEPROM, view memory contents using a DUMP command, capture your
application in a Motorola S-record file to facilitate program transfer to flash memory on production
boards, change the baud rates of the serial ports, and setup the MAIN program to AUTOSTART
each time the QED Board starts up.

The “Introductory Notes” section at the top of the Debugger Glossary provides further information.

Categorized List of Control-C Library Functions 5

Categorized List of Control-C Library Functions

ANALOG.H
AD8Multiple() AD8ToBuffer() InitSPI()

AD8Off() DIM_AD8_BUFFER() SPIOff()

AD8On() FastAD8Multiple()

AD8Sample() FastAD8Sample()

ARRAY.H
ARRAYBASE() CopyArray() FillArray()

ArrayBase() DELETED() FORTH_ARRAY

ARRAYFETCH() Deleted() NUMCOLUMNS()

ArrayFetch() DIM() NUMDIMENSIONS()

ARRAYMEMBER() Dimensioned() NUMROWS()

ArrayMember() FARRAYFETCH() SIZEOFMEMBER()

ARRAYSIZE() FArrayFetch() SWAPARRAYS()

ARRAYSTORE() FARRAYSTORE() SwapArrays()

ArrayStore() FArrayStore()

COPYARRAY() FILLARRAY()

COMM.H
AskKey() ForthEmit() PauseOnKey()

AskKey1() ForthKey() RS485Receive()

AskKey2() InitRS485() RS485Transmit()

Baud1AtStartup() InitSerial2() Serial1AtStartup()

Baud2() Key() Serial2AtStartup()

Beep() Key1() TRANSMITTING

Cr() Key2() UseSerial1()

DisableSerial2() NumInputChars() UseSerial2()

Emit() NumOutputChars() _peekTerminal()

Emit1() PARITY _readChar()

Emit2() PARITY_IN _readTerminal()

ForthAskKey() PARITY_OUT _writeChar()

6 Glossary I: QCard/QScreen/Handheld Control-C Glossary

FLASH.H
DownloadMap() PageToRam() ToFlash()

PageToFlash() StandardMap() WhichMap()

HEAP.H
DEFAULT_HEAPEND FromHeap() Room()

DEFAULT_HEAPSTART INIT_DEFAULT_HEAP() ToHeap()

DupHeapItem() IsHeap() TransferHeapItem()

INTERUPT.H
ATTACH() IC3_ID PULSE_EDGE_ID

Attach() IC4_OC5_ID PULSE_OVERFLOW_ID

CLOCK_MONITOR_ID ILLEGAL_OPCODE_ID RTI_ID

COP_ID IRQ_ID SCI_ID

DISABLE_INTERRUPTS() OC1_ID SPI_ID

ENABLE_INTERRUPTS() OC2_ID SWI_ID

IC1_ID OC3_ID TIMER_OVERFLOW_ID

IC2_ID OC4_ID XIRQ_ID

INTRFACE.H
AskKeypad() DisplayOptions() PutCursor ()

AskKeypress() DISPLAY_HEAP ScanKeypad()

BufferPosition() GARRAY_XPFA ScanKeypress()

CharsPerDisplayLine() InitDisplay() StringToDisplay()

CharToDisplay() IsDisplay() STRING_TO_DISPLAY()

ClearDisplay() IsDisplayAddress() UpdateDisplay()

CommandToDisplay() Keypad() UpdateDisplayLine()

DisplayBuffer() LinesPerDisplay() UpdateDisplayRam()

MTASKER.H
Activate() Halt () SEND()

ACTIVATE() InitElapsedTime() Send()

AD8_RESOURCE InstallMultitasker() SERIAL

ASLEEP Kill () SERIAL1_RESOURCE

AWAKE MAILBOX SERIAL2_RESOURCE

BuildTask() MicrosecDelay() SPI_RESOURCE

Categorized List of Control-C Library Functions 7

MTASKER.H
BUILD_C_TASK() Pause() StartTimeslicer()

ChangeTaskerPeriod() ReadElapsedSeconds() StopTimeslicer()

FMAILBOX RECEIVE() TIMESLICE_COUNT

FORTH_TASK Receive() TryToFSend()

FRECEIVE() RELEASE() TryToGet()

FReceive() Release() TryToSend()

FSEND() RELEASE_AFTER_LINE TRY_TO_FSEND()

FSend() RELEASE_ALWAYS TRY_TO_GET()

GET() RELEASE_NEVER TRY_TO_SEND()

Get () RESOURCE

NUMBERS.H
FILL_FIELD FP_QtoC() RANDOM_SEED

FIXED() LEFT_PLACES RIGHT_PLACES

FLOATING() MANTISSA_PLACES SCIENTIFIC()

FPtoString() NO_SPACES TRAILING_ZEROS

FP_CtoQ() PrintFP()

FP_FORMAT Random()

QEDREGS.H
DDRA

DDRD

PORTA

PORTD

PORTE

See the QEDREGS.H file. All registers are named using the standard
names as described in the Motorola 68HC11F1 documentation.

QEDSYS.H
Abort() DefaultRegisterInits() NoVitalIRQInit()

Autostart() Execute() PriorityAutostart()

Breakpoint() InitVitalIRQsOnCold() StandardReset()

Cold() InstallRegisterInits() SysAbort ()

ColdOnReset() NoAutostart() Warm()

STEPPER.H
CreateRamp() SpeedToDuty() StepManager()

8 Glossary I: QCard/QScreen/Handheld Control-C Glossary

TYPES.H
EXTENDED_ADDR THIS_PAGE _Q

PAGE_LATCH TWO_INTS

USER.H
CURRENT_HEAP TASK UERROR

CUSTOM_ABORT TASKBASE UKEY

CUSTOM_ERROR TIB UP

NEXT_TASK UABORT UPAD

PAD UASK_KEY USER_AREA

SERIAL_ACCESS UDEBUG UTIB

STATUS UEMIT

UTILITY.H
ABS() MAX() TRUE

FALSE MIN()

WATCH.H
CALENDAR_TIME WATCH_DAY WATCH_MONTH

ReadWatch() WATCH_HOUR watch_results

SetWatch() WATCH_HUNDREDTH_SECONDS WATCH_SECONDS

WATCH_DATE WATCH_MINUTE WATCH_YEAR

V4_4UPDATE.H
BufferToSPI() CalcChecksum() SetBootVector()

BytesToDisplay() ClearBootVector() PPB_

XMEM.H
AddXaddrOffset() FetchLong() StoreFloat()

ChangeBits() FetchLongProtected() StoreFloatProtected()

ClearBits() FillMany() StoreInt()

CmoveMany() SetBits() StoreLong()

CountedString() StoreChar() StoreLongProtected()

FetchChar() StoreEEChar() StringMove()

Categorized List of Control-C Library Functions 9

XMEM.H
FetchFloat() StoreEEFloat() ToggleBits()

FetchFloatProtected() StoreEEInt () XaddrDifference()

FetchInt () StoreEELong()

10 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Categorized List of QED-Forth Debugger and System
Configuration Functions

Assignment, Fetching and Function Calling
=CHAR CHAR INT

=FLOAT CHAR* INT*

=INT DO[] LONG

=LONG FLOAT LONG*

CALL.CFN FLOAT*

EEPROM Storage
(EE!) (EEC!)

(EE2!) (EEF!)

Hex Dump and Receive
DUMP DUMP.S1 RECEIVE.HEX

DUMP.INTEL DUMP.S2

Numeric I/O
. FP_CtoQ PrintFP

D. FP_QtoC U.

DECIMAL HEX

Library Functions That Disable Interrupts 11

Operating System and Memory Management
ABORT ENABLE.DOWNLOAD SERIAL2.AT.STARTUP

ALL.TO.FLASH INIT.VITAL.IRQS.ON.COLD SET.BOOT.VECTOR

AUTOSTART INSTALL.REGISTER.INITS SP!

BAUD1.AT.STARTUP MAIN STANDARD.MAP

BAUD2 NO.AUTOSTART STANDARD.RESET

CALC.CHECKSUM NO.VITAL.IRQ.INIT TO.FLASH

CFA.FOR PAGE.TO.FLASH USE.SERIAL1

CLEAR.BOOT.VECTOR PAGE.TO.RAM USE.SERIAL2

COLD PRIORITY.AUTOSTART WARM

COLD.ON.RESET RESTORE WHICH.MAP

DEFAULT.REGISTER.INITS SAVE WORDS

DOWNLOAD.MAP SERIAL1.AT.STARTUP

Library Functions That Disable Interrupts
Certain Control-C library functions temporarily disable interrupts by setting the I bit in the condition
code register. The glossary entries for these words detail the length of time that interrupts are dis-
abled. These routines are summarized here to assist you in planning the time-critical aspects of
your application.

The library provides a set of uninterruptable memory operators that disable interrupts for a few
microseconds during the memory access. These are very useful in applications where several tasks
or interrupt routines must access a shared memory location:

ChangeBits() ClearBits() FetchFloatProtected()

 FetchLongProtected() SetBits() StoreFloatProtected()

StoreLongProtected() ToggleBits()

Accessing the LCD display require the insertion of wait states, and the computer architecture re-
quires that interrupts be disabled while a wait state memory access is in progress. The following
routines disable interrupts to insert wait states:

AskKeypad() AskKeypress() CharToDisplay()

ClearDisplay() CommandToDisplay() DisplayOptions()

InitDisplay() IsDisplayAddress() Keypad()

PutCursor() ScanKeypad() ScanKeypress()

StringToDisplay() STRING_TO_DISPLAY() UpdateDisplay()

UpdateDisplayLine() UpdateDisplayRam()

The multitasker mediates access to shared resources and ensures smooth transfer of information
among tasks. The routines that manage resource variables and mailboxes must disable interrupts

12 Glossary I: QCard/QScreen/Handheld Control-C Glossary

for short periods of time to ensure proper access to shared resources and messages. Consequently,
the following routines temporarily disable interrupts:

FRECEIVE() FReceive() FSEND()

FSend() GET() Get()

RECEIVE() Receive() SEND()

Send() TryToFSend() TryToGet()

TryToSend() TRY_TO_FSEND() TRY_TO_GET()

TRY_TO_SEND()

Some of these routines also call Pause() to give other tasks a chance to run while waiting for a re-
source or message; as explained below, Pause() also disables interrupts. Consult their glossary
entries for details.

The following routines temporarily disable interrupts to ensure that a new task is not corrupted while
it is being built:

BuildTask() BUILD_C_TASK()

This function disables interrupts to ensure that the elapsed time clock is not updated while it is being
read:

ReadElapsedSeconds()

The multitasker is charged with smoothly transferring control among tasks via timeslicing or coop-
erative task switching. The timeslicer is an interrupt service routine associated with output com-
pare#2. The timeslicer's interrupt service routine disables interrupts for the duration of a task switch
which requires 25 microseconds, plus 3.25 microseconds for each ASLEEP task encountered in the
task list. The cooperative task switch routine

Pause()

switches tasks in (27 + 3.25n) microseconds, where n is the number of ASLEEP tasks encountered
in the round robin task list. Of this time, interrupts are disabled for (20 + 3.25n) microseconds.

The Pause() routine (which temporarily disables interrupts) is called by the following built-in device
drivers:

ForthEmit() ForthKey() Emit()

Emit1() Emit2() Key()

Key1() Key2() Keypad()

ScanKeypad()

The following device driver routines GET() and RELEASE() resource variables, and so disable
interrupts for short periods of time:

AD8Multiple() AD8Sample() AD8ToBuffer()

AskKey() AskKey1() AskKey2()

Emit() Emit1() Emit2()

ForthAskKey() ForthEmit() ForthKey()

Key() Key1() Key2()

PauseOnKey() ReadWatch() SetWatch()

Comparison with Prior QED-Forth Firmware 13

All of the routines that write to the EEPROM disable interrupts for 20 msec per programmed byte.
This results from the 68HC11's design which prohibits any EEPROM locations from being read
while other EEPROM locations are being modified. Since all interrupts are vectored through
EEPROM, interrupts cannot be serviced while an EEPROM storage operation is in progress. The
following fundamental EEPROM storage functions:

StoreEEChar() StoreEEFloat() StoreEEInt()

StoreEELong()

disable interrupts for 20 msec per programmed byte. These routines are smart enough to avoid
programming a byte that already has the correct contents. The following routines may modify
EEPROM locations:

ATTACH() Attach() Autostart()

ColdOnReset() DefaultRegisterInits()DownloadMap()

InitVitalIRQsOnCold() InstallMultitasker() InstallRegisterInits()

IsDisplay() NoAutostart() Serial1AtStartup()

Serial2AtStartup() StandardMap() StandardReset()

StartTimeslicer()

All of the routines that write to the Flash memory disable interrupts for 20 msec per programmed
sector, where a standard sector is 256 bytes. This results from the flash architecture which prohibits
any flash locations from being read while other flash locations are being modified. Since interrupts
invoke flash-resident code, interrupts cannot be serviced while an flash storage operation is in prog-
ress. The following flash routines disable interrupts:

PageToFlash() PageToRam() ToFlash()

The following routines disable interrupts and do not re-enable them:
Cold() DISABLE_INTERRUPTS() Warm()

DISABLE_INTERRUPTS() and its assembly language counterpart SEI explicitly set the I bit in the
condition code register. The routines ENABLE_INTERRUPTS and the assembler mnemonic CLI
clear the I bit to globally enable interrupts. The restart routines Cold() and Warm() disable inter-
rupts to ensure that the initialization process is not interrupted.

Comparison with Prior QED-Forth Firmware
The QCard, QScreen Controller, and QED Handheld operating system firmware carries the version
number V4.4x, where x represents a numeric value. Customers who are familiar with the prior
V4.08 operating system software will notice that certain device driver functions have been removed
from V4.4x because the corresponding hardware is not present. These functions comprise the hard-
ware drivers for the 12-bit A/D, D/A, PIA, and high current drivers. We recommend the use of the
many available WildCard I/O modules and their associated pre-coded kernel extension device driv-
ers to add customized I/O to meet the needs of your application.

The V4.4x keypad scanner and character/graphics display drivers are available to support an op-
tional Keypad/Display WildCard. These kernel-resident drivers work only if the Keypad/Display
WildCard is assigned a WildCard module address of 0. On the QCard, this is accomplished by
installing the Keypad/Display WildCard on module header 0, and leaving the jumper caps off the

14 Glossary I: QCard/QScreen/Handheld Control-C Glossary

WildCard’s two on-board jumpers. The QScreen and Handheld products come complete with a
graphical user interface that is controlled by pre-coded drivers.

The ReadWatch() and SetWatch() functions are backwardly compatible with prior versions, but
they rely on different real-time clock hardware as described in their glossary entries.

The V4.4x kernel boots up at 19200 baud, compared to 9600 baud on many earlier products based
on the V4.08 kernel.

How To Access the Additional Functions

The following QED-Forth functions have been added to the Forth debugging glossary:

ALL.TO.FLASH CALC.CHECKSUM
CLEAR.BOOT.VECTOR ENABLE.DOWNLOAD
SET.BOOT.VECTOR

The following five C-callable functions have been added:

BufferToSPI() BytesToDisplay()
CalcChecksum() ClearBootVector()
SetBootVector()

No additional software is needed to access the new functions using interactive Forth commands, as
they are built into the kernel.

C programmers must include the files named v4_4update.c and v4_4update.h to gain access to the
five new C-accessible functions. These files are located in the

\Mosaic\Fabius\Include\Mosaic\v4_4Update
directory in the software distribution CD. Simply #include both the v4_4update.h and v4_4update.c
files in one of your source files, and also #include v4_4update.h in any other source files that use
these new kernel routines.

Summary of Modified Functions

A set of operating system functions makes it easy to manage the downloading of code into RAM
and the transfer of the compiled code to flash. This is performed automatically by the Mosaic C
IDE (Integrated Development Environment), so C programmers need not be aware of the details.
For those who are interested, the Forth debugging glossary entries for the functions STANDARD.MAP,
DOWNLOAD.MAP, TO.FLASH, PAGE.TO.FLASH and PAGE.TO.RAM describe how the new expanded
amounts of flash memory are managed. The QCard has flash at pages 4-7 that swaps with RAM on
parallel pages 1-3, plus flash at hex pages 10-17 that swaps with RAM on parallel hex pages 18-1F.
In the “download map”, flash and RAM are swapped: flash is present on pages 1-3 and 18-1F, and
RAM is present on pages 4-6 and 10-17. On the QScreen Controller and Handheld, TO.FLASH can
program the optional flash memory at pages 0x20-2F. The great majority of applications compile to
less than 96 KBytes of code, which fits on pages 4, 5 and 6. For these applications, the new func-
tions ENABLE.DOWNLOAD and ALL.TO.FLASH greatly simplify the downloading process. Simply insert
the command ENABLE.DOWNLOAD at the top of the first file to be downloaded to the QCard. This

Comparison with Prior QED-Forth Firmware 15

function makes sure that any previously downloaded code is transferred to RAM, and calls
DOWNLOAD.MAP to ensure a RAM-based memory map that enables compilation of code. At the end
of the last file to be downloaded, insert the command ALL.TO.FLASH. This copies the compiled code
in pages 4, 5 and 6 to flash, sets the STANDARD.MAP, and calls SAVE so that the RESTORE command
can be used to recover after a crash or a COLD restart during the development process.

To support a “bullet-proof” kernel extension to enable firmware upgrades, an optional “boot vector”
is implemented using the SET.BOOT.VECTOR operating system function. This allows the posting of a
function that is executed before the autostart program is run; see the Forth debugging glossary entry
of SET.BOOT.VECTOR for details. The boot vector and its code are located on page 0x0C, a page that
can be hardware write protected with the “page-C write protect” jumper. Removal of the boot vec-
tor is accomplished by invoking CLEAR.BOOT.VECTOR or by using the special cleanup mode
described in the hardware documentation.

The AskKeypad(), AskKeypress() and Keypad() functions have been upgraded to support
more than 20 keys. They work identically to prior versions for keys 0 through 19, but add support
for an additional 20 keys with numbers 20 through 39.

InitSPI() now configures the SPI to sample data on the falling trailing edge of the SPI clock.
This is consistent with the data transfer protocol of the on-board battery-backed real-time clock.
The user may freely change the SPI configuration to meet the needs of the application program.

When using the Forth debugger tools, numbers can now have a leading 0x or 0X to indicate that the
numbers are hexadecimal.

16 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Main Glossary of Control-C Library Functions

void Abort(void)
If the CUSTOM_ABORT flag is true (non-zero), executes the abort routine whose xcfa
(32-bit extended code field address) is stored in the user variable UABORT, and then
returns to the routine that called ABORT. If CUSTOM_ABORT is false (zero),
executes the default routine SysAbort() which clears the data and return stacks, and
sets the page to the default page (0). If an autostart vector has been installed [see
Autostart() and PriorityAutostart()], SysAbort() executes the specified routine;
otherwise it executes QUIT which sets the execution mode and enters the QED-Forth
monitor. If the stack pointers do not point to common RAM, a COLD restart is
initiated.
Type: _forth function; QED-Forth name: ABORT
Header file: qedsys.h

ABS(num)
Returns the absolute value of num; the input can be of any type. This macro is
defined as:

#define ABS(A) (((A) >=0) ? (A) : (-A))
Type: macro
Header file: utility.h

void Activate(void(*action)(), uint actionPage, xaddr taskBase)
Sets up the specified routine on the specified actionPage as the action function of the
task whose TASKBASE address is taskBase, and leaves the specified task AWAKE so
that it will be entered on the next pass through the round robin task list. For application
programs that are compiled on a single page, the macro form ACTIVATE() is highly
recommended; see its glossary entry for a complete description of what this routine
does. For programs whose code occupies multiple pages of memory on the QED
Board, this functional form of Activate() allows the page of the action routine
(actionPage) to be specified.
Type: _forth function; QED-Forth name: ACTIVATE
Header file: mtasker.h

void ACTIVATE(void(*action)(), int* task_base_addr)
Sets up the specified routine as the action function of the task whose TASKBASE
address equals task_base_addr, and leaves the specified task AWAKE so that it will be
entered on the next pass through the round robin task list. The ACTIVATE() macro
may be used in all applications whose code compiles onto a single page of the QED
Board; for multi-page applications, see the functional form named Activate() which
allows you to specify the page of the action routine.
ACTIVATE() assumes that the specified task has already been declared using a TASK
statement and added to the task list by BUILD_C_TASK(). The task's action function
is typically either an infinite loop or a finite routine that ends with a Halt() instruction
(which is itself an infinite loop). ACTIVATE() buries a call to Halt() in the return stack
frame to ensure graceful termination of a finite activation routine. If cooperative
multitasking is used exclusively (that is, if the timeslicer is not used), then the loop of

Main Glossary of Control-C Library Functions 17

the action function must contain at least one Pause() statement, or invoke a function
that in turn executes Pause(). Otherwise, no task switching occurs. If timeslicing is
used, incorporation of Pause() statements in the loop of the action function is optional.
The typical form of an action function is:

void action_name(void)
{ while(1)

{ statements to be executed infinitely;
Pause();
statements to be executed infinitely;

}
}

or:
void action_name(void)

{ statements to be executed;
Pause();
statements to be executed;
Halt();

}
Once the action routine has been defined, the task can be named, built and activated
as follows:

TASK ReadInputTask; // name and allocate the task area
BUILD_C_TASK(0,0,&ReadInputTask); // build the task in RAM
ACTIVATE(action_name, &ReadInputTask); // activate the task

Note that action_name is passed without parentheses to the ACTIVATE routine; this
tells the compiler that action_name is a pointer to a function. The turnkey application
program in the documentation provides working examples of how to define, build and
activate tasks in a multitasking program. See TASK and BUILD_C_TASK().
Type: macro; Related QED-Forth function: Activate()
Header file: mtasker.h

void AD8Multiple(xaddr buffer, uint Interval, uint NumSamples, uint channel)
Acquires NumSamples samples from the 8 bit analog to digital (A/D) converter in the
68HC11 and stores the samples as sequential unsigned 8 bit values starting at the
specified buffer xaddress. [For an automated approach to storing samples in an array
in paged memory, see the glossary entries for DIM_AD8_BUFFER() and
AD8ToBuffer()].
The channel parameter specifies the channel number of the A/D (0 <= channel <= 7).
To ensure proper operation in a multitasking environment, this routine executes
GET(AD8_RESOURCE) before reading the A/D and RELEASE(AD8_RESOURCE)
before terminating. If the specified xaddr is in common memory, the first sample is
taken after 86 µsec and subsequent samples are taken every (10+2.5*u1) µsec,
where u1 is the specified timing parameter passed to this routine. If the specified xaddr
is in paged memory, the first sample is taken after 81 µsec and subsequent samples
are taken every (32.5+2.5*u1) µsec. Of course, the operation of interrupts (including
timesliced multitasking) will affect these sampling times. For a faster version suitable
for non-multitasking applications, see FastAD8Multiple(). See also AD8Sample(),
FastAD8Sample(), and A/D8.ON.
Type: _forth function; QED-Forth name: A/D8.MULTIPLE
Header file: analog.h

18 Glossary I: QCard/QScreen/Handheld Control-C Glossary

void AD8Off(void)
Turns off the 68HC11's on-chip 8 bit analog to digital (A/D) convertor by clearing the
ADPU bit in the processor's OPTION register. The 8 bit A/D is initialized to the off
state upon every reset or restart. See AD8On().
Type: _forth function; QED-Forth name: A/D8.OFF
Header file: analog.h

void AD8On(void)
Turns on the 68HC11's on-chip 8 bit analog to digital (A/D) convertor by setting the
ADPU bit in the processor's OPTION register, and waits 100 microseconds for the
A/D to stabilize. Also initializes AD8_RESOURCE to zero. This routine must be
executed after a reset or restart before using the 8 bit A/D. See AD8Off().
Type: _forth function; QED-Forth name: A/D8.ON
Header file: analog.h

uchar AD8Sample(uint channel)
Returns a single sample byte from the specified channel (0 <= channel <= 7) of the 8 bit
analog to digital (A/D) converter in the 68HC11. To ensure proper operation in a
multitasking environment, this routine executes GET(AD8_RESOURCE) before
reading the A/D and RELEASE(AD8_RESOURCE) before terminating. This routine
executes in 93 microseconds. For a faster version suitable for non-multitasking
applications, see FastAD8Sample(). See also FastAD8Multiple(), AD8Multiple(), and
AD8On().
Type: _forth function; QED-Forth name: A/D8.SAMPLE
Header file: analog.h

void AD8ToBuffer(FORTH_ARRAY* array_ptr, uint Interval, uint NumSamples, uint channel)
Acquires NumSamples samples from the 8 bit analog-to-digital (A/D) converter and
stores the samples as sequential 8 bit values in the specified Forth array in paged
memory. The acquired readings may then be accessed using the ARRAYFETCH()
macro. AD8ToBuffer() assumes that DIM_AD8_BUFFER() has already been
executed to set up the Forth array buffer. The Interval parameter specifies the timing of
the samples (see the glossary entry for AD8Multiple() for detailed timing specifications),
and channel specifies the channel number of the A/D (0 <= channel <= 7).
Example of use:

// **** Initializations (performed only once at system startup): ****
#define MAXSAMPLES 100
INIT_DEFAULT_HEAP(); // ensure valid heap to hold array
AD8On();
FORTH_ARRAY acquired_data;
DIM_AD8_BUFFER(&acquired_data, MAXSAMPLES); // 1 column
// **** Now perform the conversions ****
AD8ToBuffer(&acquired_data, 0, MAXSAMPLES, 5);
// ***************

This example acquires 100 samples at the maximum sampling rate (because the timing
interval equals 0) and stores them into the acquired_data array. Note that the
AD8ToBuffer() routine can be called repeatedly to update the contents of the array. To
fetch the sample whose index is 5 (that is, the 6th sample taken), you can execute:

Main Glossary of Control-C Library Functions 19

int the_sample;
the_sample = ARRAYFETCH(uchar, 5, 0, &acquired_data);

Note that the data index (5) appears as the row index, and 0 appears as the column
index in the parameter list for ARRAYFETCH().
Type: C function
Header file: analog.h

AD8_RESOURCE
A constant that returns the address of the resource variable associated with the 8 bit
analog to digital (AD8) convertor. Should be accessed by the routines GET(),
TRY_TO_GET() and RELEASE(). Initialized to zero by AD8On() and at each reset or
restart. AD8_RESOURCE is automatically invoked by many of the AD8 device driver
functions and macros. See RESOURCE.
Type: macro constant; Related QED-Forth function: A/D8.RESOURCE
Header file: mtasker.h

xaddr AddXaddrOffset(xaddr baseAddr, long offset)
Adds the specified signed offset to baseAddr and returns the resulting address. Note
that in the QED Board's paged memory, the address immediately following 0x7FFF is
address 0000 on the following page.
Type: _forth function; QED-Forth name: XD+
Header file: xmem.h

xaddr ARRAYBASE(FORTH_ARRAY* array_ptr)
Returns the base address (that is, the address of the first element) of the specified
array. Returns zero if the array is undimensioned. No error checking is performed.
Example of use:
To define an array of unsigned longs named MyArray with 3 rows and 5 columns,
execute:

FORTH_ARRAY Myarray;
DIM(ulong, 3, 5, &Myarray);

Now to assign the base address of the array to a variable, execute:
static xaddr Myarray_base_address;

 Myarray_base_address = ARRAYBASE(&Myarray);
Note that the & (address-of) operator in front of the array's name tells the compiler that
a pointer is being passed. If you forget the & operator, the compiler will warn you that
you are attempting to pass an entire structure (the array's parameter field structure) as
an argument to a function.
See the FORTH_ARRAY glossary entry for a description of how to define an array and
its corresponding array_ptr. See also FORTH_ARRAY, DIM(), ARRAYSTORE() and
ARRAYFETCH().
Type: macro; Related QED-Forth function: [0]
Header file: array.h

xaddr ArrayBase(FORTH_ARRAY* array_ptr, uint pfa_page)
A subsidiary Forth function called by the recommended macro ARRAYBASE(); see
ARRAYBASE().
Type: _forth function; QED-Forth name: [0]
Header file: array.h

20 Glossary I: QCard/QScreen/Handheld Control-C Glossary

ulong ARRAYFETCH(type, uint row, uint col, FORTH_ARRAY* array_ptr)
Fetches the contents of the element at row, col in the specified 2-dimensional array.
The size of the data that is fetched from the array may be 1 byte, 2 bytes, or 4 bytes
depending upon the number of bytes per element of the array as specified by the DIM()
command. The "type" parameter passed to the function causes the specified type-cast
to be performed on the fetched data; this is necessary to inform the compiler of the
type of the data stored in the array. Examples of valid "type" parameters are standard
identifiers and pre-defined types such as:

int unsigned int uint
char unsigned char uchar
long unsigned long ulong

Typically, the specified type corresponds to the type of the data stored in the array.
Note that the uint, uchar, and ulong types are defined in the types.h file. For floating
point data, use FARRAYFETCH(). There is an unchecked error if the specified array
does not have 2 dimensions or if the number of bytes per element does not equal 1, 2,
or 4. If UDEBUG is true (its default state after a COLD startup) and if the indices are
out of range, Abort() is called.
Example of use:
To define an array of unsigned longs named MyArray with 3 rows and 5 columns,
execute:

FORTH_ARRAY Myarray;
DIM(ulong, 3, 5, &Myarray);

Now to fetch the contents of the item at row=1, column=2 into a variable, execute:
static ulong the_contents;

 the_contents = ARRAYFETCH(1,2,&Myarray);
Note that the & (address-of) operator in front of the array's name tells the compiler that
a pointer is being passed. If you forget the & operator, the compiler will warn you that
you are attempting to pass an entire structure (the array's parameter field structure) as
an argument to a function.
See the FORTH_ARRAY glossary entry for a description of how to define an array and
its corresponding array_ptr. See also FORTH_ARRAY, DIM(), FARRAYFETCH() and
ARRAYSTORE().
Type: macro; Related QED-Forth function: ArrayFetch()
Header file: array.h

ulong ArrayFetch(uint row, uint col, FORTH_ARRAY* array_ptr, uint pfa_page)
A subsidiary function called by the recommended ARRAYFETCH() macro; see
ARRAYFETCH().
Type: _forth function; QED-Forth name: 2ARRAY.FETCH
Header file: array.h

xaddr ARRAYMEMBER(uint row, uint col, FORTH_ARRAY* array_ptr)
Returns the 32-bit extended address of the element at the specified row and column in
the 2-dimensional array specified by array_ptr. If UDEBUG is true (its default state
after a COLD startup) and if the indices are out of range, calls Abort(). Example of
use:

FORTH_ARRAY Myarray; // define an array named Myarray
DIM(ulong, 3, 5, &Myarray); // dimension it as 3 rows by 5 columns

Main Glossary of Control-C Library Functions 21

To calculate the extended address of the element at row=0, column = 1, execute:
static xaddr element_address;
element_address = ARRAYMEMBER(0, 1, &Myarray);

element_address could now be passed as a parameter to FetchLong() or StoreLong() to
access the array member. Note that ARRAYFETCH() and ARRAYSTORE() provide a
more direct means for fetching from and storing to an array element. Caution: recall
that Forth function calls cannot be nested, so it is not legal to use ARRAYMEMBER()
as an input parameter for another function such as StoreLong(). Rather, the return
value of ARRAYMEMBER() must be saved in a variable which in turn is passed as a
parameter to another Forth function.
Type: macro; Related QED-Forth function: M[]
Header file: array.h

xaddr ArrayMember(uint row, uint col, FORTH_ARRAY* array_ptr, uint pfa_page)
A subsidiary function called by the recommended macro ARRAYMEMBER(); see
ARRAYMEMBER().
Type: _forth function; QED-Forth name: M[]
Header file: array.h

uint ARRAYSIZE(FORTH_ARRAY* array_ptr)
A macro that returns the number of elements d (not the number of bytes!) in the Forth
array designated by array_ptr. An unpredictable result is returned if the array is not
dimensioned.
Example of use:

FORTH_ARRAY Myarray; // define an array named Myarray
DIM(ulong, 3, 5, &Myarray); // dimension it as 3 rows by 5 columns
static uint size_of_the_array;
size_of_the_array = ARRAYSIZE(&Myarray);

See the FORTH_ARRAY glossary entry for a description of how to define an array and
its corresponding array_ptr. See also DIM().
Type: macro; Related QED-Forth name: ?ARRAY.SIZE
Header file: array.h

void ARRAYSTORE(ulong value, uint row, uint col, FORTH_ARRAY* array_ptr)
Stores the specified value at row, col in the 2-dimensional FORTH_ARRAY specified
by array_ptr. The size of the data that is stored to the array may be 1 byte, 2 bytes,
or 4 bytes depending upon the number of bytes per element of the array as specified by
the DIM() command. Valid data types for value include signed and unsigned char, int
and long. To store a floating point value, use FARRAYSTORE(). There is an
unchecked error if the specified array does not have 2 dimensions or if the number of
bytes per element does not equal 1, 2, or 4.
Example of use:
To define an array of unsigned longs named MyArray with 3 rows and 5 columns,
execute:

FORTH_ARRAY Myarray;
DIM(ulong, 3, 5, &Myarray);

Now to store 0x12345 into the element at row=1, column=2 into a variable, execute:
ARRAYSTORE(0x12345, 1,2,&Myarray);

22 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Note that the & (address-of) operator in front of the array's name tells the compiler that
a pointer is being passed. If you forget the & operator, the compiler will warn you that
you are attempting to pass an entire structure (the array's parameter field structure) as
an argument to a function.
See the FORTH_ARRAY glossary entry for a description of how to define an array and
its corresponding array_ptr. See also FORTH_ARRAY, DIM(), FARRAYSTORE()
and ARRAYFETCH().
Type: macro; Related QED-Forth function: ArrayStore()
Header file: array.h

void ArrayStore(ulong value, uint row, uint col, FORTH_ARRAY* array_ptr, uint pfa_page)
A subsidiary Forth function called by the recommended macro ARRAYSTORE(); see
ARRAYSTORE().
Type: _forth function; QED-Forth name: 2ARRAY.STORE
Header file: array.h

int AskKey(void)
Returns a flag indicating receipt of a character. If flag equals -1, a character has been
received; if the flag equals 0 (false), no character has been received. Executes
GET(SERIAL) and, depending on the value in SERIAL_ACCESS, may execute
RELEASE(SERIAL). AskKey() is a vectored routine that executes the function
whose xcfa (32-bit code field address) is stored in the user variable UASK_KEY. Thus
the programmer may install a different routine to tailor the behavior of AskKey() to the
application's needs. For example, AskKey() could access a serial port other than that
on the 68HC11 chip, or different tasks could use different AskKey() routines. See
Key(), AskKey1() and AskKey2(), _peekTerminal(), and SERIAL_ACCESS.
Type: C function; related QED-Forth function name: ?KEY
Header file: comm.h

int AskKey1(void)
Returns a flag indicating whether a character has been received on the primary serial
port (serial1) associated with the 68HC11's on-chip hardware UART. If a character
has been received a flag equal to -1 is returned; otherwise a false flag (=0) is
returned. AskKey1() is the default AskKey() routine installed in the UASK_KEY user
variable after the special cleanup mode is invoked, or if Seral1AtStartup has been
executed. If the value in SERIAL_ACCESS is RELEASE_AFTER_LINE, AskKey1()
does not GET(SERIAL1_RESOURCE) or RELEASE(SERIAL1_RESOURCE). If
SERIAL_ACCESS contains RELEASE_ALWAYS, AskKey1() executes
GET(SERIAL1_RESOURCE) and RELEASE(SERIAL1_RESOURCE). If
SERIAL_ACCESS contains RELEASE_NEVER, AskKey1() GETs but does not
RELEASE() the SERIAL1_RESOURCE. See SERIAL_ACCESS, AskKey(),
UASK_KEY, AskKey2().
Type: _forth function; QED-Forth name: ?KEY1
Header file: comm.h

int AskKey2(void)
Returns a flag indicating whether a character has been received on the on the
secondary serial port (serial2). The serial2 port is supported by QED-Forth's software
UART using hardware pins PA3 (input) and PA4 (output). If a character has been

Main Glossary of Control-C Library Functions 23

received a flag equal to -1 is returned; otherwise a false flag (=0) is returned.
AskKey2() can be made the default AskKey() routine installed in the UASK_KEY user
variable after each reset or restart by executing Serial2AtStartup(). If the value in
SERIAL_ACCESS is RELEASE_AFTER_LINE, AskKey2() does not
GET(SERIAL2_RESOURCE) or RELEASE(SERIAL2_RESOURCE). If
SERIAL_ACCESS contains RELEASE_ALWAYS, AskKey2() executes
GET(SERIAL2_RESOURCE) and RELEASE(SERIAL2_RESOURCE). If
SERIAL_ACCESS contains RELEASE_NEVER, AskKey2() GETs but does not
RELEASE() the SERIAL2_RESOURCE. See SERIAL_ACCESS, AskKey(),
UASK_KEY, AskKey1().
Type: _forth function; QED-Forth name: ?KEY2
Header file: comm.h

ulong AskKeypad(void)
A subsidiary Forth function that is called by ScanKeypad(); see ScanKeypad().
Type: _forth function; QED-Forth name: ?KEYPAD
Header file: intrface.h

ulong AskKeypress(void)
A subsidiary Forth function that is called by ScanKeypress(); see ScanKeypress().
Type: _forth function; QED-Forth name: ?KEYPRESS
Header file: intrface.h

ASLEEP
A constant that returns the value 1. When stored into a task's STATUS user variable,
indicates to the multitasking executive that the task is asleep and cannot be entered.
The following example illustrates how to put another task to sleep. Assume that we
have pre-defined an infinite loop task function named GatherData(), and that we have
named, built and activated a task with the following statements:

TASK ReadInputTask; // name and allocate the task area
BUILD_C_TASK(0,0,&ReadInputTask); // build the task in RAM
ACTIVATE(GatherData, &ReadInputTask); // activate the task

Now the task is AWAKE and running, and the TASK command has defined
&ReadInputTask as a pointer to the task's TASK structure, of which the USER_AREA
structure is the first element. Note that the task's STATUS address (whose contents
control whether the task is AWAKE) is the first element in the task's USER_AREA
structure; its element name is user_status. Thus, to put the task ASLEEP we simply
execute

ReadInputTask.USER_AREA.user_status = ASLEEP ;
If a given task wants to put itself asleep, it can simply execute the commands:

STATUS = ASLEEP;
Pause();

The Pause() command ensures that the multitasking executive immediately exits the
task after it is put ASLEEP. See also AWAKE.
Type: constant; Related QED-Forth function: ASLEEP
Header file: mtasker.h

void ATTACH (void(*action)(), int interrupt_id)

24 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Posts an interrupt handler routine specified by the function pointer (*action)() for the
interrupt with identity number interrupt_id (for example, OC1_ID, SWI_ID, etc). This
macro form of the Attach() function is recommended for applications whose object code
fits on a single page. For example, suppose you have defined a standard C function
named OC1_Service() to service the Output Compare #1 interrupt. To install the
interrupt handler, simply execute

ATTACH(OC1_Service, OC1_ID);
Note that the name of the service routine is passed as a parameter without
parentheses; this tells the C compiler to pass a pointer to the OC1_Service() function.
ATTACH() compiles an 8-byte code sequence at the EEPROM location associated with
the specified interrupt. When the interrupt is serviced, the code specified by the
function pointer will be executed. The service routine should NOT be declared as an
_interrupt function; the ATTACH() routine compiles the needed RTI (return from
interrupt) instruction.
Type: macro; Related QED-Forth function: Attach()
Header file: interupt.h

void Attach(void(*action)(), uint actionPage, int interrupt_id)
Posts an interrupt handler routine specified by the function pointer (*action)() whose
code is compiled on actionPage for the interrupt with identity number interrupt_id (for
example, OC1_ID, OC3_ID, etc). This functional form (as opposed to the ATTACH()
macro) is recommended for applications whose object code resides on more than one
memory page on the QED Board. For example, suppose you have defined a standard
C function named OC1_Service() on QED memory page 5 to service the Output
Compare #1 interrupt. (To find out on which page the service routine resides, search
for the service routine's name in the .OUT file created by the compiler, and look at the
top 2 hexadecimal digits of the hexadecimal function address.) To install the interrupt
handler, simply execute

Attach(OC1_Service, 5, OC1_ID);
Note that the name of the service routine is passed as a parameter without
parentheses; this tells the C compiler to pass a pointer to the OC1_Service() function.
Attach() compiles an 8-byte code sequence at the EEPROM location associated with
the specified interrupt. When the interrupt is serviced, the code specified by the
function pointer will be executed. The service routine NOT be declared as an
_interrupt function; the Attach() routine compiles the needed RTI (return from interrupt)
instruction.
Type: _forth function; QED-Forth name: ATTACH
Header file: interupt.h

void Autostart(void(*action)(), uint actionPage)
Compiles a 6-byte sequence into the EEPROM in the 68HC11. On subsequent
restarts and ABORTs, the routine having the specified xcfa will be executed. This
allows a finished application to be automatically entered upon power up and resets.
CAUTION: If your application is to be put into production and replicated, it is
recommended that you use the PriorityAutostart() function which stores the 6-byte
autostart sequence in flash memory.
Usage: We recommend that Autostart() and PriorityAutostart() be executed
interactively from the QED-Forth monitor. The easiest way to do this is to use Forth

Main Glossary of Control-C Library Functions 25

syntax instead of C syntax. After your application program is completed and
debugged, simply type from your terminal the command:

CFA.FOR MAIN AUTOSTART
This writes a pattern into EEPROM that causes MAIN to be executed upon all
subsequent resets and restarts.
Implementation detail: At location hex AE00 in EEPROM, AUTOSTART writes the
pattern 1357 followed by the four byte xcfa. To undo the effects of this command and
return to the default startup action, type the QED-Forth command
 NO.AUTOSTART
from your terminal. To recover from the installation of a buggy autostart routine, use
the special cleanup mode as described in the "Programming the QED Board in C"
chapter in the "Getting Started" Manual. See PriorityAutostart().
Type: _forth function; QED-Forth name: AUTOSTART
Header file: qedsys.h

AWAKE
A constant that returns the value 0. When stored into a task's STATUS user variable,
indicates to the multitasking executive that the task is awake and may be entered.
The following example illustrates how to wake up another task that was earlier put to
sleep. Assume that we have pre-defined an infinite loop task function named
GatherData(), and that we have named, built and activated a task with the following
statements:

TASK ReadInputTask; // name and allocate the task area
BUILD_C_TASK(0, 0, &ReadInputTask); // build the task in RAM
ACTIVATE(GatherData, &ReadInputTask); // activate the task

If the task has been put ASLEEP by a command such as
ReadInputTask.USER_AREA.user_status = ASLEEP ;

we can now wake it up with the following command:
ReadInputTask.USER_AREA.user_status = AWAKE ;

The TASK command has defined &ReadInputTask as a pointer to the task's TASK
structure of which the USER_AREA structure is the first element. Note that the task's
STATUS address (whose contents control whether the task is AWAKE) is the first
element in the task's USER_AREA structure; its element name is user_status. See
also ASLEEP.
Type: constant; Related QED-Forth function: AWAKE
Header file: mtasker.h

void Baud1AtStartup(int baud)
Configures the QED Board so that the baud rate of the primary serial port (serial1)
supported by the 68HC11's hardware UART will equal the specified standard baud rate
upon all subsequent resets and restarts. Standard baud rates for are 150, 300, 600,
1200, 2400, 4800, 9600, and 19200 baud. This function can also be called
interactively from the terminal using QED-Forth syntax; simply type the baud rate
followed by a space followed by BAUD1.AT.STARTUP. For example, to change the
baud rate to 19,200 baud, type from your terminal:

DECIMAL 19200 BAUD1.AT.STARTUP
Implementation detail: This routine calls InstallRegisterInits() which writes into
EEPROM the required contents of INIT (=B8H), the contents of BAUD that corresponds
to the specified baud rate, and the contents of OPTION, TMSK2, and BPROT that are

26 Glossary I: QCard/QScreen/Handheld Control-C Glossary

present when this routine is executed. These values are installed in their respective
registers upon each subsequent reset and restart. To undo the effects of this
command, type from your terminal the command

DEFAULT.REGISTER.INITS
or invoke the special cleanup mode as described in the "Programming the QED Board
in C" chapter in the "Getting Started" Manual.
Type: _forth function; QED-Forth name: BAUD1.AT.STARTUP
Header file: comm.h

void Baud2(int baud)
Sets the baud rate of the secondary serial port (serial2) supported by QED-Forth's
software UART using hardware pins PA3 (input) and PA4 (output). Smooth file
transfers can be achieved at up to 4800 baud. The baud rate of serial2 is initialized to
1200 baud by the COLD restart routine. See UseSerial2() and Serial2AtStartup().
Type: _forth function; QED-Forth name: BAUD2
Header file: comm.h

void Beep(void)
Emits the bell character, ascii 07. Setting the user variable QUIET (see user_quiet in
the user.h file) to a true (non-zero) value silences the beep.
Type: _forth function; QED-Forth name: BEEP
Header file: comm.h

void Breakpoint(void)
The Breakpoint() function may be edited into any function that is being debugged to set
a software breakpoint. It saves the machine state and invokes a FORTH-style
interactive text interpreter that can be distinguished from the standard interpreter by the
BREAK> prompt displayed at the start of each line. Any valid commands may be
executed from within the Breakpoint interpreter. From within the Breakpoint
interpreter, typing a carriage return alone on a line exits the Breakpoint mode, restores
the machine registers to the values they held just before Breakpoint() was entered, and
resumes execution of the program that was running when Breakpoint() was entered.
The Breakpoint() routine's preservation of the register state and its ability to execute
any valid command make it a very powerful debugging tool. Breakpoint() may be
compiled into any definition to stop program flow in order to debug or analyze a function
at the point where Breakpoint() was called. Once inside Breakpoint(), variables and
memory locations may be displayed or altered using QED-Forth debugging routines
such as DUMP, INT, =INT, etc.; see the debugging glossary section of this
document. To fully exit from the routine that called Breakpoint(), type ABORT (or any
illegal command) from the terminal in response to the BREAK> prompt. Any error
encountered while in the BREAK routine executes ABORT which places the
programmer back into the standard QED-Forth interpreter (unless ABORT has been
revectored to perform some other action; see CUSTOM_ABORT).
Type: _forth function; QED-Forth name: BREAK
Header file: qedsys.h

uint BufferPosition(int line, int column)
Given the specified LCD display line number n1 [0 <= n1 < LinesPerDisplay()] and the
specified character position in the display line [0 <= n2 < CharsPerDisplayLine()],

Main Glossary of Control-C Library Functions 27

returns the offset of the specified position relative to the base address returned by
DisplayBuffer(). Clamps the returned offset to ensure that it is not greater than the size
of the buffer. Note that for a graphics-style display the input parameter "line" is
interpreted differently depending on whether the display is being used in "text mode" or
"graphics mode". In text mode, "line" corresponds to the character line#; in graphics
mode, "line" corresponds to the pixel line#. See LinesPerDisplay() for further
information.
Type: _forth function; QED-Forth name: BUFFER.POSITION
Header file: intrface.h

void BufferToSPI(uint base_addr, uint base_page, uint numbytes, uint readback)
Sends numbytes of data starting at base_addr on base_page to the SPI (Serial
Peripheral Interface). The buffer must not cross a page boundary, and 0 <= numbytes <
32,768. This routine does not GET or RELEASE the SPI.RESOURCE. This is an
outgoing transfer only; no incoming data is stored. This routine is optimized for speed,
and executes at about 9 microseconds per byte.
Type: _forth function; QED-Forth name: BUFFER>SPI
Header file: V4_4Update.h; V4_4Update.c must be #included in 1 file only

void BuildTask(xaddr heapStart,xaddr heapEnd,xaddr vp,xaddr dp,xaddr np,xaddr tib,xaddr
pad,

xaddr pocket,xaddr r0,xaddr s0,xaddr taskBase, int n)
Subsidiary function called by the recommended macro BUILD_C_TASK; see
BUILD_C_TASK.
Type: _forth function; QED-Forth name: BUILD.TASK
Header file: mtasker.h

void BUILD_C_TASK(xaddr heapStart, xaddr heapEnd, TASK * taskbase)
Builds a task with a specified heap, locating its task area in a 1 kilobyte block starting at
the specified taskbase address in common RAM. The TASK declaration is used to
name and allocate the task area. BUILD_C_TASK() assigns the task's stacks, user
area, and PAD, POCKET, and TIB buffers to a 1Kbyte block of common RAM starting
at the base of the TASK structure. The task is appended to the round-robin task list
and left ASLEEP running the default action routine Halt(). heapStart is the 32-bit heap
starting address, and xaddr2 is the extended heap end address. For example, the
following statements name, allocate and build a task whose heap (which is where
arrays reside) extends from location 0000 on page 5 to 0x7FFF on page 6:

TASK Taskname; // name and allocate task space
BUILD_C_TASK(0x050000, 0x067FFF, &Taskname);

TASK creates and allocates the new TASK structure. BUILD_C_TASK() first calls
IsHeap() which initializes the heap accordingly. BUILD_C_TASK() then initializes the
task's USER_AREA and task buffers in the 1 kilobyte area starting at the task's base
address. The user area of the parent task (i.e., the task that is active when this
command executes) is copied to create the new task's USER_AREA, so the parent's
configuration is initially "inherited" by the new task. The variables that control the
memory map of the new task are set so that the return stack extends downward for 512
bytes at &Taskname + 0x400, the Forth data stack extends downward for up to 128
bytes at &Taskname + 0x200, TIB (QED-Forth terminal input buffer) extends upward
for 96 bytes starting at &Taskname + 0x180, the page-change stack (bankstack)

28 Glossary I: QCard/QScreen/Handheld Control-C Glossary

extends downward for 128 bytes starting at &Taskname + 0x180, POCKET (used by
QED-Forth interpreter) extends upward for 36 bytes starting at &Taskname + 0x200,
and PAD (scratchpad area, available for programmer) extends upward for 88 bytes and
downward for 35 bytes starting at &Taskname + 0x100. To initialize CURRENT_HEAP
without modifying the heap control variables, pass BUILD_C_TASK() a heapStart
address that is equal to the heapEnd address; see IsHeap().
Type: macro; Related QED-Forth function: BUILD.TASK
Header file: mtasker.h

void BytesToDisplay(uint base_addr, uint base_page, uint numbytes, uint display_data_addr)
Sends numbytes of data starting at base_addr on base_page to the graphics display
specified by display_data_addr. This is a low-level primitive that is typically not useful to
the end user.
Type: _forth function; QED-Forth name: BYTES>DISPLAY
Header file: V4_4Update.h; V4_4Update.c must be #included in 1 file only

int CalcChecksum(xaddr base_addr, uint numbytes)
Calculates a 16-bit checksum for the buffer specified by base_addr and numbytes,
where numbytes is even and 0 <= numbytes < 32,768. The buffer must not cross a
page boundary. The checksum is calculated by initializing a 16-bit accumulator to zero,
then adding in turn each 2-byte number in the buffer to the accumulator; the checksum
is the final value of the accumulator. Using this routine provides a method of checking
whether the contents of an area of memory have changed since a prior checksum was
calculated. This routine is optimized for speed, and executes at less than 3
microseconds per byte.
Type: _forth function; QED-Forth name: CALC.CHECKSUM
Header file: V4_4Update.h; V4_4Update.c must be #included in 1 file only

CALENDAR_TIME
This struct typedef defines the bytes that hold the results of a read of the battery-
backed real-time clock. The watch_results instance of this structure is initialized each
time ReadWatch is executed. A set of macros (WATCH_SECONDS,
WATCH_MINUTES, WATCH_HOUR, etc.) have been predefined to facilitate easy
access to the watch results; see the glossary entry for ReadWatch().
Type: typedef; QED-Forth name: READ.WATCH
Header file: watch.h

void ChangeBits(uchar data, uchar mask, xaddr address)
At the byte specified by the 32-bit address, modifies the bits specified by 1's in the
mask to have the values indicated by the corresponding bits in the data parameter. In
other words, mask specifies the bits at xaddr that are to be modified, and the data
parameter provides the data which is written to the modified bits. This function is
useful for modifying data in arrays located in paged memory, where the extended
address is returned by ARRAYMEMBER(). Disables interrupts for 16 cycles (4
microseconds) to ensure an uninterrupted read/modify/write operation. See
ClearBits(), SetBits(), and ToggleBits().
Type: _forth function; QED-Forth name: CHANGE.BITS
Header file: xmem.h

Main Glossary of Control-C Library Functions 29

void ChangeTaskerPeriod(uint periodFactor)
Sets periodFactor as the period of the timeslice clock (the OC2 interrupt) in units of 100
microseconds. For example, to set the timeslice period to 0.8 msec, execute

ChangeTaskerPeriod(8);
Note that the default timeslice increment set after a COLD restart is 5 msec.
Implementation detail: Based on the prescaler bits PR1 and PR0 in the TMSK2
register, this routine calculates the period of the clock driving the OC2 timer. It then
calculates the number of these periods in the requested timeslice period u, and stores
the resulting OC2 timer increment in an unnamed system variable called
TIMESLICE_INCREMENT. This stored increment sets the period of the OC2 timer.
The period of the OC2 timer determines the timeslice period and also the resolution of
the elapsed time clock. Aborts if the calculated increment is 0 or is greater than
65,535. See also TIMESLICE_COUNT and ReadElapsedSeconds().
Type: _forth function; QED-Forth name: *100US=TIMESLICE.PERIOD
Header file: mtasker.h

int CharsPerDisplayLine(void)
Returns the number of characters per line in the LCD display as specified by the last
execution of IsDisplay(); valid return values are 8, 12, 16, 20, 24, 30, and 40
characters per line. The default return value after executing the "special cleanup
mode" is 20, corresponding to the default 4-line by 20-character display. The result
returned by this routine is used by BufferPosition(), PutCursor(), UpdateDisplay(), and
UpdateDisplayLine().
Type: _forth function; QED-Forth name: CHARS/DISPLAY.LINE
Header file: intrface.h

void CharToDisplay(char c)
Writes the specified data byte c to the LCD display. Does not write to the Display
Buffer. If an alphanumeric (character) display is being used, this command writes the
specified ascii character at the current cursor position and increments the cursor
position. (Caution: the cursor does not always follow a contiguous path as it is
incremented; there may be discontinuities at the ends of lines.) If a graphics display is
in use, this function must be used in conjunction with a function that specifies the
meaning of the data byte. Intermittently disables interrupts for 28 cycles (7 µsec) per
byte written to the display to implement clock stretching. See CommandToDisplay()
and UpdateDisplay().
Type: _forth function; QED-Forth name: CHAR>DISPLAY
Header file: intrface.h

void ClearBits(uchar mask, xaddr address)
For each bit of mask that is set, clears the corresponding bit of the 8 bit value at the
32bit address. This function is useful for modifying data in arrays located in paged
memory, where the extended address is returned by ARRAYMEMBER(). Disables
interrupts for ten cycles (2.5 microseconds) to ensure an uninterrupted
read/modify/write operation. See ChangeBits(), SetBits(), and ToggleBits().
Type: _forth function; QED-Forth name: CLEAR.BITS
Header file: xmem.h

void ClearBootVector(void)

30 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Removes a boot vector from page 0x0C. Note that the “page C write protect” jumper
must be removed for this function to be effective. This function is called during a
"factory cleanup", but it is not called by NO.AUTOSTART. See SetBootVector(). This
function is typically invoked interactively from the QED-Forth prompt; see
CLEAR.BOOT.VECTOR in the Forth debugging glossary.
Type: _forth function; QED-Forth name: CLEAR.BOOT.VECTOR
Header file: V4_4Update.h; V4_4Update.c must be #included in 1 file only

void ClearDisplay(void)
Clears (blanks) the LCD display and moves the cursor to home position (at the start of
line 0). If a character display is in use [see IsDisplay()], fills the 80 character
DISPLAY.BUFFER with ascii blank characters. If a graphics display is being used in
text mode, fills the buffer specified by GARRAY_XPFA with ascii blanks if a Hitachi
graphics controller is in use, or with zeros if a Toshiba graphics controller is in use. If
a graphics display is being used in graphics mode, erases (zeros) the buffer specified
by GARRAY_XPFA. Intermittently disables interrupts for 28 cycles (7 µsec) per byte
written to the display to implement clock stretching. See InitDisplay().
Type: _forth function; QED-Forth name: CLEAR.DISPLAY
Header file: intrface.h

CLOCK_MONITOR_ID
A constant that returns the interrupt identity code for the clock monitor interrupt. Used
as an argument for ATTACH().
Type: constant; Related QED-Forth function: CLOCK.MONITOR.ID
Header file: interupt.h

void CmoveMany(xaddr source, xaddr dest, long numBytes)
Moves a block of memory. If the 32-bit byte count numBytes is greater than 0,
numBytes consecutive bytes are copied from addresses starting at source to addresses
starting at dest. The source and destination extended addresses may be located on
different pages and the move may cross page boundaries. If the source and
destination regions overlap and source is less than dest, CmoveMany() starts at high
memory and moves toward low memory to avoid propagation of the moved contents.
CmoveMany() always moves the contents in such a way as to avoid memory
propagation. Speed is approximately 19 microseconds per byte.
Type: _forth function; QED-Forth name: CMOVE.MANY
Header file: xmem.h

void Cold(void)
Disables interrupts and restarts the QED-Forth system and initializes all of the user
variables to their default values. Initializes the following machine registers:

PORTG, DDRG, TMSK2, SPCR, BAUD, SCCR1, SCCR2, BPROT,
OPT2, OPTION, HPRIO, INIT, CSCTL.

Initializes the vectors of the vital interrupts if InitVitalIRQsOnCold() has been executed.
Calls Abort() which clears the stacks and calls either the QED-Forth interpreter or an
autostart routine that has been installed using Autostart() or PriorityAutostart(). If
ColdOnReset() has been executed, every reset or power-up will invoke a Cold() as
opposed to a Warm() initialization sequence. This function may be called interactively
from the terminal by simply typing:

Main Glossary of Control-C Library Functions 31

COLD
See also Warm().
Type: _forth function; QED-Forth name: COLD
Header file: qedsys.h

void ColdOnReset(void)
Initializes a flag in EEPROM that causes subsequent resets to execute a cold restart (as
opposed to the standard warm-or-cold restart). This option is useful for turnkeyed
systems that have an autostart routine installed; any error or reset causes a full Cold()
restart which initializes all user variables, after which the autostart routine completes
the system initialization and enters the application routine. To revert to the standard
reset, call StandardReset(). Note that this function can be executed interactively from
QED-Forth by typing at the terminal:

COLD.ON.RESET
Implementation detail: Initializes location 0xAE1C in EEPROM to contain the pattern
0x13.
Type: _forth function; QED-Forth name: COLD.ON.RESET
Header file: qedsys.h

void CommandToDisplay(char cmd)
Writes the specified cmd byte to the LCD display as a command (as opposed to a data
byte to be displayed). Does not modify the contents of the Display Buffer.
Intermittently disables interrupts for 28 cycles (7 µsec) per command byte written to the
display to implement clock stretching. See CharToDisplay().
Type: _forth function; QED-Forth name: COMMAND>DISPLAY
Header file: intrface.h

void COPYARRAY(FORTH_ARRAY* src_array_ptr, FORTH_ARRAY* dest_array_ptr)
Dimensions the destination array specified by dest_array_ptr and copies the contents of
the source array specified by src_array_ptr into the destination. The source and
destination can be in the same or different heaps. See the FORTH_ARRAY glossary
entry for a description of how to define an array and its corresponding array_ptr.
Type: macro; Related QED-Forth function: COPY.ARRAY
Header file: array.h

void CopyArray(FORTH_ARRAY* src_array_ptr, uint pfa_page, FORTH_ARRAY*
dest_array_ptr, uint pfa_page)
Subsidiary function called by the recommended macro COPYARRAY(); see
COPYARRAY().
Type: _forth function; QED-Forth name: COPY.ARRAY
Header file: array.h

COP_ID
A constant that returns the interrupt identity code for the computer operating properly
(COP) interrupt. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: COP.ID
Header file: interupt.h

xaddr CountedString(char* stringAddr, uint strPage)

32 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Converts the specified null-terminated string (located at stringAddr on strPage) into a
Forth-style counted string with the count in the first byte and the non-null-terminated
string in the remaining bytes. Returns the 32-bit address of PAD which is where the
converted counted string is located. The resulting string can be moved to any desired
location by the StringMove() function. Note that the size of the PAD buffer puts a limit
on the string size; the input string length should be less than 86 bytes. See
StringMove() and PAD.
Type: _forth function; QED-Forth name: C$>COUNTED$
Header file: xmem.h

void Cr(void)
Causes subsequent output to appear at the beginning of the next line by emitting a
carriage return (ascii 13) followed by a line feed (ascii 10). See Emit().
Type: _forth function; QED-Forth name: CR
Header file: comm.h

int CreateRamp(int start_speed, int end_speed, int acceleration, int ticks_per_sec,
RAMP_ELEMENT* starting_ramp_addr, int speeds_per_ramp)
Writes speed_per_ramp +1 entries into the RAMP.ARRAY starting at the specified
start_ramp_addr to attain the specified starting and ending speeds and acceleration (or
deceleration). Returns the number of steps in the created ramp. start_speed,
end_speed and acceleration are all interpreted as positive numbers. Speeds are in
units of steps per second if the motor is configured for full stepping, or halfsteps per
second if the motor is configured for half stepping. The acceleration is in units of (half)
steps per second per second. Speeds are clamped to the attainable range (between 0
and ticks_per_second), and the acceleration is clamped such that a maximum of 10
seconds is spent at any one transient speed in a ramp. Each ramp entry comprises a
step_limit which specifies the number of steps to be taken at the speed, and a
duty_cycle which specifies the speed (see the glossary entry for SpeedToDuty). If the
specified speeds_per_ramp = 0, this function simply writes a "final" speed by setting the
step_limit to 0. For non-zero speeds_per_ramp, this routine writes the specified number
of ramp entries, plus an additional entry at the final speed with the step_limit set to 0
which tells the StepManager function that this is the final speed in the ramp. Note that
higher level calling routines can write over the final speed, or concatenate two ramps to
achieve a speed profile that ramps up to a steady speed for a specified number of
steps, and then smoothly ramps down to a stopped state. See the high level source file
steppers.c in the Demos_and_Drivers directory of the distribution.
Type: _forth function; QED-Forth name: CREATE.RAMP
Header file: stepper.h

CURRENT_HEAP
A user variable (member of the currently active TASK.USER_AREA structure) that
holds the 32-bit extended address that specifies the end of the current heap. Other
heap control variables are stored just below this address in the heap. See IsHeap().
Type: macro; Related QED-Forth function: CURRENT.HEAP
Header file: user.h

CUSTOM_ABORT

Main Glossary of Control-C Library Functions 33

A user variable (member of the currently active TASK.USER_AREA structure) that
contains a flag. If the flag is 0 (false), then the standard system SysAbort() routine is
performed. If the flag is non-zero (true), then the function whose address is stored in
the user variable UABORT is executed when Abort() runs. See Abort(), SysAbort(),
and UABORT.
Type: macro; Related QED-Forth function: CUSTOM.ABORT
Header file: user.h

CUSTOM_ERROR
A user variable (member of the currently active TASK.USER_AREA structure) that
contains a flag. If the flag is 0 (false), then the default error routine is performed in
response to every system error. If the flag is non-zero (true), then the function whose
address is stored in the user variable UERROR when an error occurs. See UERROR.
Type: macro; Related QED-Forth function: CUSTOM.ERROR
Header file: user.h

DDRA
A macro that returns the contents of the 8 bit DDRA (data direction for PORTA) register
at address 0x8001 in the 68HC11. To configure a PORTA pin to be an output, simply
use an assignment statement to write a 1 to the corresponding bit position in DDRA.
Similarly, to configure a PORTA pin to be an input, write a 0 to the corresponding bit
position in DDRA. Note that the software UART that implements the secondary serial
port uses bits 3 and 4 of PORTA, so care must be taken not to alter the direction or
state of these bits if the secondary serial port is in use.
Type: macro; Related QED-Forth function: PORTA.DIRECTION
Header file: qedregs.h

DDRD
A macro that returns the contents of the 8 bit PORTD register at address 0x8009 in the
68HC11 which sets the data direction of bits 2-5 of PORTD. PORTD implements the
primary serial channel on bits 0 and 1, and the serial peripheral interface (SPI) on bits
2-5 which controls the onboard 12 bit A/D and 8 bit D/A. If these SPI-interfaced
devices are on the board, the contents of DDRD should be left in their default state.
Type: macro; Related QED-Forth function: PORTD.DIRECTION
Header file: qedregs.h

void DefaultRegisterInits(void)
Undoes the effect of the InstallRegisterInits() command.
Implementation detail: sets the contents of location 0xAE06 in EEPROM to 0xFF to
ensure that default initializations will be used after subsequent resets. The default
register initializations are:

Register Register Default
Name Address Value
OPTION 0x8039 0x33
TMSK2 0x8024 0x02
BPROT 0x8035 0x10
BAUD 0x802B 0x31

Note that calling this function restores the baud rate of the primary serial port to 9600
baud upon subsequent resets and restarts; see Baud1AtStartup().

34 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Type: _forth function; QED-Forth name: DEFAULT.REGISTER.INITS
Header file: qedsys.h

DEFAULT_HEAPEND
A 32-bit constant that returns the value 0x0F4600 cast as an xaddr. Used as an
argument for IsHeap() to establish the default 14.5 Kbyte heap on page fifteen. See
also DEFAULT_HEAPSTART and INIT_DEFAULT_HEAP().
Type: constant
Header file: heap.h

DEFAULT_HEAPSTART
A 32-bit constant that returns the value 0x0F4600 cast as an xaddr. Used as an
argument for IsHeap() to establish the default 14.5 Kbyte heap on page fifteen. See
also DEFAULT_HEAPEND and INIT_DEFAULT_HEAP().
Type: constant
Header file: heap.h

void DELETED(FORTH_ARRAY* array_ptr)
De-allocates the heap space assigned to the specified Forth array, and clears the
parameter field to indicate that the data structure is no longer dimensioned. It is good
programming practice to delete arrays that hold temporary data after the data has been
used; this frees the space in the heap for use by other arrays. See the
FORTH_ARRAY glossary entry for a description of how to define an array and its
corresponding array_ptr, and see DIM() for a description of how to dimension arrays.
Type: macro; Related QED-Forth function: DELETED
Header file: array.h

void Deleted(FORTH_ARRAY* array_ptr, uint pfa_page)
Subsidiary function called by the recommended macro DELETED(); see DELETED().
Type: _forth function; QED-Forth name: DELETED
Header file: array.h

void DIM(type, uint numrows, uint numcols, FORTH_ARRAY* array_ptr)
Dimensions the array specified by array_ptr to have the specified number of rows and
columns, with each array element sized to hold a parameter of the specified type.
Examples of valid "type" parameters are standard identifiers and pre-defined types
such as:

int unsigned int uint
char unsigned char uchar
long unsigned long ulong

Note that the uint, uchar, and ulong types are defined in the types.h file.
DIM() first executes DELETED() to de-allocate any heap space previously allocated to
the array, and then writes the dimensioning information into the array's parameter field
in common RAM and allocates the required number of bytes in the heap. Calls Abort()
if there is not enough heap space.
Example of use:
To define an array of unsigned longs named MyArray with 3 rows and 5 columns,
execute:

FORTH_ARRAY Myarray;

Main Glossary of Control-C Library Functions 35

DIM(ulong, 3, 5, &Myarray);
Once an array is declared using FORTH_ARRAY, it may be dimensioned "on the fly".
BE SURE TO DIMENSION THE ARRAY WITHIN A FUNCTION THAT IS CALLED AT
RUNTIME! COMPILE-TIME OR LINK-TIME DIMENSIONING DOES NOT WORK
WITH FORTH ARRAYS! Note that the & operator in front of the array's name tells the
compiler that a pointer is being passed. If you forget the & operator, the compiler will
warn you that you are attempting to pass an entire structure (the array's parameter
structure) as an argument to a function.
To store the value 0x123456 at row=0, column = 1, execute:

ARRAYSTORE(0x123456, 0, 1, &Myarray);
To fetch the value stored at row=0, column=1 and assign it to a variable, you could
execute:

static ulong retrieved_data;
retrieved_data = ARRAYFETCH(0, 1, &Myarray);

Note: the dimensioned FORTH_ARRAY array is not a C array. It must be initialized
and accessed via special fetch and store functions such as ARRAYFETCH(),
FARRAYFETCH(), ARRAYSTORE() and FARRAYSTORE() as opposed to C-style
pointer arithmetic. The dimensioned FORTH_ARRAY is stored in memory in column-
primary order; in other words, sequential elements in a column are stored in sequential
memory addresses. This is the reverse of standard C-style arrays. The functions
related to FORTH_ARRAYs provide a convenient means of storing data in the large
paged memory space of the QED Board; the standard 16-bit ANSI C compiler cannot
directly address this extended memory without the aid of the Forth heap manager and
memory access functions.
See FORTH_ARRAY, ARRAYSTORE(), FARRAYSTORE(), ARRAYFETCH(),
FARRAYFETCH(), ARRAYMEMBER(), ARRAYBASE(), DELETED(), FILLARRAY(),
and COPYARRAY().
Type: macro; related function: DIMENSIONED()
Header file: array.h

void Dimensioned(uint r, uint c, uint Numdims, uint bytesPerElement,
FORTH_ARRAY* array_ptr, uint pfa_page)

Subsidiary function called by the recommended macro DIM(). Dimensioned() initializes
the parameter field in common memory and allocates space for the specified memory in
the heap. The parameters specify the number of rows, number of columns, number
of dimensions (must equal 2), and bytes per element (should be 1, 2, or 4 so the
standard ARRAYFETCH() and ARRAYSTORE() functions can access the data). See
DIM().
Type: _forth function; QED-Forth name: DIMENSIONED
Header file: array.h

void DIM_AD8_BUFFER(FORTH_ARRAY* array_ptr, uint NumSamples)
Dimensions a buffer to accept data from the 8 bit A/D via the AD8ToBuffer() function.
Dimensions the specified Forth array to have NumSamples rows, 1 column, and 1 byte
per element. DIM_AD8_BUFFER() must be executed once before the first call of
AD8ToBuffer(). After that, there is no need to call DIM_AD8_BUFFER() unless you
wish to change the dimensions of the buffer. For a detailed example of use, see the
glossary entry for AD8ToBuffer() .
Type: macro

36 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Header file: array.h

DISABLE_INTERRUPTS(void)
Sets the interrupt mask bit (the "I bit") in the condition code register to globally disable
interrupts.
Type: Macro; Related QED-Forth function: DISABLE.INTERRUPTS
Header file: interupt.h

void DisableSerial2(void)
Disables the secondary serial port (serial2) which is supported by QED-Forth's
software UART. Implementation detail: Locally disables the serial2 output interrupt
OC4 and disconnects the pin control logic associated with the PA4 output. Locally
disables the serial2 input interrupt IC4/OC5. Clears (stores 0 into) the resource
variable SERIAL2_RESOURCE.
Type: _forth function; QED-Forth name: DISABLE.SERIAL2
Header file: comm.h

xaddr DisplayBuffer(void)
Returns the 32-bit base address (including page) of the buffer that holds the display
data. To write all or part of this buffer to the LCD display, call UpdateDisplay() or
UpdateDisplayLine(), respectively. If a character display is in use, the returned xaddr
is the base address of an 80 character buffer in the system RAM. If a graphics display
is in use, the returned xaddr is the starting address of the array associated with the
Forth array pointer GARRAY_XPFA. Each byte in the DisplayBuffer represents a
character position or graphical byte on the LCD display. To display characters on the
LCD display, simply write the desired ascii characters or graphical data into this buffer
and execute UpdateDisplayLine() or UpdateDisplay(). UpdateDisplayLine() causes the
contents of a specified line in the DisplayBuffer to be written to the corresponding line of
the display. UpdateDisplay() causes the contents of all lines in DisplayBuffer to be
written to the corresponding lines of the display. See StringToDisplay() and
BufferPosition().
Type: _forth function; QED-Forth name: DISPLAY.BUFFER
Header file: intrface.h

void DisplayOptions(int display_on, int cursor_on, int cursor_blink, int text_mode)
 Sets the display and cursor options on the LCD display. Each of the input parameters

is a flag that takes a false (0) or true (non-zero) value. If display_on is true, the
contents of the display are visible; if false, the display appears blank. If cursor_on is
true, the cursor is on (typically an underscore character); if false, the cursor is off. If
cursor_blink is true, the cursor blinks (typically a flashing box the size of a single
character); if false, the cursor blink is turned off. If text_mode is true, the display is
operating in "text mode"; if false, it is operating in "graphics mode". Note that
graphics mode should only be specified if a graphics display is in use; see IsDisplay().
Note also that the cursor is never visible in graphics mode. The InitDisplay() function
(which is executed upon each reset or restart) leaves the display enabled with the
cursor off and cursor blink off.
Implementation detail: In addition to writing the appropriate command byte to the
display, DisplayOptions() stores the command byte in an unnamed system variable
called PRIOR_CURSOR_STATE. This variable is referenced by UpdateDisplayLine()

Main Glossary of Control-C Library Functions 37

and UpdateDisplay() to blank the cursor during updates to character displays (to
prevent annoying flickering) and restore it to its prior state after the update is complete.
It is also used by LinesPerDisplay() to infer whether the display is being operated in text
mode or graphics mode, which in turn determines whether LinesPerDisplay() reports
the number of character lines or the number of pixel lines in the display. This routine
intermittently disables interrupts for 28 cycles (7 µsec) per command byte written to the
display to implement clock stretching.
Type: _forth function; QED-Forth name: DISPLAY.OPTIONS
Header file: intrface.h

DISPLAY_HEAP
A constant that returns the extended address 0x0F45FF that points to the top of the
heap containing the graphics array. Used as an argument for IsHeap(). The default
display heap is located at 0x3000 to 0x45FF on page 0x0F. Caution: adding items to
the DISPLAY.HEAP is not recommended.
Type: constant; Related QED-Forth function: DISPLAY.HEAP
Header file: intrface.h

void DownloadMap(void)
Sets a flag in EEPROM and changes the state of a latch in the onboard PALs to put the
download memory map into effect. After execution of this routine, and upon each
subsequent reset or restart, hex pages 4, 5, 6, and 0x10-17 are addressed in RAM, and
pages 1, 2, 3, and 0x18-1F are addressed in flash memory. This allows code (and
Forth names) to be compiled into RAM on pages 4, 5 and 6 (and, if a 512K RAM is
present, into pages 0x10-17) and then transferred to flash using the PAGE.TO.FLASH
function. To establish the standard memory map, see the glossary entry for
StandardMap(). Note that the standard map is active after a "factory cleanup"
operation.
Type: _forth function; QED-Forth name: DOWNLOAD.MAP
Header file: flash.h

xaddr DupHeapItem(xaddr xhandle)
Given the 32-bit handle (pointer to a pointer) named xhandle1 of a source heap item,
creates a duplicate heap item with identical contents in the same heap and returns its
handle. Returns zero if xhandle1 is not a valid handle or if there is insufficient memory
in the heap. To copy a heap item into a different heap, use TransferHeapItem().
Type: _forth function; QED-Forth name: DUP.HEAP.ITEM
Header file: heap.h

void Emit(uchar c)
Displays character c by sending it via the serial I/O port. Emit() is a vectored routine
that executes the routine whose 32-bit execution address is installed in the user
variable UEMIT. The default installed routine called is Emit1() which sends the
character via the primary serial port (supported by the 68HC11's hardware UART).
Emit2() may be installed in UEMIT by UseSerial2 or Serial2AtStarup(); Emit2() sends
the character via the secondary serial port (supported by QED Forth's software UART
and using pins PA3 and PA4). See Emit1(), Emit2() and _writeChar().
Type: C function; related QED-Forth function name: EMIT
Header file: comm.h

38 Glossary I: QCard/QScreen/Handheld Control-C Glossary

void Emit1(uchar c)
Displays a character by sending it via the primary serial port (serial1) associated with
the 68HC11's on-chip hardware UART. Before sending the character, Emit1() waits
(if necessary) for the previous character to be sent, and executes Pause() while waiting
to allow other tasks (if present) a chance to run. The most significant byte of the input
data stack cell is ignored. Emit1() is the default Emit() routine installed in the UEMIT
user variable after the special cleanup mode is invoked or if Serial1AtStartup() has been
executed. If the value in the user variable SERIAL_ACCESS is
RELEASE_AFTER_LINE, Emit1() does not GET(SERIAL1_RESOURCE) or
RELEASE(SERIAL1_RESOURCE). If SERIAL_ACCESS contains
RELEASE_ALWAYS, Emit1() GETs and RELEASEs the SERIAL1_RESOURCE. If
SERIAL_ACCESS contains RELEASE_NEVER, Emit1() GETs but does not RELEASE
the SERIAL1_RESOURCE. See Emit(), UEMIT, Emit2(), SERIAL_ACCESS.
Type: _forth function; QED-Forth name: EMIT1
Header file: comm.h

void Emit2(uchar c)
Writes the specified ascii character c to the output buffer of the secondary serial port
(serial2) for subsequent transmission. The serial2 port is supported by QED-Forth's
software UART using hardware pins PA3 (input) and PA4 (output). If the serial2
transmitter is idle (and if the serial2 port and its interrupts have been properly initialized)
then the character is transmitted immediately. Otherwise the character will be
transmitted after the prior characters in the output buffer are transmitted. If the 80
character output buffer is full when Emit2() is executed, Emit2() executes Pause() and
waits until room becomes available in the buffer (as a result of a character being sent
out). The most significant byte of the input data stack cell is ignored. Emit2() can be
made the default Emit() routine installed in the UEMIT user variable after each reset or
restart by executing Serial2AtStartup(). If the value in the user variable
SERIAL_ACCESS is RELEASE_AFTER_LINE, Emit2() does not
GET(SERIAL2_RESOURCE) or RELEASE(SERIAL2_RESOURCE). If
SERIAL_ACCESS contains RELEASE_ALWAYS, Emit2() GETs and RELEASEs the
SERIAL2_RESOURCE. If SERIAL_ACCESS contains RELEASE_NEVER, Emit2()
GETs but does not RELEASE the SERIAL2_RESOURCE. See Emit(), UEMIT,
Emit1(), SERIAL_ACCESS.
Type: _forth function; QED-Forth name: EMIT2
Header file: comm.h

ENABLE_INTERRUPTS(void)
Clears the interrupt mask bit (the "I bit") in the condition code register to globally enable
interrupts.
Type: Macro; Related QED-Forth function: ENABLE.INTERRUPTS
Header file: interupt.h

void Execute(void(*action)(), uint actionPage)
Executes (calls) the action function specified by the function pointer; the function code
resides on the specified actionPage.
Type: _forth function; QED-Forth name: EXECUTE
Header file: qedsys.h

Main Glossary of Control-C Library Functions 39

EXTENDED_ADDR
A union typedef that provides a way of converting a 16-bit address and associated
page into a 32-bit xaddr type, or vis versa. The definition is:

typedef union { xaddr addr32;
struct { uint page16;

 char* addr16;
} sixteen_bit;

} EXTENDED_ADDR;
For example, the following code converts the address of the variable varname in
common RAM (which corresponds to a 16 bit address; the effective page = 0) into a 32
bit xaddr in xaddr_of_varname:

char varname;
xaddr xaddr_of_varname; // we want this to hold a 32bit addr
EXTENDED_ADDR temporary;// allocate union to convert type
temporary.sixteen_bit.addr16 = &varname;
temporary.sixteen_bit.page16 = 0; // common page = 0
xaddr_of_varname = temporary.addr32; // here's the result

See the source code in the TYPES.H file.
Type: typedef
Header file: types.h

FALSE
A constant equal to 0.
Type: constant; Related QED-Forth function: FALSE
Header file: utility.h

float FARRAYFETCH(type, uint row, uint col, FORTH_ARRAY* array_ptr)
Fetches the contents of the floating point element at row#, column# in the specified 2-
dimensional array and casts it to the specified type. Typically, the "float" type will be
specified when this function is called, although other compatible types may be specified
(see the glossary entry for ARRAYFETCH() which handles non-floating-point data).
There is an unchecked error if the specified array does not have 2 dimensions or if the
number of bytes per element does not equal 4. See the FORTH_ARRAY glossary
entry for a description of how to define an array and its corresponding array_ptr. See
also DIM(), ARRAYFETCH() and FARRAYSTORE().
Type: macro; Related QED-Forth function: ArrayFetch()
Header file: array.h

float FArrayFetch(uint row, uint col, FORTH_ARRAY* array_ptr, uint pfa_page)
A subsidiary function called by the recommended macro FARRAYFETCH(); see
FARRAYFETCH().
Type: _forth function; QED-Forth name: 2ARRAY.FETCH
Header file: array.h

void FARRAYSTORE(float value, uint row, uint col, FORTH_ARRAY* array_ptr)
Stores the specified floating point value at row, col in the 2-dimensional
FORTH_ARRAY specified by array_ptr. Use ARRAYSTORE() to store non-floating-
point data. There is an unchecked error if the specified array does not have 2

40 Glossary I: QCard/QScreen/Handheld Control-C Glossary

dimensions or if the number of bytes per element does not equal 4. See the
FORTH_ARRAY glossary entry for a description of how to define an array and its
corresponding array_ptr. See also DIM() and FARRAYFETCH().
Type: macro; Related QED-Forth function: 2ArrayStore()
Header file: array.h

void FArrayStore(float value, uint row, uint col, FORTH_ARRAY* array_ptr, uint pfa_page)
A subsidiary function called by the recommended macro FARRAYSTORE(); see
FARRAYSTORE().
Type: _forth function; QED-Forth name: 2ARRAY.STORE
Header file: array.h

void FastAD8Multiple(xaddr buffer, uint Interval, uint NumSamples, uint channel)
Acquires NumSamples samples from the 8 bit analog to digital (A/D) converter in the
68HC11 and stores the samples as sequential unsigned 8 bit values starting at the
specified buffer xaddress. [For an automated approach to storing samples in an array
in paged memory, see the glossary entries for DIM_AD8_BUFFER() and
AD8ToBuffer()]. The channel parameter specifies the channel number of the A/D (0 <=
channel <= 7). To maximize speed, this routine does not GET() or RELEASE() the
AD8_RESOURCE. Consequently, this routine should not be used in a multitasking
environment where another task might require access to the 8 bit A/D; see
AD8Multiple(). If the specified xaddr is in common memory, the first sample is taken
after 16 µsec and subsequent samples are taken every (10+2.5*u1) µsec, where u1 is
the specified timing parameter passed to this routine. If the specified xaddr is in paged
memory, the first sample is taken after 11 µsec and subsequent samples are taken
every (32.5+2.5*u1) µsec. Of course, the operation of interrupts (including
timesliced multitasking) will affect these sampling times. See FastAD8Sample(),
AD8Sample(), AD8Multiple(), DIM_AD8_BUFFER(), AD8ToBuffer() and AD8On().
Type: _forth function; QED-Forth name: (A/D8.MULTIPLE)
Header file: analog.h

uchar FastAD8Sample(uint channel)
Acquires and places on the stack a single sample byte from the specified channel (0 <=
channel <= 7) of the 8 bit analog to digital (A/D) converter in the 68HC11. To
maximize speed, this routine does not GET() or RELEASE() the AD8_RESOURCE.
Consequently, this routine should not be used in a multitasking environment where
another task might require access to the 8 bit A/D; see AD8Sample(). This routine
executes in 23 microseconds. See AD8Sample(), FastAD8Multiple(), AD8Multiple(),
and AD8On().
Type: _forth function; QED-Forth name: (A/D8.SAMPLE)
Header file: analog.h

char FetchChar(xaddr address)
Fetches an 8-bit value from the specified extended address. This function is useful for
fetching data from arrays located in paged memory, where the extended address is
returned by ARRAYMEMBER().
Type: _forth function; QED-Forth name: C@
Header file: xmem.h

Main Glossary of Control-C Library Functions 41

float FetchFloat(fxaddr address)
Fetches a 32-bit floating point number from the specified extended address. This
function is useful for fetching data from arrays located in paged memory, where the
extended address is returned by ARRAYMEMBER().
Type: _forth function; QED-Forth name: F@
Header file: xmem.h

float FetchFloatProtected(xaddr address)
Fetches a floating point value from the specified extended address. Disables interrupts
during the fetch to ensure that an interrupting routine or task does not modify the
contents while the fetch is in process. Disables interrupts for 28 cycles (7
microseconds) unless the specified 4 bytes straddle a page boundary, in which case
interrupts are disabled for approximately 260 cycles. Note that in paged memory, the
address immediately following 0x7FFF is address 0000 on the following page. This
function is useful for fetching data from arrays located in paged memory, where the
extended address is returned by ARRAYMEMBER(). See also StoreFloatProtected().
Type: _forth function; QED-Forth name: |F@|
Header file: xmem.h

int FetchInt(xaddr address)
Fetches a 16-bit number from the memory location specified by address. The high
order byte is taken from address and the low order byte from address+1. This function
is useful for fetching data from arrays located in paged memory, where the extended
address is returned by ARRAYMEMBER()
Type: Forth function; QED-Forth name: @
Header file: xmem.h

long FetchLong(xaddr address)
Fetches a 32-bit value from the specified extended address. This function is useful for
fetching data from arrays located in paged memory, where the extended address is
returned by ARRAYMEMBER().
Type: _forth function; QED-Forth name: 2@
Header file: xmem.h

long FetchLongProtected(xaddr address)
Fetches a 32-bit value from the specified extended address. Disables interrupts during
the fetch to ensure that an interrupting routine or task does not modify the contents
while the fetch is in process. Disables interrupts for 28 cycles (7 microseconds) unless
the specified 4 bytes straddle a page boundary, in which case interrupts are disabled
for approximately 260 cycles. Note that in paged memory, the address immediately
following 0x7FFF is address 0000 on the following page. This function is useful for
fetching data from arrays located in paged memory, where the extended address is
returned by ARRAYMEMBER(). For floating point values, use FetchFloatProtected().
Type: _forth function; QED-Forth name: |2@|
Header file: xmem.h

void FILLARRAY(FORTH_ARRAY* array_ptr, uchar c)

42 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Stores c into each byte of the specified Forth array. For descriptions of how to define
and dimension a Forth array that resides in paged memory, see the glossary entries for
FORTH_ARRAY and DIM().
Type: macro; Related QED-Forth function: FILL.ARRAY
Header file: array.h

void FillArray(FORTH_ARRAY* array_ptr, uint pfa_page, uchar c)
A subsidiary function called by the recommended macro FILLARRAY(); see
FILLARRAY().
Type: _forth function; QED-Forth name: FILL.ARRAY
Header file: array.h

void FillMany(xaddr base, long numBytes, char contents)
The specified byte contents is stored in each of numBytes consecutive addresses
beginning at the 32-bit extended address base. The specified address region may
cross page boundaries. Does nothing if numBytes = 0.
Type: _forth function; QED-Forth name: FILL.MANY
Header file: xmem.h

FILL_FIELD
A user variable that contains a flag. If the flag is true (non-zero), floating point
numbers converted to strings by FPtoString() or printed in FLOATING format by
PrintFP() are padded with spaces to yield a constant field width irrespective of whether
the number is printed in scientific notation or fixed notation, and numbers printed in
fixed notation are decimal aligned. This leads to neat printouts of tabular data. If the
flag is false, the field width is not padded out. See FPtoString(), PrintFP() and
FLOATING().
Type: macro; Related QED-Forth function: FILL.FIELD
Header file: numbers.h

void FIXED(void)
Sets the default printing format used by FPtoString() and PrintFP() to fixed. Numbers
are decimal aligned, and RIGHT_PLACES and LEFT_PLACES determine the field
width. See the glossary entry for FPtoString() for more details.
Type: macro; Related QED-Forth function: FIXED
Header file: numbers.h

FLOATING()
Sets the default printing format used by FPtoString() and PrintFP() to floating. This
format displays the number in FIXED format if the number can be represented with the
same or more significant digits as it would if it were represented in SCIENTIFIC format.
Otherwise, it uses SCIENTIFIC format. See the glossary entry for FPtoString() for
more details.
Type: macro; Related QED-Forth function: FLOATING
Header file: numbers.h

FMAILBOX

Main Glossary of Control-C Library Functions 43

This typedef allocates a 32-bit mailbox in RAM which can be accessed by FSEND(),
TRY_TO_FSEND() and FRECEIVE(). The mailbox can hold any floating-point
"message"; for non-floating-point messages, use MAILBOX. Example of use:

FMAILBOX latest_data;
SEND(3.14159, &latest_data);

Mailboxes are used in multitasked systems to share information between tasks and to
synchronize tasks to one another. If the mailbox's contents equal zero, the mailbox is
empty; it contains a message if its contents are non-zero. Before its first use, the
mailbox must be initialized to zero. After initialization to zero, the only operators that
should access the floating point mailbox are FSEND(), TRY_TO_FSEND() and
FRECEIVE().
Type: typedef; Related QED-Forth function: MAILBOX:
Header file: mtasker.h

int ForthAskKey(void)
A subsidiary function to AskKey(); see AskKey().
Type: _forth function; QED-Forth name: ?KEY
Header file: comm.h

int ForthEmit(void)
A subsidiary function to Emit(); see Emit().
Type: _forth function; QED-Forth name: EMIT
Header file: comm.h

int ForthKey(void)
A subsidiary function to Key(); see Key().
Type: _forth function; QED-Forth name: KEY
Header file: comm.h

FORTH_TASK
A macro that represents the TASKBASE at address 0x8400 for the default QED-Forth
task; defined as:

_at(0x8400) TASK FORTH_TASK;
See TASK.
Type: macro
Header file: mtasker.h

FORTH_ARRAY
Declares a new Forth-style array. Use as:

FORTH_ARRAY array_name;
where array_name is any name of your choosing. The declaration allocates a
"parameter field" structure in the variable area. This structure is initialized by DIM() to
hold the dimensioning information for the array (number of rows and columns, element
size, etc.) as well as pointers to the Forth heap and heap item that contain the array
data.
Example of use:
To define an array of unsigned longs named MyArray with 3 rows and 5 columns,
execute:

FORTH_ARRAY Myarray;

44 Glossary I: QCard/QScreen/Handheld Control-C Glossary

DIM(ulong, 3, 5, &Myarray);
Note that the & (address-of) operator in front of the array's name tells the compiler that
a pointer is being passed. If you forget the & operator, the compiler will warn you that
you are attempting to pass an entire structure (the array's parameter field structure) as
an argument to a function.
To store the value 0x123456 at row=0, column = 1, execute:

ARRAYSTORE(0x123456, 0, 1, &Myarray);
To fetch the value stored at row=0, column=1 and assign it to a variable, you could
execute:

static ulong retrieved_data;
retrieved_data = ARRAYFETCH(0, 1, &Myarray);

Note: the dimensioned FORTH_ARRAY array is not a C array. It must be initialized
and accessed via special fetch and store functions such as ARRAYFETCH(),
FARRAYFETCH(), ARRAYSTORE() and FARRAYSTORE() as opposed to C-style
pointer arithmetic. The dimensioned FORTH_ARRAY is stored in memory in column-
primary order; in other words, sequential elements in a column are stored in sequential
memory addresses. This is the reverse of standard C-style arrays. The functions
related to FORTH_ARRAYs provide a convenient means of storing data in the large
paged memory space of the QED Board; the standard 16-bit ANSI C compiler cannot
directly address this extended memory without the aid of the Forth heap manager and
memory access functions.
See DIM(), ARRAYSTORE(), FARRAYSTORE(), ARRAYFETCH(),
FARRAYFETCH(), ARRAYMEMBER(), ARRAYBASE(), DELETED(), FILLARRAY(),
and COPYARRAY().
Type: macro; related function: ARRAY:
Header file: array.h

char* FPtoString(float ansi_fp_num)
Converts the specified ansi_fp_num floating point number to a standard null-terminated
ascii string, and returns the address of the string. If the conversion fails, returns 0.
The specified number is converted into one of three formats: FIXED, SCIENTIFIC, or
FLOATING. To set the default format, execute one of the macros FIXED(),
SCIENTIFIC(), or FLOATING(). FLOATING format is the default after a COLD
restart. Each format is described in detail here:
FIXED()
If FIXED() has been executed, FPtoString() converts the input number into a text string
using the following format: (an optional) sign, LEFT_PLACES digits, a decimal point,
RIGHT_PLACES digits, and a trailing space, as

-xxx.yyy
If the user variable NO_SPACES is false (the default condition), the field size equals
LEFT_PLACES + RIGHT_PLACES + 3 and numbers are decimal aligned. The size of
the string is clamped to a maximum of 32 characters. Setting the user variable
TRAILING_ZEROS true displays all trailing zeros to the right of the decimal point, to a
maximum specified by the contents of the user variable RIGHT_PLACES. If the input
number cannot be represented as an ascii string in FIXED format (that is, if the values
of LEFT_PLACES and RIGHT_PLACES won't allow the number to be represented in
FIXED format) then FPtoString() returns 0.
SCIENTIFIC()

Main Glossary of Control-C Library Functions 45

If SCIENTIFIC() has been executed, FPtoString() converts the input number into a text
string using the following format: (an optional) sign, single digit, decimal point,
MANTISSA.PLACES digits, E, exponent sign, 2-digit exponent, and a trailing
space, as

-1.xxxxE-yy
The field size is 8 plus the contents of the user variable MANTISSA_PLACES. The
string includes a trailing space unless NO_SPACES is true. Any valid floating point
number can be represented in the SCIENTIFIC format, so a valid string pointer is
always returned.
FLOATING()
If FLOATING() has been executed, FPtoString() selects FIXED format unless the
number can be displayed with greater resolution using scientific notation, in which case
SCIENTIFIC() format is used. If the user variable FILL_FIELD equals zero (the default
condition), the string is displayed using the minimum possible field size, and numbers
are not decimal aligned. If FILL_FIELD is true (non-zero), the field size of the string is
always equal to the scientific field size, which is MANTISSA_PLACES+8, and
numbers are decimal aligned for neat display of tabular data. The string includes a
trailing space unless NO_SPACES is true. A valid string address is always returned
because any valid floating point number can be represented in the FLOATING format.
See also PrintFP().
Type: _forth function; QED-Forth name: FPtoString
Header file: numbers.h

ulong FP_CtoQ(float ansi_fp_num)
Converts the ANSI/IEEE-standard formatted input floating point number into the QED-
Forth floating point format as described in the QED-Forth Software Manual. The
returned QED-formatted float is declared as an unsigned long to prevent the C compiler
from corrupting the value. Converts denormalized input numbers to zero; that is, if
the biased exponent = 0, the returned QED-formatted floating point number = zero.
NAN (not a number) inputs are converted to +/- infinity depending on their sign bit.
The least significant bit (lsb) of the mantissa is not rounded, resulting in up to 1 lsb
error during the conversion.
Type: _forth function; QED-Forth name: FP_CtoQ
Header file: numbers.h

FP_FORMAT
A user variable (member of the currently active user structure) that specifies the format
to be used by subsequent executions of PrintFP() and FPtoString. FP_FORMAT is
typically accessed indirectly by means of the format specifiers FIXED(), FLOATING(),
and SCIENTIFIC(); see their glossary entries for more details.
Type: macro
Header file: numbers.h

float FP_QtoC(ulong qed_fp_number)
Converts the QED-Forth formatted input floating point format into an ANSI/IEEE-
standard formatted floating point number. The input QED-formatted float is declared
as an unsigned long to prevent the C compiler from corrupting the value.
Type: _forth function; QED-Forth name: FP_QtoC
Header file: numbers.h

46 Glossary I: QCard/QScreen/Handheld Control-C Glossary

float FRECEIVE(float* mailboxAddr)
If mailboxAddr is empty (ie., if it contains 0.0), executes Pause() until the mailbox
contains a message. If xmailbox contains a message (that is, if it does not contain
zero), returns the floating point contents of mailboxAddr and stores 0.0 into
mailboxAddr to indicate that the message has been received and that the mailbox is
now empty. To receive and send non-floating-point messages, use RECEIVE() and
SEND(). To ensure that the state of the mailbox is correctly determined, RECEIVE()
disables interrupts for 26 to 61 cycles (6.5 to 15.25 microseconds). See FSEND() and
MAILBOX.
Type: macro; Related QED-Forth function: RECEIVE
Header file: mtasker.h

float FReceive(float* mailboxAddr, uint mailboxPage)
A subsidiary function called by the recommended macro FRECEIVE(); see
FRECEIVE().
Type: _forth function; QED-Forth name: RECEIVE
Header file: mtasker.h

xaddr FromHeap(ulong size)
If size bytes are available in the heap, allocates them and returns a 32-bit xhandle
(pointer to a pointer) that indirectly points to the 32-bit base xaddress of the allocated
heap item. Adjusts size upward so that it is an even multiple of 4, and allocates the
heap item so that its base address is an even multiple of 4. Returns 0 if there is not
enough heap space to perform the allocation, or if the allocated handle is within 5 bytes
of the bottom of CURRENT_HEAP's page (handles must be on the same page as
CURRENT_HEAP).
Type: _forth function; QED-Forth name: FROM.HEAP
Header file: heap.h

void FSEND(float message, float * mailboxAddr)
Executes Pause() until the mailbox with extended address mailboxAddr is empty
(contains 0.0) and then stores the 32-bit floating point message in mailboxAddr. The
message can be any 32-bit floating point number except zero; use SEND() to send a
non-floating-point value as a message. To ensure that the state of the mailbox is
correctly determined, FSEND() disables interrupts for 16 to 50 cycles (4 to 12.5
microseconds). See TRY_TO_FSEND, FRECEIVE() and MAILBOX.
Type: macro; Related QED-Forth function: SEND
Header file: mtasker.h

void FSend(float message, float * mailboxAddr, uint mailboxPage)
A subsidiary function called by the recommended macro FSEND(); see FSEND().
Type: _forth function; QED-Forth name: SEND
Header file: mtasker.h

GARRAY_XPFA
A macro that returns the 32-bit xpfa (extended parameter field address) that specifies
the graphics data array; an xpfa is also referred to as an "array_ptr" in function
prototypes. This otherwise unnamed array is dimensioned by InitDisplay() if a graphics

Main Glossary of Control-C Library Functions 47

display has been selected using IsDisplay(). UpdateDisplayLine() and UpdateDisplay()
write the contents of this array to the graphics display. DisplayBuffer() returns the xaddr
of the first element in this array if a graphics display is in use. See the graphics
extension routines that are supplied in source code form to augment the ROM libraries;
these routines provide examples of how to access information in the graphics array.
Type: macro; Related QED-Forth function: GARRAY.XPFA
Header file: intrface.h

void GET(xaddr* resourceAddr)
Used in a multitasking system to gain access to a shared resource. Executes Pause()
until the resource variable whose address is resourceAddr is available, and then GETs
the resource by storing the task ID (i.e., the base address of the TASK structure) of
the requesting task into the resourceAddr. A 32-bit zero in resourceAddr indicates that
the resource is available, and a non-zero value that is not equal to the requesting
task's ID indicates that another task controls the resource. To ensure that the state of
the resource is correctly determined, GET() disables interrupts for 27 to 57 cycles (6.75
to 14.25 microseconds). See TRY_TO_GET(), RELEASE(), TASK and RESOURCE.
Type: macro; Related QED-Forth function: GET
Header file: mtasker.h

void Get(xaddr* resourceAddr, uint resourcePage)
A subsidiary function called by the recommended macro GET(); see GET().
Type: _forth function; QED-Forth name: GET
Header file: mtasker.h

void Halt(void)
An infinite loop whose action is to put the calling task ASLEEP and execute Pause().
Typically used to terminate a task action that is not itself an infinite loop.
Type: _forth function; QED-Forth name: HALT
Header file: mtasker.h

IC1_ID
A constant that returns the interrupt identity code for input capture 1 which is associated
with port bit PA2. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: IC1.ID
Header file: interupt.h

IC2_ID
A constant that returns the interrupt identity code for input capture 2 which is associated
with port bit PA1. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: IC2.ID
Header file: interupt.h

IC3_ID
A constant that returns the interrupt identity code for input capture 3 which is associated
with port bit PA0. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: IC3.ID
Header file: interupt.h

48 Glossary I: QCard/QScreen/Handheld Control-C Glossary

IC4_OC5_ID
A constant that returns the interrupt identity code for input capture 4/ output compare
5. This interrupt can control the action of port bit PA3. Note that the optional
secondary serial port uses IC4/OC5 and PA3. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: IC4/OC5.ID
Header file: interupt.h

ILLEGAL_OPCODE_ID
A constant that returns the interrupt identity code for the illegal opcode interrupt. Used
as an argument for ATTACH().
Type: constant; Related QED-Forth function: ILLEGAL.OPCODE.ID
Header file: interupt.h

void InitDisplay(void)
Initializes the liquid crystal display (LCD) interface. If a graphics-style display has
been specified by IsDisplay(), initializes the DISPLAY_HEAP and dimensions
GARRAY_XPFA to point to an appropriately sized array in that heap; the base address
of this array is returned by DisplayBuffer(). If a character-style (alphanumeric) display
has been specified by IsDisplay(), then the display buffer is located in the system RAM
and the DISPLAY_HEAP and GARRAY_XPFA are not initialized. If the dimensions
specified by IsDisplay() call for a graphics array that is larger than the available Room()
in the DISPLAY_HEAP, then InitDisplay() will not dimension the array; see the
glossary entry of DISPLAY_HEAP. InitDisplay() calls ClearDisplay() to clear the
DisplayBuffer() and write the blank data to the LCD display. Homes the cursor to the
start of line 0, and leaves the display enabled with the cursor off and not blinking. See
ClearDisplay(). Intermittently disables interrupts for 28 cycles (7 µsec) per byte
transmitted to the display to implement clock stretching.
Type: _forth function; QED-Forth name: INIT.DISPLAY
Header file: intrface.h

void InitElapsedTime(void)
Initializes the 32-bit contents of the system variable TIMESLICE_COUNT to zero. See
ReadElapsedSeconds(), StartTimeslicer() and StopTimeslicer().
Type: _forth function; QED-Forth name: INIT.ELAPSED.TIME
Header file: mtasker.h

void InitRS485(void)
Calls InitPIA() to configure the peripheral interface adaptor (PIA) so that it is consistent
with operation of the RS485 circuitry, and then sets the RS485 transceiver to receive
mode. Recall that InitPIA() expects to see two input parameters: the first parameter is
true if PPA is to be an output, and the second is true if upper PPC is to be an output.
InitRS485() sets the first parameter so as to leave the data direction of PPA
unchanged, and sets the second parameter passed to InitPIA() to TRUE to configure
upper PPC as an output. PPC bit 4 controls the direction of the RS485 data transfer:
when bit 4 of PPC is high, the RS485 port is in transmit mode, and when bit 4 of PPC
is low, the RS485 port is in receive mode. (NOTE: Make sure that the onboard
RS485/RS232 jumper is properly set before attempting to use the RS485 interface).
See InitPIA(), RS485Receive(), and RS485Transmit().
Type: _forth function; QED-Forth name: INIT.RS485

Main Glossary of Control-C Library Functions 49

Header file: comm.h

void InitSerial2(void)
Initializes the secondary serial port (serial2) which is supported by QED-Forth's
software UART using hardware pins PA3 (input) and PA4 (output). Clears the contents
of resource variable SERIAL2_RESOURCE to zero, initializes PARITY to OFF (no
parity), initializes the transmit and receive buffers (80 characters each, located in the
reserved system RAM), initializes the data directions of PA3 and PA4 as input and
output, respectively, and locally enables the required interrupts associated with PA3
and PA4. Does not globally enable interrupts. The programmer must separately
execute the Baud2() command (to set the baud rate) and execute
ENABLE_INTERRUPTS (to globally enable interrupts) before using the serial2 port.
See UseSerial2() and DisableSerial2().
Type: _forth function; QED-Forth name: INIT.SERIAL2
Header file: comm.h

void InitSPI(void)
Configures and enables the serial peripheral interface (SPI) so that it can transfer data
to and from the on-board battery-backed real-time clock. The SPI uses bits 2-5 of
PORTD. Initializes the 68HC11 as the SPI "master" with 2 MHz data transfer, with
valid data present/sampled on the falling trailing edge of the SPI clock. Initializes the
contents of DDRD (PORTD direction register) to be compatible with being the master of
the SPI (that is, PD2/MISO = input, PD3/MOSI = output, PD4/SCK = output,
PD5/SS = output). Also initializes the contents of the resource variable
SPI_RESOURCE to zero.
Type: _forth function; QED-Forth name: INIT.SPI
Header file: analog.h

void InitVitalIRQsOnCold(void)
Undoes the effect of the NoVitalIRQInit() command, and causes subsequent cold
restarts to perform the default action of checking the interrupt vectors for the COP,
clock monitor, illegal opcode and OC2 interrupts and initializing them if they do not
contain the standard interrupt service vectors. Implementation detail: sets location
0xAE1B in EEPROM to 0xFF.
Type: _forth function; QED-Forth name: INIT.VITAL.IRQS.ON.COLD
Header file: qedsys.h

INIT_DEFAULT_HEAP()
A macro that initializes a 14.5 Kbyte heap in page 0x0F at addresses 0x4600 to
0x7FFF. This is the default heap located in page fifteen RAM just above the reserved
graphics heap. See also IsHeap(), DEFAULT_HEAPSTART and
DEFAULT_HEAPEND.
Type: macro
Header file: heap.h

void InstallMultitasker(void)
Installs the timeslice multitasker timer by initializing the interrupt vector of the output
compare 2 (OC2) timer. This command is automatically executed upon a COLD restart
(unless the command NoVitalIRQInit() has been executed) and by the command

50 Glossary I: QCard/QScreen/Handheld Control-C Glossary

StartTimeslicer(). Because the interrupt vector is in non-volatile EEPROM, it is
usually not necessary to invoke this command unless the OC2 interrupt vector has been
modified.
Type: _forth function; QED-Forth name: INSTALL.MULTITASKER
Header file: mtasker.h

void InstallRegisterInits(uchar option, uchar tmsk2, uchar bprot, uchar baud)
Compiles a 6-byte sequence into the EEPROM that specifies the contents to be loaded
into the "protected registers" plus the BAUD register after subsequent resets. The
protected registers are those that must be initialized within 64 machine cycles after a
reset; after that their contents cannot be changed. They are INIT, OPTION, TMSK2,
and BPROT. The BAUD register controls the BAUD rate of the primary serial
communications interface (serial1), and is included so that a user-specified baud rate
can be set upon every restart [see also Baud1AtStartup()]. The INIT register controls
the location of the on-chip RAM and the registers. This value is set to 0xB8 (on-chip
RAM at 0xB000, and registers at 0x8000); other values are not compatible with QED-
Forth. The contents of the other 4 registers may be specified by the user. Once
INSTALL.REGISTER.INITS is executed, subsequent resets will cause 0xB8 to be
stored in INIT, byte1 in OPTION, byte2 in TMSK2, byte3 in BPROT, and byte4 in
BAUD. To undo the effects of this function and return to the default contents of the
protected registers use the DefaultRegisterInits() command; see its glossary entry for a
list of the default values for each of the registers.
Implementation detail: InstallRegisterInits() writes the pattern 0x13 at location 0xAE06
in the EEPROM. The five bytes following the pattern contain the specified contents of
INIT (=0xB8), OPTION, TMSK2, BPROT, and BAUD, respectively.
Type: _forth function; QED-Forth name: INSTALL.REGISTER.INITS
Header file: qedsys.h

IRQ_ID
A constant that returns the interrupt identity code for the external interrupt request
interrupt. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: IRQ.ID
Header file: interupt.h

void IsDisplay(int numRows, int numCols, int textMode, int charDisplay, int hitachi)
Based on the specified number of rows, number of columns, and flags that indicate
text or graphics mode, character versus graphics display, and Hitachi versus Toshiba
graphics controller chip, this routine saves the display configuration in EEPROM so that
the LCD display is properly initialized upon subsequent restarts and resets by the
InitDisplay() routine which is automatically executed at startup. The encoded
information is accessible via the routines CharsPerDisplayLine() and
LinesPerDisplay(). When IsDisplay() is executed, numRows and numCols should be
expressed as the number of 8x6- or 8x8-pixel characters that the screen can
accommodate. The standard width font for Toshiba graphics displays is set by
hardware inputs on the display module to either 6 or 8 pixels wide. The standard width
font for Hitachi graphics displays is 8 pixels in graphics mode, and can be set to either
6 pixels or 8 pixels wide in text mode. The allowed values of numRows are 2, 4, 8 or
16 lines per display. The allowed values of numCols are 8, 12, 16, 20, 24, 30, and
40 characters or bytes per line. The textMode input parameter selects between text

Main Glossary of Control-C Library Functions 51

mode (if textMode is true/non-zero) and graphics mode (if textMode is false/zero) for
graphics displays; character displays always operate in text mode. The charDisplay
input parameter selects between a strictly alphanumeric character display if charDisplay
is true, and a graphics display if the charDisplay is false. The hitachi input parameter
specifies the type of controller that drives the graphics display module. If hitachi is
true, a Hitachi 61830 controller chip is assumed; if hitachi is false, we assume a
Toshiba 6963 graphics controller chip. NOTE that if a graphics display is specified
(charDisplay is false) but the text mode is specified (textMode is true), the data buffer
created by InitDisplay() in the DisplayHeap() will be too small to accommodate
graphical data. Thus if you want to use both the text and graphics modes of a graphics
display, declare a graphics mode display (i.e., with a false textMode flag), and use
the DisplayOptions() routine to convert to and from text mode. Then the dimensioned
buffer will be large enough for either character or graphical data. The following
appropriately named function calls make it easy to specify the most commonly used
displays:

void Character4x20(void) { IsDisplay(4,20,-1,-1,-1); }
void HitachiGraphics128x240(void) { IsDisplay(16,30,0,0,-1); }
void HitachiText128x240(void) { IsDisplay(16,40,-1,0,-1); }
void ToshibaGraphics128x240(void) { IsDisplay(16,40,0,0,0); }
void ToshibaText128x240(void) { IsDisplay(16,40,-1,0,0); }
void HitachiGraphics128x128(void) { IsDisplay(16,16,0,0,-1); }
void HitachiText128x128(void) { IsDisplay(16,20,-1,0,-1); }

The 4x20 character display is the default type that is established by the "special cleanup
mode". Remember to execute InitDisplay() after executing IsDisplay() the first time.
Note that because IsDisplay() saves the configuration information in EEPROM, you
need not execute it each time the board starts up. InitDisplay() is automatically
executed each time the QED Board starts up.
Implementation detail: This routine encodes the configuration information in a single
byte that is saved at location 0xAE1E in EEPROM.
Type: _forth function; QED-Forth name: IS.DISPLAY
Header file: intrface.h

void IsDisplayAddress(uint RamAddress)
 Configures a graphics display so that the next data write will occur at the specified

RamAddress in the display RAM. This routine can be used in conjunction with
UpdateDisplayRam() to write data to the "off-screen" RAM that is typically present on a
graphics display module. Then modifying the "home address" (upper left location) of
the display allows scrolling of data across the display; see the source code of the
graphics extension source code file for more details. IsDisplayAddress() has no effect
if a character display is installed.
Type: _forth function; QED-Forth name: IS.DISPLAY.ADDRESS
Header file: intrface.h

void IsHeap(xaddr start, xaddr end)
Initializes the heap control variables to set up a heap starting at the specified 32-bit
start address and ending 1 byte below the specified 32-bit end address. All of the
bytes between start and end must be modifiable RAM. The size of the heap and of
individual heap items is limited only by available memory. If the specified heap size
(end - start) is greater than or equal to 16 bytes, IsHeap() initializes the user variable

52 Glossary I: QCard/QScreen/Handheld Control-C Glossary

CURRENT_HEAP to end, and initializes heap variables (located near the top of the
heap) to indicate that the specified memory region can be used for the heap and that
there are no allocated heap items. If the specified heap size (end - start) is less than
16 bytes, only the user variable CURRENT_HEAP is initialized, and the heap control
variables that are stored in the heap itself are not initialized. This allows tasks to share
a heap which has already been initialized without disturbing the values of the heap
control variables. Caution: sharing a heap among tasks may lead to hard-to-
diagnose multitasking failures. Consult the chapters on multitasking and re-entrant
coding in the Software Manual when designing multitasking programs. See also
INIT_DEFAULT_HEAP(), DEFAULT_HEAPSTART, and DEFAULT_HEAPEND.
Type: _forth function; QED-Forth name: IS.HEAP
Header file: heap.h

uchar Key(void)
Waits (if necessary) for receipt of a character from the serial port and places the
character on the data stack. Key() is a vectored routine that executes the routine
whose xcfa is stored in the user variable UKEY. The default installed routine called is
Key1() which receives the character from the primary serial port (supported by the
68HC11's hardware UART). Key2() may be installed in UKEY by UseSerial2() or
Serial2AtStartup(); Key2() receives the character from the secondary serial port
(supported by QED Forth's software UART and using pins PA3 and PA4). See
Key1(), Key2() and _readTerminal().
Type: C function; related QED-Forth function name: KEY
Header file: comm.h

uchar Key1(void)
Waits (if necessary) for receipt of a character from the primary serial port (serial1) and
returns the received character. Key1() does not echo the character. The serial1 port
is associated with the 68HC11's on-chip hardware UART. Key1() is the default Key()
routine installed in the UKEY user variable if Serial1AtStartup() has been executed (and
after the special cleanup mode is invoked). If the value in SERIAL_ACCESS is
RELEASE_AFTER_LINE, Key1() does not execute GET(SERIAL1_RESOURCE) or
RELEASE(SERIAL1_RESOURCE). If SERIAL_ACCESS contains
RELEASE_ALWAYS, Key1() GETs and RELEASEs the SERIAL1_RESOURCE. If
SERIAL_ACCESS contains RELEASE_NEVER, Key1() GETs but does not RELEASE
the SERIAL1_RESOURCE. See Key(), UKEY, Key2(), and SERIAL_ACCESS.
Type: _forth function; QED-Forth name: KEY1
Header file: comm.h

uchar Key2(void)
Waits (if necessary) for receipt of a character from the secondary serial (serial2) port,
removes the character from the serial2 input buffer and returns the received character.
The serial2 port is supported by QED-Forth's software UART using hardware pins PA3
(input) and PA4 (output). Key2() does not echo the received character. Key2() can be
made the default Key() routine installed in the UKEY user variable after each reset or
restart by executing Serial2AtStartup(). If the value in SERIAL_ACCESS is
RELEASE_AFTER_LINE, Key2() does not execute GET(SERIAL2_RESOURCE) or
RELEASE(SERIAL2_RESOURCE). If SERIAL_ACCESS contains
RELEASE_ALWAYS, Key2() GETs and RELEASEs the SERIAL2_RESOURCE. If

Main Glossary of Control-C Library Functions 53

SERIAL_ACCESS contains RELEASE_NEVER, Key2() GETs but does not RELEASE
the SERIAL2_RESOURCE. See Key(), UKEY, Key1(), and SERIAL_ACCESS.
Type: _forth function; QED-Forth name: KEY2
Header file: comm.h

int Keypad(void)
Scans keypad or touchscreen having up to 8 rows and 5 columns and waits for a
keypress. Executes Pause() while waiting to give other tasks (if present) a chance to
run. Waits until the key is released, then returns the key number on the data stack.
Disables interrupts for 12 microseconds each time a row is scanned. The keymap is as
follows:

39 35 31 27 23
38 34 30 26 22
37 33 29 25 21
36 32 28 24 20
19 15 11 7 3
18 14 10 6 2
17 13 9 5 1
16 12 8 4 0

Note that the behavior with respect to 4-row by 5-column keypads is unchanged, so
legacy 20-key hardware operates as it did under prior kernel versions. The support for
keys 20 through 39 enables the use of larger keypads on the Handheld product. See
ScanKeypad() and ScanKeypress().
Type: _forth function; QED-Forth name: KEYPAD
Header file: intrface.h

void Kill(TASK* taskBase, uint taskPage)
Puts ASLEEP and removes from the round robin multitasking loop the task whose
TASKBASE address is taskBase. The task to be killed must be installed in the round
robin loop when Kill() is called. If it isn't, or if a task attempts to KILL itself, the
results are unpredictable. Aborts if taskBase is not in common RAM. Note that input
parameter taskPage always equals 0, indicating that the task is located in common
RAM. See TASK and TASKBASE.
Type: _forth function; QED-Forth name: KILL
Header file: mtasker.h

LEFT_PLACES
A user variable that specifies the number of digits to be displayed to the left of the
decimal point when a floating point number is displayed in FIXED format. See
FPtoString(), PrintFP() and FIXED().
Type: macro; Related QED-Forth function: LEFT.PLACES
Header file: numbers.h

int LinesPerDisplay(void)
Returns the number of lines in the LCD display. For character displays and for
graphics displays being operated in "text mode", the result n equals the number of
character lines (rows) in the display (the allowed values are 2, 4, 8 or 16 lines per
display). For graphics displays being operated in "graphics mode", the result n equals
the number of horizontal pixels on the display (which in turn is 8 times the number of

54 Glossary I: QCard/QScreen/Handheld Control-C Glossary

character lines on the display). The type of display and the display mode (text mode
vs. graphics mode) are determined by the most recent execution of DisplayOptions() or
InitDisplay() (which implements the configuration specified by IS.DISPLAY). The
default value of n after executing the "special cleanup mode" is 4, corresponding to the
default 4-line by 20-character display. The result returned by this routine is used by
BufferPosition(), PutCursor(), UpdateDisplay(), and UpdateDisplayLine().
Type: _forth function; QED-Forth name: LINES/DISPLAY
Header file: intrface.h

MAILBOX
This typedef allocates a 32-bit mailbox in RAM which can be accessed by SEND(),
TRY_TO_SEND() and RECEIVE(). The mailbox can hold any non-floating-point
"message" up to 32 bits in size; for floating point messages, use FMAILBOX.
Example of use:

MAILBOX comm_flag;
SEND(0x12345, &comm_flag);

Mailboxes are used in multitasked systems to share information between tasks and to
synchronize tasks to one another. If the mailbox's contents equal zero, the mailbox is
empty; it contains a message if its contents are non-zero. Before its first use, the
mailbox must be initialized to zero. After initialization to zero, the only operators that
should access the mailbox are SEND(), TRY_TO_SEND() and RECEIVE().
Type: typedef; Related QED-Forth function: MAILBOX:
Header file: mtasker.h

MANTISSA_PLACES
A user variable that holds the number of digits to be displayed in the mantissa when a
floating point number is displayed in SCIENTIFIC format. See FPtoString(), PrintFP()
and FLOATING().
Type: macro; Related QED-Forth function: MANTISSA.PLACES
Header file: numbers.h

MAX(num1, num2)
Returns the greater of num1 and num2; the inputs can be of any compatible type.
This macro is defined as:

#define MAX(A,B) (((A) > (B)) ? (A) : (B))
Type: macro
Header file: utility.h

void MicrosecDelay(uint numMicroseconds)
Enters a software timing loop for the specified number of microseconds. The function
can time to within 2 microseconds resolution for 16 <= u <= 65535 microseconds. Note
that the elapsed time will be increased by the duration of any interrupt routines that are
serviced while MicrosecDelay() is running. Consequently, this routine does not
guarantee accurate timing when the timesliced multitasker is running.
Type: _forth function; QED-Forth name: MICROSEC.DELAY
Header file: mtasker.h

MIN(num1, num2)

Main Glossary of Control-C Library Functions 55

Returns the lesser of num1 and num2; the inputs can be of any compatible type. This
macro is defined as:

#define MIN(A,B) (((A) < (B)) ? (A) : (B))
Type: macro
Header file: utility.h

NEXT_TASK
A user variable (member of the currently active TASK.USER_AREA structure) that
contains the 16-bit TASKBASE address of the next task in the round-robin task list; in
other words, NEXT_TASK contains the base address of the next task's user area.
Before building all of the tasks in the top level routine of a multitasking application, the
command

NEXT_TASK = TASKBASE;
must be executed to empty the round-robin task loop (by making NEXT_TASK point to
its own TASKBASE address). This is detailed in the commentary accompanying the
"Turnkey Application Program" in the QED "Getting Started" book. See TASK and
TASKBASE.
Type: macro; Related QED-Forth function: NEXT.TASK
Header file: user.h

void NoAutostart(void)
Undoes the effect of the Autostart() and PriorityAutostart() commands and attempts to
ensure that the standard QED-Forth interpreter will be entered after subsequent
resets. This command can be executed interactively using QED-Forth syntax by
typing from the terminal:

NO.AUTOSTART
Implementation detail: Erases the 0x1357 pattern at location 0xAE00 [put there by
Autostart()] in EEPROM, and erases the 0x1357 pattern at location 0x047FFA [put
there by PriorityAutostart()] in page 4 of paged memory. Note that the
priority_autostart vector at 0x047FFA cannot be erased if the memory is write-protected
when NoAutostart() is executed. NoAutostart() is invoked by the special cleanup
mode.
Type: _forth function; QED-Forth name: NO.AUTOSTART
Header file: qedsys.h

void NoVitalIRQInit(void)
Writes a pattern into EEPROM so that subsequent cold restarts will not initialize the
COP, clock monitor, illegal opcode, and OC2 interrupt vectors. This option is
provided for programmers interested in installing their own interrupt service routines in
any of these four vectors. Can be undone by InitVitalIRQsOnCold(). This function can
be interactively executed using QED-Forth syntax by typing from the terminal:

NO.VITAL.IRQ.INIT
Implementation detail: Initializes location 0xAE1B in EEPROM to contain the pattern
0x13.
Type: _forth function; QED-Forth name: NO.VITAL.IRQ.INIT
Header file: qedsys.h

NO_SPACES

56 Glossary I: QCard/QScreen/Handheld Control-C Glossary

A user variable that contains a flag. If the flag is true (non-zero), leading and trailing
spaces are not printed when a floating point number is displayed. If the flag is false
(zero), the spaces are printed. See FPtoString() and PrintFP().
Type: macro; Related QED-Forth function: NO.SPACES
Header file: numbers.h

uint NUMCOLUMNS(FORTH_ARRAY* array_ptr)
A macro that returns the number of columns in the Forth array designated by array_ptr.
An unpredictable result is returned if the array is not dimensioned.
Example of use:

FORTH_ARRAY Myarray; // define an array named Myarray
DIM(ulong, 3, 5, &Myarray); // 3 rows x 5 columns of unsigned longs
static uint number_of_columns;
number_of_columns = NUMCOLUMNS(&Myarray);

See the FORTH_ARRAY glossary entry for a description of how to define an array and
its corresponding array_ptr. See also DIM().
Type: macro
Header file: array.h

uint NUMDIMENSIONS(FORTH_ARRAY* array_ptr)
A macro that returns the number of dimensions in the Forth array designated by
array_ptr. The result is typically 2, because the DIM() macro specifies 2-dimensional
arrays. An unpredictable result is returned if the array is not dimensioned.
Example of use:

FORTH_ARRAY Myarray; // define an array named Myarray
DIM(ulong, 3, 5, &Myarray); // 3 rows x 5 columns of unsigned longs
static uint number_of_dimensions;
number_of_dimensions= NUMDIMENSIONS(&Myarray);

See the FORTH_ARRAY glossary entry for a description of how to define an array and
its corresponding array_ptr. See also DIM().
Type: macro
Header file: array.h

int NumInputChars(void)
Returns the number of characters in the input queue of the secondary serial port
(serial2). In other words, returns the number of characters that have been received by
the serial2 input interrupt service routine that have not yet been removed from the
circular input buffer by Key2(). The default serial2 input buffer holds 80 characters and
is located in the system RAM. The serial2 port is supported by a software UART using
hardware pins PA3 (input) and PA4 (output).
Type: _forth function; QED-Forth name: #INPUT.CHARS
Header file: comm.h

int NumOutputChars(void)
Returns the number of characters in the output queue of the secondary serial port
(serial2). In other words, returns the number of characters that have been placed in
the output buffer by Emit2() that have not yet been removed from the circular output
buffer by the serial2 output interrupt service routine. The default serial2 output buffer

Main Glossary of Control-C Library Functions 57

holds 80 characters and is located in the system RAM. The serial2 port is supported
by the software UART using hardware pins PA3 (input) and PA4 (output).
Type: _forth function; QED-Forth name: #OUTPUT.CHARS
Header file: comm.h

uint NUMROWS(FORTH_ARRAY* array_ptr)
A macro that returns the number of rows in the Forth array designated by array_ptr. An
unpredictable result is returned if the array is not dimensioned.
Example of use:

FORTH_ARRAY Myarray; // define an array named Myarray
DIM(ulong, 3, 5, &Myarray); // 3 rows x 5 columns of unsigned longs
static uint number_of_rows;
number_of_rows = NUMROWS(&Myarray);

See the FORTH_ARRAY glossary entry for a description of how to define an array and
its corresponding array_ptr. See also DIM().
Type: macro
Header file: array.h

OC1_ID
A constant that returns the interrupt identity code for output compare 1. This interrupt
can control the action of port bits PA3-PA7. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: OC1.ID
Header file: interupt.h

OC2_ID
A constant that returns the interrupt identity code for output compare 2. This interrupt
can control the action of port bit PA6. Used as an argument for ATTACH(). Note that
the OC2 interrupt is used by the timeslice multitasker; if you wish to use it for another
purpose, make sure that you do not need any of the services of the timeslicer or
elapsed-time clock. See also InitVitalIRQsOnCold() and InstallTimeslicer().
Type: constant; Related QED-Forth function: OC2.ID
Header file: interupt.h

OC3_ID
A constant that returns the interrupt identity code for output compare 3. This interrupt
can control the action of port bit PA5. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: OC3.ID
Header file: interupt.h

OC4_ID
A constant that returns the interrupt identity code for output compare 4. This interrupt
can control the action of port bit PA4. Used as an argument for ATTACH(). Note that
OC4 and PA4 are used by the optional secondary serial port supported by the QED-
Forth software UART; if you are not using the secondary serial port, you may use
freely use OC4 and PA4.
Type: constant; Related QED-Forth function: OC4.ID
Header file: interupt.h

PAD

58 Glossary I: QCard/QScreen/Handheld Control-C Glossary

A macro that returns the 16-bit start address of the PAD scratchpad area in the active
task's task-private area in common RAM. The 32 bytes below PAD are used for
floating point and integer string/number conversion, and the 88 bytes above PAD are
available as scratchpad memory for the programmer (Note that the QED-Forth routines
ASK.NUMBER, ASK.FNUMBER, INPUT.STRING, and RECEIVE.HEX write text
strings into the PAD buffer; however, this should not be a problem for C-programmed
applications).
Type: macro; Related QED-Forth function: PAD
Header file: user.h

void PageToFlash(int source_page)
Transfers the 32 Kbyte contents of the specified RAM source page to the parallel page
in flash. If the current memory map is the "download map", then valid source pages are
4, 5, or 6, (and, if a 512K RAM is installed, pages 0x10-17). Page 4 RAM is transferred
to page 1 flash, page 5 RAM is transferred to page 2 flash, page 6 RAM is transferred to
page 3 flash, and pages in the range 0x10-17 are transferred to parallel flash pages in
the range 0x18-1F. If the current memory map is the "standard map", then valid source
pages are 1, 2, or 3 (and, if a 512K RAM is installed, pages 0x18-1F). Page 1 RAM is
transferred to page 4 flash, page 2 RAM is transferred to page 5 flash, page 3 RAM is
transferred to page 6 flash, and pages in the range 0x18-1F are transferred to parallel
flash pages in the range 0x10-17. An "invalid input parameter" error is issued if an
invalid source page is specified. A "can't program flash" error is issued if the flash
cannot be programmed. This function uses the 68HC11's on-chip RAM at hex B200 to
B3CF to manage the write to the flash (the real-time clock and C/Forth interrupt stack
reserve the bytes at B3D0 to B3FF). The remaining on-chip RAM at B000 to B1FF
remains available to the user.
Type: _forth function; QED-Forth name: PAGE.TO.FLASH
Header file: flash.h

void PageToRAM(int source_page)
Transfers the 32 Kbyte contents of the specified flash source page to the parallel page
in RAM. If the current memory map is the "download map", then valid source pages are
1, 2, or 3 (and, if a 512K RAM is installed, pages 0x18-1F). Page 1 flash is transferred
to page 4 RAM, page 2 flash is transferred to page 5 RAM, page 3 flash is transferred to
page 6 RAM, and pages in the range 0x18-1F are transferred to parallel RAM pages in
the range 0x10-17. If the current memory map is the "standard map", then valid source
pages are 4, 5, or 6 (and, if a 512K RAM is installed, pages 0x10-17). Page 4 flash is
transferred to page 1 RAM, page 5 flash is transferred to page 2 RAM, page 6 flash is
transferred to page 3 RAM, and pages in the range 0x10-17 are transferred to parallel
RAM pages in the range 0x18-1F. An "invalid input parameter" error is issued if an
invalid source page is specified.
Type: _forth function; QED-Forth name: PAGE.TO.RAM
Header file: flash.h

PAGE_LATCH
A constant that returns 0x8002 which is the address of the page latch whose contents
indicate the current page. See THIS_PAGE which returns the contents of the
PAGE_LATCH. In general, the PAGE_LATCH may be read but not written to by

Main Glossary of Control-C Library Functions 59

application programs; only routines that are located in common memory (addresses
above 0x8000) are allowed to write to the PAGE_LATCH.
Type: constant; QED-Forth name: (PAGE.LATCH)
Header file: types.h

PARITY
The PARITY variable is set by the programmer to specify the behavior of the secondary
serial port (serial2) supported by QED-Forth's software UART. If PARITY is TRUE
(non-zero), a parity bit is appended to each transmitted character and a parity bit is
expected in each incoming character. The level of the transmitted parity bit is set by
the system variable PARITY_OUT, and the value of the parity bit of the most recently
received character is stored in the system variable PARITY_IN. PARITY is initialized to
FALSE (zero) by InitSerial2() and UseSerial2() and at each reset or restart.
Type: macro; Related QED-Forth function: PARITY
Header file: comm.h

PARITY_IN
A system variable that equals the value of the parity bit of the character most recently
received by the secondary serial port (serial2, supported by the software UART) if
PARITY is true (non-zero). If the incoming parity bit was high, PARITY_IN equals 1;
otherwise it equals 0. The contents are available to the programmer if parity checking
of incoming data is required; the software UART does not check for correct parity.
See PARITY.
Type: macro; Related QED-Forth function: PARITY.IN
Header file: comm.h

PARITY_OUT
A system variable that specifies the value of the parity bit of the character to be sent
next by the secondary serial port (serial2, supported by the software UART) if PARITY
is true. If the contents of PARITY are TRUE (non-zero) and the least significant byte
of PARITY_OUT is non-zero, then the parity bit of the next outgoing character is set to
one. If the contents of PARITY are TRUE and the least significant byte of
PARITY_OUT is zero, then the parity bit of the next outgoing character is set to zero.
The value of PARITY_OUT is not modified by the serial2 routines, and the application
program must perform any required parity calculations. See PARITY.
Type: macro; Related QED-Forth function: PARITY.OUT
Header file: comm.h

void Pause(void)
Stacks the state of the current task and passes control to the next AWAKE task in the
round-robin task list. You can embed calls to Pause() in any task when you wish to
give other tasks a chance to run. Pause() may be used in multitasked systems
whether or not the timeslicer is active. Pause() switches tasks in (27 + 3.25n)
microseconds, where n is the number of ASLEEP tasks encountered in the round robin
task list. Of this time, interrupts are disabled for (20 + 3.25n) microseconds.
Type: _forth function; QED-Forth name: PAUSE
Header file: mtasker.h

void PauseOnKey(void)

60 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Suspends execution of the calling function when a character is received and, with the
exceptions noted below, resumes execution of the calling function when a second
character is received. Typically coded into a loop structure to allow control of execution
during debugging, or to control a data dump. PauseOnKey() checks whether a
character has been received. If no character has been received, it does nothing. If a
character has been received and it is a carriage return, executes Abort() which clears
the stacks and returns to the QED-Forth interpreter or the autostart routine (if
installed). If the character received is a . (dot) executes QUIT which returns to the
QED-Forth interpreter without clearing the data stack. If any other character is
received, suspends execution until another character other than carriage return or . is
received. This function effectively responds to XON/XOFF flow Control-Characters
from a host terminal; a function running on the QED Board that dumps data and calls
PauseOnKey() repeatedly will pause when the XOFF is received and resume when
XON is received. PauseOnKey() does not know that the XON/XOFF characters are
special; it just stops when receiving the first and resumes after the second.
Type: _forth function; QED-Forth name: PAUSE.ON.KEY
Header file: comm.h

PORTA
A macro that returns the contents of the 8 bit PortA register at address 0x8000 in the
68HC11. This port is available to the user and is associated with various counting and
timing functions. To read the input pins of PORTA, simply use the PORTA macro in
an expression or as the right hand side of an assignment statement. If no output
compare interrupts are controlling the states of the PORTA pins, PORTA can be used
as the left-hand side of a simple assignment statement to control the PORTA outputs.
However, if output compare interrupts are controlling the states of the PORTA pins or if
the secondary UART is in use, uninterruptable operators [such as the Forth functions
SetBits() and ClearBIts(), or corresponding C functions defined with the _protect
keyword] must be used to modify the available port bits; otherwise, unpredictable
results can occur. Note that the software UART that implements the secondary serial
port uses bits 3 and 4 of PORTA, so care must be taken not to alter the direction or
state of these bits if the secondary serial port is in use. The DDRA register sets the
data direction of the pins in PORTA.
Type: macro; Related QED-Forth function: PORTA
Header file: qedregs.h

PORTD
A macro that returns the contents of the 8 bit PORTD register at address 0x8008 in the
68HC11. This port implements the primary serial channel on bits 0 and 1, and the
serial peripheral interface (SPI) on bits 2-5 which controls the onboard 12 bit A/D and 8
bit D/A. See InitSPI() and SPIOff().
Type: macro; Related QED-Forth function: PORTD
Header file: qedregs.h

PORTE
A macro that returns the contents of the 8 bit PORTE register at address 0x800A in the
68HC11. This port can either be used as an 8 channel 8 bit A/D convertor, or as an
octal digital input port. See AD8On() and AD8Off().
Type: macro; Related QED-Forth function: PORTE

Main Glossary of Control-C Library Functions 61

Header file: qedregs.h

void PrintFP(float ansi_fp_num)
Displays the specified floating point number using the format specified by the most
recent execution of FIXED(), SCIENTIFIC(), or FLOATING(). FLOATING format is
the default after a COLD restart. If the specified format is FIXED() and if the
ansi_fp_num does not fit in the allowed number of LEFT_PLACES and
RIGHT_PLACES, PrintFP() prints the string "won'tfit". See the glossary entry for
FPtoString() for a detailed description of the FIXED(), SCIENTIFIC() and FLOATING()
formats.
Type: _forth function; QED-Forth name: PrintFP
Header file: numbers.h

void PriorityAutostart(void(*action)(), uint actionPage)
Compiles a 6-byte sequence at locations 0x7FFA-7FFF on page 4 so that upon
subsequent restarts and Abort()s, the action routine having the specified execution
address will be automatically called. This allows a finished application to be
automatically entered upon power up and resets. This function is typically executed
from the terminal using QED-Forth syntax by typing:

CFA.FOR MAIN PRIORITY.AUTOSTART
after a C program has been downloaded as described in the "Turnkey Application
Program" example in the documentation.
In contrast to the EEPROM-based Autostart() function, the PriorityAutostart() vector is
located in paged memory which is in flash memory in turnkeyed "production" boards.
Thus PriorityAutostart() facilitates the autostarting of flash-based systems.
PRIORITY.AUTOSTART is Flash smart; it writes to page 4 whether page 4 addresses
RAM or Flash at the time. In the standard map PRIORITY.AUTOSTART writes directly
to Flash in page 4. In the download memory map it also writes to page 4, now RAM.
Subsequently page 4 can be copied to Flash and the Flash readdressed onto page 4 in
the standard map.
Implementation detail: At location 0x7FFA on page 4, PriorityAutostart() writes the
pattern 1357 followed by the four byte xcfa; make sure that page 4 is not write
protected when executing PriorityAutostart(). Upon every reset, restart or runtime
error, the Abort() function is called. Abort() checks the priority autostart vector first
and executes the specified routine (if any). If no priority autostart routine is posted or if
the specified routine terminates, Abort() then checks the EEPROM-based autostart
vector and executes the specified routine (if any). If no autostart routine is posted or if
the specified routine terminates, Abort() then invokes QUIT which is the QED-Forth
interpreter. To undo the effects of this command and return to the default startup
action, make sure that page 4 is un-write-protected RAM and call NoAutostart() which
clears both the priority autostart and the EEPROM-based autostart vectors. To
recover from the installation of a buggy priority autostart routine if page 4 is RAM, make
sure that page 4 is not write-protected and invoke the special cleanup mode (consult
the Manual). See Autostart() and NoAutostart().
Type: _forth function; QED-Forth name: PRIORITY.AUTOSTART
Header file: qedsys.h

PULSE_EDGE_ID

62 Glossary I: QCard/QScreen/Handheld Control-C Glossary

A constant that returns the interrupt identity code for the pulse accumulator input edge
detector which is associated with port bit PA7. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: PULSE.EDGE.ID
Header file: interupt.h

PULSE_OVERFLOW_ID
A constant that returns the interrupt identity code for the pulse accumulator overflow
detector which is associated with port bit PA7. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: PULSE.OVERFLOW.ID
Header file: interupt.h

void PutCursor(int line, int column)
Positions the LCD display cursor at the line number specified by line and the character
number specified by column. The next character or graphical byte sent to the display
by the CharToDisplay() routine will appear at the specified cursor position, and then the
cursor position will automatically increment. The input parameters line and column are
0 based (that is, the top line on the display is line#0, and the left-most character on
each line is column#0). PutCursor() clamps line to one less than LinesPerDisplay(),
and clamps n2 to one less than CharsPerDisplayLine(). The line number follows the
same rules explained in the description of BufferPosition(): for a graphics-style display
the line number is interpreted differently depending on whether the display is being used
in "text mode" or "graphics mode". In text mode, line corresponds to the character line
number; in graphics mode, line corresponds to the pixel line number which is 8 times
the character line number. Note that the cursor may not be visible, and is never visible
in graphics mode; see DisplayOptions(). Also note that after the cursor reaches the
end of a line it may skip to the start of a line elsewhere on the display. This routine
intermittently disables interrupts for 28 cycles (7 µsec) per command byte to implement
clock stretching.
Type: _forth function; QED-Forth name: PUT.CURSOR
Header file: intrface.h

int Random(void)
Generates and returns a pseudo-random 16bit integer. The result is also stored in the
user variable RANDOM_SEED.
Type: _forth function; QED-Forth name: RANDOM
Header file: numbers.h

RANDOM_SEED
A user variable that equals the last 16-bit number generated by Random(). Storing a
specific integer (a "seed") into RANDOM_SEED leads to the generation of a
reproducible series of pseudo-random numbers by repeated calls to Random(). This
may be useful for debugging functions that use random numbers. See Random().
Type: macro; Related QED-Forth function: RANDOM#
Header file: numbers.h

ulong ReadElapsedSeconds(void)
Returns the elapsed number of seconds since the timeslice clock was initialized to zero
by InitElapsedTime(). See TIMESLICE_COUNT, StartTimeslicer(), and
ChangeTaskerPeriod().

Main Glossary of Control-C Library Functions 63

Type: _forth function; QED-Forth name: READ.ELAPSED.SECONDS
Header file: mtasker.h

void ReadWatch(void)
Reads the battery-operated real-time clock (if present), storing the time, day, and
date in the 8-byte watch_results structure located at address 0xB3F8. The stack
items, their allowed ranges, and the structure elements that hold the specified contents
are as follows:

description range result is in structure element:
year 0 - 99 WATCH_YEAR
month 1 - 12 WATCH_MONTH
date 1 - 31 WATCH_DATE
day of week 1 - 7 WATCH_DAY
hour of day 0 - 23 WATCH_HOUR
minute after the hour 0 - 59 WATCH_MINUTE
seconds after the minute 0 - 59 WATCH_SECONDS
hundredths of seconds 0 WATCH_HUNDREDTH_SECONDS

Example of use:
int hour, day, date; // static variables to hold current time
ReadWatch(); // get current time into watch_results structure
hour = WATCH_HOUR; // assign from the structure into variables
day = WATCH_DAY;
date = WATCH_DATE;

Due to a hardware limitation, the hundredths of second parameter always reads as 0; it
is included in the structure to maintain backward compatibility with prior code. Once
correctly set, the watch handles the differing numbers of days in each month, and
correctly handles leap years. ReadWatch() uses the top 16 bytes of on-chip RAM at
0xB3F0-B3FF as a scratchpad buffer. See SetWatch().
Type: _forth function; QED-Forth name: READ.WATCH
Header file: watch.h

long RECEIVE(long* mailboxAddr)
If mailboxAddr is empty (ie., if it contains a 32-bit zero), executes Pause() until the
mailbox contains a message. If mailboxAddr contains a message (that is, if it does
not contain zero), returns the contents of mailboxAddr and stores a zero into
mailboxAddr to indicate that the message has been received and that the mailbox is
now empty. To receive and send floating point messages, use FRECEIVE() and
FSEND(). RECEIVE() disables interrupts for 26 to 61 cycles (6.5 to 15.25
microseconds) to ensure that the state of the mailbox is correctly determined. See
SEND() and MAILBOX.
Type: macro; Related QED-Forth function: RECEIVE
Header file: mtasker.h

long Receive(long* mailboxAddr, uint mailboxPage)
A subsidiary function called by the recommended macro RECEIVE(); see RECEIVE().
Type: _forth function; QED-Forth name: RECEIVE
Header file: mtasker.h

void RELEASE(xaddr* resourceAddr)

64 Glossary I: QCard/QScreen/Handheld Control-C Glossary

If the current task owns the resource variable referenced by resourceAddr (that is, if
resourceAddr contains the current task's TASKBASE address), releases the resource
by storing zero in xresource. Otherwise, does nothing; this prevents a task from
RELEASEing a resource controlled by another task. Interrupts are not disabled and
Pause() is not executed. See GET() and RESOURCE.
Type: macro; Related QED-Forth function: RELEASE
Header file: mtasker.h

void Release(xaddr* resourceAddr, uint resourcePage)
A subsidiary function called by the recommended macro RELEASE(); see
RELEASE().
Type: _forth function; QED-Forth name: RELEASE
Header file: mtasker.h

RELEASE_AFTER_LINE
A constant which is the default value stored into the SERIAL_ACCESS user variable.
If stored into (assigned to) SERIAL_ACCESS, prevents the low level I/O functions
Key() Emit() and AskKey() from executing GET() or RELEASE() on the active serial
resource variable. Rather, the task program installed by ACTIVATE() is responsible
for executing GET() before each line is received and RELEASE() after each line is
received. This SERIAL_ACCESS method is used by the QED-Forth interpreter to
virtually eliminate the overhead required to GET and RELEASE during downloads, and
allows the interpreter to run at a sustainable 19.2 Kbaud.
CAUTION: In multitasking systems using both serial ports Serial1 and Serial2, the
application code should include the command

SERIAL_ACCESS = RELEASE_ALWAYS;
or SERIAL_ACCESS = RELEASE_NEVER;
before building the tasks. This prevents contention that can occur if the default
RELEASE_AFTER_LINE option is installed in the SERIAL_ACCESS user variable.
See SERIAL_ACCESS, RELEASE_NEVER, and RELEASE_ALWAYS.
Type: constant; Related QED-Forth function: RELEASE.AFTER.LINE
Header file: mtasker.h

RELEASE_ALWAYS
A constant. Returns a value that, when stored into the SERIAL_ACCESS user
variable, causes the low level I/O functions Key() Emit() and AskKey() to always
RELEASE the serial resource variable after each I/O operation. This is useful if the
task that has control over the serial line wants to share access to the serial port. See
SERIAL_ACCESS, RELEASE_NEVER, and RELEASE_AFTER_LINE.
CAUTION: You may find that storing RELEASE_ALWAYS into the QED-Forth task's
SERIAL_ACCESS variable decreases the sustainable download baud rate. To assure
the highest sustainable download baud rate, it is recommended that
RELEASE_AFTER_LINE be stored in the QED-Forth task's SERIAL_ACCESS
variable during program development.
CAUTION: In multitasking systems using both serial ports Serial1 and Serial2, the
application code should include the command

SERIAL_ACCESS = RELEASE_ALWAYS;
or SERIAL_ACCESS = RELEASE_NEVER;

Main Glossary of Control-C Library Functions 65

before building the tasks. This prevents contention that can occur if the default
RELEASE_AFTER_LINE option is installed in the SERIAL_ACCESS user variable.
Type: constant; Related QED-Forth function: RELEASE.ALWAYS
Header file: mtasker.h

RELEASE_NEVER
A constant. Returns a value that, when stored into the SERIAL_ACCESS user
variable, prevents the low level I/O functions Key() Emit() and AskKey() from executing
the command RELEASE(SERIAL). This is useful if the task that has control over the
serial line does not want to share access to the serial port. See SERIAL_ACCESS,
RELEASE_ALWAYS, and RELEASE_AFTER_LINE.
CAUTION: You may find that storing RELEASE_NEVER into the QED-Forth task's
SERIAL_ACCESS variable decreases the sustainable download baud rate. To assure
the highest sustainable download baud rate, it is recommended that
RELEASE_AFTER_LINE be stored in the QED-Forth task's SERIAL_ACCESS
variable during program development.
CAUTION: In multitasking systems using both serial ports Serial1 and Serial2, the
application code should include the command

SERIAL_ACCESS = RELEASE_ALWAYS;
or SERIAL_ACCESS = RELEASE_NEVER;
before building the tasks. This prevents contention that can occur if the default
RELEASE_AFTER_LINE option is installed in the SERIAL_ACCESS user variable.
Type: constant; Related QED-Forth function: RELEASE.NEVER
Header file: mtasker.h

RESOURCE
This typedef allocates a 32-bit resource variable in the common RAM. Use as:

RESOURCE <name>;
where <name> is any name of your choosing. Resource variables are used in
multitasked systems to control access to shared resources (for example, an A/D
converter, serial port, block of memory, etc.) When the resource associated with
<name> is available, <name> contains zero. When it is controlled by a task (and
hence unavailable to other tasks), it contains the TASKBASE address of the controlling
task; see the glossary entries for TASK and TASKBASE. Before its first use, the
resource variable must be initialized to zero. After initialization to zero, the only
operators that should access the resource variable are GET() TRY_TO_GET() and
RELEASE(). The following resource variables are pre-defined in the mtasker.h file:

AD8_RESOURCE SPI_RESOURCE
SERIALSERIAL1_RESOURCE SERIAL2_RESOURCE

See their glossary entries and consult the Multitasking chapter in the Software Manual
for further descriptions and examples of use.
Type: typedef; Related QED-Forth function: RESOURCE.VARIABLE:
Header file: mtasker.h

RIGHT_PLACES
A user variable that holds the number of digits to be displayed to the right of the decimal
point when a floating point number is printed in FIXED format. See FPtoString(),
PrintFP() and FIXED().
Type: macro; Related QED-Forth function: LEFT.PLACES

66 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Header file: numbers.h

ulong Room(void)
Returns the number of bytes available in the HEAP. NOTE: because there is some
overhead (up to 12 bytes) associated with adding an item to the heap, you may not be
able to dimension a new heap item that requires the exact number of bytes returned by
Room().
Type: _forth function; QED-Forth name: ROOM
Header file: heap.h

void RS485Receive(void)
Clears bit 4 in PPC (of the PIA) to the logic 0 state. If upper PPC has been configured
as an output port, this places the RS485 transceiver in the receive mode. NOTE:
Make sure that the onboard RS485/RS232 jumper is properly set before attempting to
use the RS485 interface. See InitRS485() and RS485Transmit().
Type: _forth function; QED-Forth name: RS485.RECEIVE
Header file: comm.h

void RS485Transmit(void)
Sets bit 4 in PPC (of the PIA) to the logic 1 state. If upper PPC has been configured as
an output port, this places the RS485 transceiver in the transmit mode. NOTE: Make
sure that the onboard RS485/RS232 jumper is properly set before attempting to use
the RS485 interface. See InitRS485() and RS485Receive().
Type: _forth function; QED-Forth name: RS485.TRANSMIT
Header file: comm.h

RTI_ID
A constant that returns the interrupt identity code for the real time interrupt. Used as an
argument for ATTACH().
Type: constant; Related QED-Forth function: RTI.ID
Header file: interupt.h

int ScanKeypad(void)
Scans keypad or touchscreen having up to 8 rows and 5 columns. If a key is being
depressed, PAUSEs and waits until the key is released, then returns the key number
under a true flag. If no key is depressed, returns a false flag. Consult the Keypad()
glossary entry for a detailed description of keypad orientation. Disables interrupts for 12
µseconds each time a row is scanned. See ScanKeypress() and Keypad().
Type: C function; Related QED-Forth function: ?KEYPAD
Header file: intrface.h

int ScanKeypress(void)
Scans keypad or touchscreen having up to 8 rows and 5 columns. If a key is being
depressed, returns the key number under a true flag; unlike ?KEYPAD, ?KEYPRESS
does not wait for the key to be released. If no key is depressed, returns a false flag.
Consult the Keypad() glossary entry for a detailed description of keypad orientation.
Disables interrupts for 12 microseconds each time a row is scanned. See
ScanKeypad() and Keypad().
Type: C function; Related QED-Forth function: ?KEYPRESS

Main Glossary of Control-C Library Functions 67

Header file: intrface.h

void SCIENTIFIC(void)
Sets the default printing format used by PrintFP() and FPtoString() to scientific. For
more details, see the glossary entry for FPtoString().
Type: macro; Related QED-Forth function: SCIENTIFIC
Header file: numbers.h

SCI_ID
A constant that returns the interrupt identity code for the asynchronous serial
communications interface. Used as an argument for ATTACH().
Type: constant; Related QED-Forth function: RTI.ID
Header file: interupt.h

void SEND(long message, long * mailboxAddr)
Executes Pause() until the mailbox with extended address mailboxAddr is empty
(contains zero) and then stores the 32-bit message in mailboxAddr. The message can
be any 32-bit quantity except zero; use FSEND() to send a floating point value as a
message. For example, the message can be an array address returned by
ARRAYMEMBER() that points to a block of data. To ensure that the state of the
mailbox is correctly determined, SEND() disables interrupts for 16 to 50 cycles (4 to
12.5 microseconds). See TRY_TO_SEND(), RECEIVE() and MAILBOX.
Type: macro; Related QED-Forth function: SEND
Header file: mtasker.h

void Send(long message, long * mailboxAddr, uint mailboxPage)
A subsidiary function called by the recommended macro SEND(); see SEND().
Type: _forth function; QED-Forth name: SEND
Header file: mtasker.h

SERIAL
A constant that returns the address of the resource variable associated with the primary
serial I/O port. A synonym for SERIAL1_RESOURCE. See SERIAL1_RESOURCE.
Type: macro constant; Related QED-Forth function: SERIAL
Header file: mtasker.h

void Serial1AtStartup(void)
Initializes a flag in EEPROM which causes the initialization software to install the
primary serial port (serial1) as the default serial port used by the QED-Forth interpreter
after each reset or restart. The serial1 port is supported by the 68HC11's on-chip
hardware UART.
Implementation detail: Sets the contents of address 0xAE1D in EEPROM to 0xFF.
Upon each reset or restart, the QED-Forth startup routine checks this byte, and
contents of 0xFF cause the UseSerial1() routine to be executed. See UseSerial1() and
Serial2AtStartup().
Type: _forth function; QED-Forth name: SERIAL1.AT.STARTUP
Header file: comm.h

SERIAL1_RESOURCE

68 Glossary I: QCard/QScreen/Handheld Control-C Glossary

A constant that returns the address of the resource variable associated with the primary
serial I/O port. This resource variable mediates access to the primary serial port
(serial1) associated with the 68HC11's on-chip hardware UART.
SERIAL1_RESOURCE should be accessed only by the functions GET(),
TRY_TO_GET() and RELEASE(). Initialized to zero by UseSerial1() and UseSerial2()
and at each reset or restart. See RESOURCE.
Type: macro constant; Related QED-Forth function: SERIAL1.RESOURCE
Header file: mtasker.h

void Serial2AtStartup(int baud)
Initializes a flag in EEPROM which causes the initialization software to install the
secondary serial port (serial2) at the specified baud rate as the default serial port used
by the QED-Forth interpreter after each reset or restart. The serial2 port is supported
by QED-Forth's software UART using hardware pins PA3 (input) and PA4 (output).
The specified baud rate must a power of 2 times 75 baud, up to a maximum of 9600
baud. Thus the allowed baud rates for this routine are 75, 150, 300, 600, 1200,
2400, 4800, and 9600 baud. The effect of this routine is canceled by executing
Serial1AtStartup(). Note that the serial2 port can support many more baud rates, but
the options have been limited to facilitate setting a reasonable startup baud rate based
on a simple implementation as described below. Note also that the maximum baud
rate that can be sustained by the serial2 port is 4800 baud; see the glossary entry for
Baud2().
Implementation detail: Sets the contents of address 0xAE1D in EEPROM equal to
baud/75. Upon each reset or restart, the QED-Forth startup routine checks this
byte, and contents equal to an exact power of two cause the UseSerial2() routine to be
executed before control is passed to the interpreter or to an autostart routine. Note that
UseSerial2() globally enables interrupts during the startup process. If you wish to use
the secondary serial port while avoiding this side-effect and maintaining control over
the global enabling of interrupts, don't execute Serial2AtStartup(). Rather, have your
autostart routine explicitly call UseSerial2() after ensuring that all interrupt service
routines are properly initialized.
Type: _forth function; QED-Forth name: SERIAL2.AT.STARTUP
Header file: comm.h

SERIAL2_RESOURCE
A constant that returns the address of the resource variable that mediates access to the
secondary serial port (serial2). The serial2 port is supported by QED-Forth's software
UART using hardware pins PA3 (input) and PA4 (output). SERIAL2_RESOURCE
should be accessed only by the functions GET(), TRY_TO_GET() and RELEASE().
Initialized to zero by UseSerial1() and UseSerial2() and at each reset or restart. See
RESOURCE.
Type: macro constant; Related QED-Forth function: SERIAL2.RESOURCE
Header file: mtasker.h

SERIAL_ACCESS
SERIAL_ACCESS is a user variable (member of the currently active
TASK.USER_AREA structure) that contains a flag that controls when a task GETs and
RELEASEs access to the serial resource. If more than one task needs access to the
serial I/O port, this flag can help specify which task (if any) gets priority use. If

Main Glossary of Control-C Library Functions 69

SERIAL_ACCESS contains the value RELEASE_ALWAYS, then each I/O operation
by Key() Emit() or AskKey() will GET() the active serial resource before each I/O
operation and RELEASE() the active serial resource after each character I/O operation
is complete. If SERIAL_ACCESS contains the value RELEASE_NEVER, then I/O
operations called by the task always GET() but never RELEASE() the serial resource
variable. If SERIAL_ACCESS contains the value RELEASE_AFTER_LINE, then Key()
Emit() and AskKey() never GET() or RELEASE() the serial resource. Rather, the
QED-Forth interpreter GET()s the serial resource before each line is received and
RELEASE()s the serial resource after each line is interpreted. This virtually eliminates
the overhead required to GET() and RELEASE() during downloads, and allows the
interpreter to run at a sustainable 19200 baud. The default value stored in
SERIAL_ACCESS after a COLD restart is RELEASE_AFTER_LINE.
CAUTION: In multitasking systems using both serial ports SERIAL1 and SERIAL2, the
application code should include the command

SERIAL_ACCESS = RELEASE_ALWAYS;
or SERIAL_ACCESS = RELEASE_NEVER;
before building the tasks. This prevents contention that can occur if the default
RELEASE_AFTER_LINE option is installed in the SERIAL_ACCESS user variable.
See SERIAL1_RESOURCE, SERIAL2_RESOURCE, GET(), RELEASE(), Key(),
Emit() and AskKey().
Type: macro; Related QED-Forth function: SERIAL.ACCESS
Header file: user.h

void SetBits(uchar mask, xaddr address)
For each bit of mask that is set, sets the corresponding bit of the 8 bit value at
address. Disables interrupts for ten cycles (2.5 microseconds) to ensure an
uninterrupted read/modify/write operation. See also ClearBits(), ToggleBits(),
ChangeBits() and PIASetBits().
Type: _forth function; QED-Forth name: SET.BITS
Header file: xmem.h

void SetBootVector (uint fn_addr, uint fn_page)
Compiles a 6-byte sequence at locations 0x7FFA-0x7FFF on page 0x0C so that upon
subsequent restarts and ABORTs, the function having the xcfa (execution address)
specified by fn_addr and fn_page will be executed BEFORE any other autostart
routines are executed. The execution order at startup is: boot_vector, then
priority_autostart, then autostart. Note that the “page C write protect” jumper must be
removed for this function to be effective. The boot vector is most useful for extending
the kernel in a "bullet-proof" way that cannot be overwritten unless the page C write
protect jumper is removed. For example, suppose that you want to allow fail-safe field
firmware upgrades using Compact Flash (CF) cards via Mosaic's CF Wildcard. This can
be accomplished by removing the page C hardware write protect jumper, loading the CF
Wildcard kernel extension on page 0x0C, and compiling a startup function on page C
that checks for the presence of an "AUTOEXEC.QED" file that will be automatically
executed (loaded) if present. Using SetBootVector, the startup function can be declared
as a boot vector, and then the page C write protect jumper can be installed. The boot
vector will be able check for the presence of a firmware upgrade file, and the hardware
write protection of page C prevents the erasure of the boot vector or its code. To
remove the boot vector, take off the page C write protect jumper and call

70 Glossary I: QCard/QScreen/Handheld Control-C Glossary

ClearBootVector (CLEAR.BOOT.VECTOR in Forth), or perform a “factory cleanup”. We
recommend that this function be invoked interactively from the QED-Forth prompt.
Assume that a function called Page_C_Startup has been defined. Forth programmers
can just execute:

CFA.FOR Page_C_Startup SET.BOOT.VECTOR
C programmers can use the *.map file generated by the C compiler to look up the
compilation address and page of the Page_C_Startup function, or the function can be
defined using the _Q prefix as:

_Q void Page_C_Startup(void) { function body goes here }
Then from the QED-Forth prompt, type

CFA.FOR Page_C_Startup SET.BOOT.VECTOR
Make sure that the page containing the debug headers is included in your final runtime
system.
Type: _forth function; QED-Forth name: SET.BOOT.VECTOR
Header file: V4_4Update.h; V4_4Update.c must be #included in 1 file only

void SetWatch(hundredth_seconds, seconds, minute, hour, day, date, month, year)
Sets the battery-operated real-time clock (if present) to the time, day, and date
specified by the input parameters. The input parameters and their allowed ranges are:

description range
year 0 - 99
month 1 - 12
date 1 - 31
day 1 - 7
hour 0 - 23
minute after the hour 0 - 59
seconds after the minute 0 - 59
hundredth_seconds 0 - 99

Due to a hardware limitation, the hundredths of second parameter is ignored; it is
included in the parameter list to maintain backward compatibility with prior code. Once
correctly set, the watch handles the differing numbers of days in each month, and
correctly handles leap years. SetWatch() uses the top 16 bytes of on-chip RAM at
B3F0-B3FF as a scratchpad buffer. See ReadWatch().
Type: _forth function; QED-Forth name: SET.WATCH
Header file: watch.h

uint SIZEOFMEMBER(FORTH_ARRAY* array_ptr)
A macro that returns the number of bytes per element in the Forth array designated by
array_ptr. An unpredictable result is returned if the array is not dimensioned.
Example of use:

FORTH_ARRAY Myarray; // define an array named Myarray
DIM(ulong, 3, 5, &Myarray); // 3 rows x 5 columns of unsigned longs
static uint size_of_each_member;
size_of_each_member = SIZEOFMEMBER(&Myarray);

See the FORTH_ARRAY glossary entry for a description of how to define an array and
its corresponding array_ptr. See also DIM().
Type: macro; Related QED-Forth name: BYTES/ELEMENT
Header file: array.h

Main Glossary of Control-C Library Functions 71

int SpeedToDuty(int steps_per_second, int ticks_per_second)
Returns an integer representation of a duty cycle which specifies the step rate of the
stepper motor. The first input parameter is the integer number of steps per second if full
stepping, or the number of halfsteps per second if half stepping. The second input
parameter is the integer number of clock ticks per second; the default is 1000 ticks per
second. The integer output parameter can be interpreted as a fraction with the radix
point to the left of the most significant bit. A 100% duty cycle is represented by hex
0xFFFF, and this tells the STEP.MANAGER to output a new step pattern on every tick
of the interrupt clock (e.g., once per millisecond, corresponding to 1000 (half) steps per
second). A duty cycle of hex 0x8000 means a new step pattern is written to the motor
port every other clock tick; a duty cycle of hex 0x0100 dictates one step every 256 clock
ticks; and a duty cycle of 0000 means corresponds to a stopped state with no step
pattern updates. See the high level source file steppers.c in the Demos_and_Drivers
directory of the distribution.
Type: _forth function; QED-Forth name: SPEED.TO.DUTY
Header file: stepper.h

void SPIOff(void)
Disables the serial peripheral interface (SPI) by clearing the SPI enable (SPE) bit in the
SPI control register (SPCR). Note that the SPI communicates with the onboard 12 bit
A/D and 8 bit DAC; if a custom QED Board has been ordered without these devices
installed, then after execution of this routine, PORTD pins PD2-PD5 may be used as
standard digital I/O subject to the data direction specified in the DDRD register. See
InitSPI().
Type: _forth function; QED-Forth name: SPI.OFF
Header file: analog.h

SPI_ID
A constant that returns the interrupt identity code for the synchronous serial peripheral
interface (SPI). Used as an argument for ATTACH(). Note that the SPI
communicates with the onboard 12 bit A/D and 8 bit DAC if they are installed. See
InitSPI() and SPIOff().
Type: constant; Related QED-Forth function: SPI.ID
Header file: interupt.h

SPI_RESOURCE
A constant that returns the address of the resource variable associated with the serial
peripheral interface (SPI) which is used for data transfer to and from the 12 bit analog to
digital convertor (AD12) and 8 bit digital to analog convertor (DAC). Should be
accessed only by the functions GET(), TRY_TO_GET() and RELEASE(). Initialized to
zero by InitSPI() and InitAD12andDAC() and at each reset or restart. SPI_RESOURCE
is automatically invoked by many of the AD12 and DAC device driver routines. See
RESOURCE.
Type: macro constant; Related QED-Forth function: SPI.RESOURCE
Header file: mtasker.h

void StandardMap(void)
Sets a flag in EEPROM and changes the state of a hardware latch to put the standard
memory map into effect. After execution of this routine, and upon each subsequent

72 Glossary I: QCard/QScreen/Handheld Control-C Glossary

reset or restart, hex pages 4, 5, 6, and 0x10-17 are addressed in flash memory, and
pages 1, 2, 3, and 0x18-1F are addressed in RAM. After code is downloaded to RAM
and transferred to flash using the PAGE.TO.FLASH function, establishing the standard
map allows code resident on pages 4, 5 and 6 (and pages 0x10-17) to be executed. To
establish the download memory map, see the glossary entry for DOWNLOAD.MAP.
Note that the standard map is active after a "factory cleanup" operation.
Type: _forth function; QED-Forth name: STANDARD.MAP
Header file: flash.h

void StandardReset(void)
Undoes the effect of the ColdOnReset() command so that subsequent resets will result
in the standard warm-or-cold startup sequence. Note that this function can be
executed interactively using QED-Forth syntax by typing from the terminal:

STANDARD.RESET
Implementation detail: sets the flag at location 0xAEC in EEPROM to 0xFF.
Type: _forth function; QED-Forth name: STANDARD.RESET
Header file: qedsys.h

void StartTimeslicer(void)
Starts the timeslice clock based on the Output Compare 2 (OC2) interrupt and begins
timeslice multitasking. Initializes the OC2 interrupt vector (if it wasn't already
initialized) so that the multitasking executive/elapsed-time clock routine services the
interrupt. Enables the OC2 interrupt mask and globally enables interrupts by clearing
the I bit in the condition code register of each built task.
Notes:
1. The default timeslice clock period of 5 msec can be changed with the command
ChangeTaskerPeriod().
2. StartTimeslicer() does not initialize the value in TIMESLICE_COUNT; execute
InitElapsedTime() if you wish to initialize the clock count to zero.
3. After a restart, the system is configured so that timeslice multitasking can begin at
any time; if no other tasks have been built, the FORTH_TASK (which is also the task
that calls main) is the only task in the task loop.
4. The timeslicer's interrupt service routine disables interrupts for the duration of a task
switch which requires 25 microseconds plus 3.25 microseconds for each ASLEEP task
encountered in the task list.
Type: _forth function; QED-Forth name: START.TIMESLICER
Header file: mtasker.h

STATUS
STATUS is the first element in the currently active task's TASK.USER_AREA
structure; its contents specify whether the task is ASLEEP or AWAKE. The following
example shows how to access the status address of another task that has been defined
using the TASK directive:

TASK AnyTask; // name and allocate the new task
AnyTask.USER_AREA.user_status = ASLEEP; // put the task asleep

See the user.h file for a detailed description of all of the user variables, and consult the
glossary entries for the constants ASLEEP and AWAKE.
Type: macro; QED-Forth name: STATUS
Header file: user.h

Main Glossary of Control-C Library Functions 73

void StepManager(void)
Expects the base address of the STATUS.ARRAY in the Y register. Based on the
information in the status array and the ramp array (defined in high level source file
steppers.c in the Demos_and_Drivers directory of the distribution), for each enabled
motor StepManager writes the appropriate step pattern at the specified duty cycle to the
motor port to attain the speed specified in the motor's ramp array. This function is
meant to be called from a periodic interrupt service routine typically associated with an
output compare (OC) interrupt; the default time base is once per millisecond generated
by the OC3 interrupt, with a resulting maximum speed of 1000 full- or half-steps per
second. This assembly coded routine executes in approximately 120 µs per enabled
stepper motor. Thus running four stepper motors at a maximum speed of 1000 full- or
half-steps per second requires approximately half of the 68HC11's available time (480
µs interrupt service time every 1000 µs). See the high level source file steppers.c in the
Demos_and_Drivers directory of the distribution. CAUTION: The presence of other
interrupt service routines can affect the timing of the step manager, and may affect the
smoothness of the stepper motor operation.
Type: _forth function; QED-Forth name: STEP.MANAGER
Header file: stepper.h

void StopTimeslicer(void)
Stops the multitasker's timeslice clock by disabling the local Output Compare 2 (OC2)
timer interrupt mask. Cooperative task switching involving Pause() is not affected. See
StartTimeslicer(). Note that this command also stops the elapsed-time clock; see
TIMESLICE_COUNT and ReadElapsedSeconds().
Type: _forth function; QED-Forth name: STOP.TIMESLICER
Header file: mtasker.h

void StoreChar(char value, xaddr address)
Stores the 8-bit value at the specified extended address. This function is useful for
storing data in arrays located in paged memory, where the extended address is
returned by ARRAYMEMBER().
Type: _forth function; QED-Forth name: C!
Header file: xmem.h

void StoreEEChar(char value, int * addr)
Stores the specified 8-bit value at the specified addr in EEPROM. If addr already
contains the specified contents it is not re-programmed; this helps lengthen the lifetime
of the EEPROM. Requires 20 msec per programmed byte. Disables interrupts during
the programming of each byte. Caution: the prolonged disabling of interrupts by
(EEC!) can adversely affect real-time servicing of interrupts including those associated
with the secondary serial line.
Example of use:

#pragma option data=.eeprom // relocate data section to .eeprom
static uchar numsamples; // define a "variable" in eeprom
#pragma option data=.data // restore data area
StoreEEChar(8, &numsamples); // init numsamples to equal 8

Note that this function can be called interactively to initialize EEPROM from the terminal
using QED-Forth syntax. For example, assuming that the C program containing the

74 Glossary I: QCard/QScreen/Handheld Control-C Glossary

definition of numsamples has been downloaded to the QED Board, you can
interactively set numsamples to equal 8 by typing from your terminal:

8 numsamples (EEC!)
Type: _forth function; QED-Forth name: (EEC!)
Header file: xmem.h

void StoreEEFloat(float value, int * addr)
Stores the specified 32-bit floating point value at the specified addr in EEPROM. The
most significant word of val is stored at addr and the least significant word is stored at
addr+2. Any byte that already contains the specified contents is not re-programmed;
this helps lengthen the lifetime of the EEPROM. Requires 20 msec per programmed
byte. Disables interrupts during the programming of each byte. Caution: the
prolonged disabling of interrupts by (EE2!) can adversely affect real-time servicing of
interrupts including those associated with the secondary serial line.
Example of use:

#pragma option data=.eeprom // relocate data section to .eeprom
static float coefficient; // define a "variable" in eeprom
#pragma option data=.data // restore data area
StoreEEFloat(123.4, &coefficient); // init coefficient to equal 123.4

Note that this function can be called interactively to initialize EEPROM from the terminal
using QED-Forth syntax. For example, assuming that the C program containing the
definition of coefficient has been downloaded to the QED Board, you can interactively
set coefficient to equal 123.4 by typing from your terminal:

123.4 FP_QtoC coefficient (EEF!)
We inserted the FP_QtoC command to convert from QED-Forth floating point
representation to the ANSI-C representation.
Type: _forth function; QED-Forth name: (EEF!)
Header file: xmem.h

void StoreEEInt(int value, int * addr)
Stores the specified 16-bit value at the specified addr in EEPROM. Any byte that
already contains the specified contents is not re-programmed; this helps lengthen the
lifetime of the EEPROM. Requires 20 msec per programmed byte, independent of the
clock speed. Disables interrupts during the programming of each byte. Caution: the
prolonged disabling of interrupts by StoreEEInt() can adversely affect real-time
servicing of interrupts including those associated with the secondary serial line.
Example of use:

#pragma option data=.eeprom // relocate data section to .eeprom
static int numsamples; // define a "variable" in eeprom
#pragma option data=.data // restore data area
StoreEEInt(1234, &numsamples); // init numsamples to equal 1234

Note that this function can be called interactively to initialize EEPROM from the terminal
using QED-Forth syntax. For example, assuming that the C program containing the
definition of numsamples has been downloaded to the QED Board, you can
interactively set numsamples to equal 1234 by typing from your terminal:

1234 numsamples (EE!)
Type: _forth function; QED-Forth name: (EE!)
Header file: xmem.h

Main Glossary of Control-C Library Functions 75

void StoreEELong(long value, int * addr)
Stores 32-bit value at the specified addr in EEPROM. The most significant word of val
is stored at addr and the least significant word is stored at addr+2. Any byte that
already contains the specified contents is not re-programmed; this helps lengthen the
lifetime of the EEPROM. Requires 20 msec per programmed byte. Disables
interrupts during the programming of each byte. Caution: the prolonged disabling of
interrupts by (EE2!) can adversely affect real-time servicing of interrupts including
those associated with the secondary serial line.
Example of use:

#pragma option data=.eeprom // relocate data section to .eeprom
static int numsamples; // define a "variable" in eeprom
#pragma option data=.data // restore data area
StoreEELong(1234, &numsamples); // init numsamples to equal 1234

Note that this function can be called interactively to initialize EEPROM from the terminal
using QED-Forth syntax. For example, assuming that the C program containing the
definition of numsamples has been downloaded to the QED Board, you can
interactively set numsamples to equal 1234 by typing from your terminal:

DIN 1234 numsamples (EE2!)
where the DIN command tells QED-Forth to interpret the following number as a 32-bit
long.
Type: _forth function; QED-Forth name: (EE2!)
Header file: xmem.h

void StoreFloat(float value, xaddr address)
Stores a 32-bit floating point value at the specified extended address. This function is
useful for storing data in arrays located in paged memory, where the extended address
is returned by ARRAYMEMBER().
Type: _forth function; QED-Forth name: F!
Header file: xmem.h

void StoreFloatProtected(float value, xaddr address)
Stores the floating point value at the specified extended address. Disables interrupts
during the store to ensure that an interrupting routine or task will read valid data. This
function is useful for storing data in arrays located in paged memory, where the
extended address is returned by ARRAYMEMBER(). Disables interrupts for 28 cycles
(7 microseconds) unless the specified 4 bytes straddle a page boundary, in which case
interrupts are disabled for approximately 260 cycles. The most significant word of val
is stored at address and the least significant is stored at address+2. Note that in
paged memory, the address immediately following 0x7FFF is address 0000 on the
following page. See also FetchFloatProtected().
Type: _forth function; QED-Forth name: |F!|
Header file: xmem.h

void StoreInt(int value, xaddr address)
Stores a 16-bit value at the specified extended address. The high order byte is stored
at address and the low order byte at address+1. This function is useful for storing data
in arrays located in paged memory, where the extended address is returned by
ARRAYMEMBER().
Type: _forth function; QED-Forth name: !

76 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Header file: xmem.h

void StoreLong(long value, xaddr address)
Stores a 32-bit value at the specified extended address. The most significant word of
val is stored at address and the least significant is stored at address+2. This function
is useful for storing data in arrays located in paged memory, where the extended
address is returned by ARRAYMEMBER().
Type: _forth function; QED-Forth name: 2!
Header file: xmem.h

void StoreLongProtected(long value, xaddr address)
Stores the 32-bit value at the specified extended address. Disables interrupts during
the store to ensure that an interrupting routine or task will read valid data. This function
is useful for storing data in arrays located in paged memory, where the extended
address is returned by ARRAYMEMBER(). Disables interrupts for 28 cycles (7
microseconds) unless the specified 4 bytes straddle a page boundary, in which case
interrupts are disabled for approximately 260 cycles. The most significant word of val
is stored at address and the least significant is stored at address+2. Note that in
paged memory, the address immediately following 0x7FFF is address 0000 on the
following page. For floating point values, use StoreFloatProtected().
Type: _forth function; QED-Forth name: |2!|
Header file: xmem.h

void StringMove(xaddr countedStrAddr, xaddr destination, long numBytes)
Moves the contents of the counted string specified by countedStrAddr to the specified
32-bit destination address. Does not move the count byte. The number of characters
moved is clamped to a maximum of numBytes bytes. To use this function to move a
null-terminated C-style string into paged memory, first convert the string to a Forth-
style counted string using CountedString(), and then move it with this function. As
explained in the glossary entry for CountedString(), the string should contain less than
86 characters.
Example of use: The following code copies a null-terminated "C-style" string to a
buffer in paged memory:

#define DESTINATION = ((xaddr) 0x071000) // buffer in page 7 RAM
#define MAX_STRING_CHARS 85
char* source_string = "This is the string we will move";
xaddr counted_string = CountedString(source_string, THIS_PAGE);
StringMove(counted_string, DESTINATION, MAX_STRING_CHARS);

See also CountedString().
Type: _forth function; QED-Forth name: $MOVE
Header file: xmem.h

void StringToDisplay(char* string, uint stringPage, int linenum, int column)
For most programs, the macro form named STRING_TO_DISPLAY() is
recommended; see its glossary entry. The function StringToDisplay() should be used
when the specified string resides on a different memory page than the routine that
invokes StringToDisplay(), for example in an application that is compiled on multiple
pages on the QED Board. Pass the function the correct stringPage, and set the upper

Main Glossary of Control-C Library Functions 77

byte of the stringPage = 0xFF to signal that the string is a null-terminated "C-style"
string as opposed to a counted "Forth-style" string.
Type: _forth function; QED-Forth name: $>DISPLAY
Header file: intrface.h

void STRING_TO_DISPLAY(char* string, int linenum, int column)
A macro that calls the _forth function:

void StringToDisplay(char* string, uint stringPage, int linenum, int column)
The macro supplies the parameter stringPage = the current page, and sets the upper
byte of the page = 0xFF to signal the routine that the string is a null-terminated "C-
style" string. The routine moves the contents of the counted string specified by string to
the location in DisplayBuffer() starting at the specified character number 'column' on
the specified line number 'linenum'. Confines the string to the specified line in
Display Buffer by clamping the number of characters moved to a maximum equal to the
number of character positions remaining after the specified position on the specified
line. The line number 'linenum' should be less than the value returned by
LinesPerDisplay(), and the character number n2 should be less than the value returned
by CharsPerDisplayLine(). Does not modify the contents of the LCD display; this will
occur upon the next execution of UpdateDisplayLine() or UpdateDisplay(). If a
Toshiba graphics display has been declared by IsDisplay(), subtracts 0x20 from each
ascii character in the string to accommodate the encoding of the Toshiba graphics
controller's character ROM.
NOTE: While this macro always works properly if your application resides on a single
page of memory on the QED Board, this macro cannot be used if the specified string
resides on a memory page that is different from the page of the calling routine. If the
string resides on a different page from the calling function, use the function
StringToDisplay() and pass it the proper string page, remembering to set the upper
byte of the page = 0xFF to signal that the string is null-terminated.
Type: macro; Calls function: StringToDisplay; QED-Forth name: $>DISPLAY
Header file: intrface.h

void SWAPARRAYS(FORTH_ARRAY* array1_ptr, FORTH_ARRAY* array2_ptr)
Interchanges the contents of the parameter fields of the two specified arrays and leaves
the heap undisturbed, thus rapidly swapping the two arrays. See the FORTH_ARRAY
glossary entry for a description of how to define an array and its corresponding
array_ptr. See also FORTH_ARRAY, DIM(), ARRAYFETCH() and ARRAYSTORE().
Type: macro; Related QED-Forth function: SWAP.ARRAYS
Header file: array.h

void SwapArrays(FORTH_ARRAY* array1_ptr, uint pfa_page, FORTH_ARRAY* array2_ptr, uint
pfa_page,)
A subsidiary function called by the recommended macro SWAPARRAYS(); see
SWAPARRAYS().
Type: _forth function; QED-Forth name: SWAP.ARRAYS
Header file: array.h

SWI_ID
A constant that returns the interrupt identity code for the software interrupt (SWI).
Used as an argument for ATTACH().

78 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Type: constant; Related QED-Forth function: SWI.ID
Header file: interupt.h

void SysAbort(void)
The default abort routine called by Abort() if the flag in CustomAbort is false. Clears
the data and return stacks, and sets the page to the default page (0). If an autostart
vector has been installed [see Autostart() and PriorityAutostart()], SysAbort() executes
the specified routine; otherwise it executes QUIT which sets the execution mode and
enters the QED-Forth monitor. If the stack pointers do not point to common RAM, a
COLD restart is initiated.
Type: _forth function; QED-Forth name: (ABORT)
Header file: qedsys.h

TASK
A structure typedef that names and allocated a 1 Kbyte TASK structure in common
RAM. In other words, TASK is used to name and locate a new task. To declare a
new task named AnyTask, use the statement:

TASK AnyTask;
See the glossary entries for BUILD_C_TASK() and ACTIVATE() for a discussion of how
to build and activate the new task; see also FORTH_TASK.
Type: typedef; Related QED-Forth function: TASK:
Header file: user.h

TASKBASE
A pointer to the current task's TASK structure which holds the task's USER_AREA
structure and its task-private stacks and buffers. The USER_AREA is a structure
defined in the user.h file that contains task-private operating system pointers and
variables. Each task in a multitasking application has a unique 1 Kbyte TASK area
named and allocated by the TASK statement, and the multitasker periodically updates
the contents of UP (the User Pointer) to point to the current user area. TASKBASE is a
macro defined as:

((TASK *) *UP)
In other words, TASKBASE returns the contents of UP, and TASKBASE is cast as a
pointer to the TASK structure. The base address returned by TASKBASE is also
referred to as the "task identifier" or "task id"; it is the address in common memory used
to identify a particular task. It is passed as a parameter to BUILD_C_TASK() and
ACTIVATE().
NOTE: before building the tasks in a multitasked application, the current value
returned by TASKBASE should be stored into the NEXT_TASK user variable to
effectively empty the task loop and kill any extraneous tasks that may be running. This
can be accomplished by executing the statement:

NEXT_TASK = TASKBASE;
before invoking BUILD_C_TASK(). An example of this technique is presented in the
"Turnkeyed Application Program" in the QED "Getting Started" book.
Type: macro; related QED-Forth function: STATUS
Header file: user.h

THIS_PAGE

Main Glossary of Control-C Library Functions 79

A macro that returns the contents of the PAGE_LATCH which indicates the current
page. THIS_PAGE is equivalent to:

* PAGE_LATCH
In general, the PAGE_LATCH may be read but not written to by application programs;
only routines that are located in common memory (addresses above 0x8000) are
allowed to write to the PAGE_LATCH.
Type: macro; Related QED-Forth function: THIS.PAGE
Header file: types.h

TIB
A macro that returns the 16-bit start address of the Terminal Input Buffer. The default
size of the terminal input buffer is 96 bytes; it is used by the QED-Forth interpreter. If
Forth is not running in a given task and if high-level Forth serial I/O routines such as
EXPECT, QUERY and INTERPRET are not being executed, a C application may use
the TIB as a task-private buffer.
Type: macro; Related QED-Forth function: TIB
Header file: user.h

TIMER_OVERFLOW_ID
Returns the interrupt identity code for the free-running timer overflow interrupt. Used
as an argument for ATTACH().
Type: constant; Related QED-Forth function: TIMER.OVERFLOW.ID
Header file: interupt.h

TIMESLICE_COUNT
Returns the 32-bit count of the number of clock ticks on the timeslicer clock. The
count is set to zero by InitElapsedTime(), and the period of the clock is set by
ChangeTaskerPeriod(); the default is 5 milliseconds (ms). To determine the elapsed
time between two events in units of ms, simply subtract the corresponding counts and
multiply by the number of milliseconds per count. The following example calculates the
elapsed time and stores it in the variable elapsed_ms:

#define MS_PER_COUNT 5
static long start_count, end_count, elapsed_ms;
start_count = TIMESLICE_COUNT; // start timing

// now perform the actions that you want to time
end_count = TIMESLICE_COUNT; // finish timing
elapsed_ms = (end_count - start_count) * MS_PER_COUNT;

 See ReadElapsedSeconds() and InitElapsedTime().
Type: macro; Related QED-Forth function: TIMESLICE.COUNT
Header file: mtasker.h

void ToggleBits(uchar mask, uchar address)
For each bit of mask that is set, reverses the state of the corresponding bit of the 8 bit
value at addr. Disables interrupts for ten cycles (2.5 microseconds) to ensure an
uninterrupted read/modify/write operation. See also PIAToggleBits().
Type: _forth function; QED-Forth name: TOGGLE.BITS
Header file: xmem.h

int ToFlash(xaddr source, xaddr dest, uint numBytes)

80 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Transfers numbytes (0 <= numbytes <= 65,535) starting at the specified source
extended address, to the specified destination extended address in flash. The source
may be anywhere in memory; it may even be in the flash which is being programmed.
The destination must be in flash. Returns a flag equal to -1 if the programming was
successful, or 0 if the programming failed. Reasons for failure include write protected
flash (e.g., attempting to program page 0x0C while the page C write protect jumper is
installed), or a destination that is not in a programmable page in flash memory. (If any
locations in the flash are programmed more than 10,000 times, the cell may wear out
causing a failure flag to be returned). Assuming that the standard 512 Kbyte flash is
present on the board, writable flash pages include pages hex 4, 5, 6, 7, 0xC, 0xD, and
0x10-17 in the standard map, and pages 1, 2, 3, 7, 0xC, 0xD, and 0x18-1F in the
download memory map. This function uses the 68HC11's on-chip RAM at hex B200 to
B3CF to manage the write to the flash (the real-time clock and C/Forth interrupt stack
reserve the bytes at B3D0 to B3FF). The remaining on-chip RAM at B000 to B1FF
remains available to the user. Caution: the prolonged disabling of interrupts by
TO.FLASH can adversely affect real-time servicing of interrupts including those
associated with the secondary serial line. See PAGE.TO.FLASH and ALL.TO.FLASH in
the Forth debugger glossary.
Type: _forth function; QED-Forth name: TO.FLASH
Header file: flash.h

int ToHeap(xaddr xhandle)
If xhandle is a valid 32-bit handle (pointer to a pointer) in the current heap, the heap
item associated with the xhandle is returned to the heap (de-allocated), the heap is
compacted, and a true flag is returned. If xhandle is not a valid handle in the current
heap, no action is taken and a false flag is returned. ToHeap() is automatically
invoked by DELETED().
Type: _forth function; QED-Forth name: TO.HEAP
Header file: heap.h

xaddr TO_XADDR(uint address, int page)
This C macro combines the specified 16-bit address and page into a single 32-bit
extended address. It is present in \fabius\include\mosaic\types.h starting with V1.2 of
the types.h file.
Type: macro
Header file: types.h

TRAILING_ZEROS
A user variable that contains a flag. If the flag is false, trailing zeroes are not printed
when a floating point number is displayed in fixed or floating format by FPtoString() and
PrintFP(). If true, trailing zeros are displayed. See FPtoString(), PrintFP(), FIXED()
and FLOATING().
Type: macro; Related QED-Forth function: TRAILING.ZEROS
Header file: numbers.h

xaddr TransferHeapItem(xaddr xhandle, xaddr HeapEnd)
Copies the heap item specified by xhandle in the current heap into the heap whose
CURRENT_HEAP is equal to HeapEnd. If the operation is successful, returns the 32-

Main Glossary of Control-C Library Functions 81

bit handle of the new heap item; if unsuccessful, does nothing and returns zero. To
copy a heap item within a single heap, see DupHeapItem().
Type: _forth function; QED-Forth name: TRANSFER.HEAP.ITEM
Header file: heap.h

TRANSMITTING
A system variable that is true (non-zero) if the secondary serial port (serial2) is in the
process of transmitting a character. If the serial2 transmitter is active, the
TRANSMITTING flag stays true until the serial2 output buffer is empty. The serial2
port is supported by QED-Forth's software UART using hardware pins PA3 (input) and
PA4 (output).
Type: macro; Related QED-Forth function: TRANSMITTING
Header file: comm.h

TRUE
A constant equal to 1.
Type: constant; Related QED-Forth function: TRUE
Header file: utility.h

int TryToFSend(float message, float * mailboxAddr)
A subsidiary Forth function that is called by the recommended macro
TRY_TO_FSEND(); see TRY_TO_FSEND().
Type: Forth function; QED-Forth name: ?SEND
Header file: mtasker.h

int TryToGet(xaddr * resourceAddr, uint resourcePage)
This function performs the actions of the macro TRY_TO_GET(); the macro version is
recommended. The function expects to be passed the parameter resourcePage,
which must equal 0 for programs coded in C. See TRY_TO_GET().
Type: _forth function; QED-Forth name: ?GET
Header file: mtasker.h

int TryToSend(long message, long * mailboxAddr)
A subsidiary Forth function that is called by the macro TRY_TO_SEND(); see
TRY_TO_SEND().
Type: Forth function; QED-Forth name: ?SEND
Header file: mtasker.h

int TRY_TO_FSEND(float message, float * mailboxAddr)
If the mailbox with the specified mailboxAddress is empty (i.e., contains a floating
point zero), this routine stores the 32-bit floating point "message" in mailboxAddr and
returns a flag = -1. If xmailbox is not empty, this routine returns a flag = 0 and does
not store the message. Does not execute Pause(). The message can be any 32-bit
floating point quantity except 0; use TRY_TO_SEND to send a non-floating-point
value as a message. To ensure that the state of the mailbox is correctly determined,
TRY_TO_FSEND() disables interrupts for 16 to 50 cycles (4 to 12.5 microseconds).
See FSEND(), FRECEIVE(), and MAILBOX.
Type: macro; Related QED-Forth function: ?SEND
Header file: mtasker.h

82 Glossary I: QCard/QScreen/Handheld Control-C Glossary

int TRY_TO_GET(xaddr * resourceAddr)
Checks the resource variable resourceAddr. If the resource is available (i.e., if it
contains 0\0 or the current task's user base address), TRY_TO_GET() claims the
resource by storing the current task's 32-bit base address in resourceAddr, and
returns a flag equal to -1. Otherwise, TRY_TO_GET() returns a false (0) flag. Does
not execute Pause(). To ensure that the state of the resource is correctly determined,
TRY_TO_GET() disables interrupts for 27 to 57 cycles (6.75 to 14.25 microseconds).
See GET(), RELEASE(), and RESOURCE.
Type: macro; Related function: TryToGet()
Header file: mtasker.h

int TRY_TO_SEND(long message, long * mailboxAddr)
If the mailbox with the specified mailboxAddress is empty (ie., contains a 32-bit 0
value), this routine stores the 32-bit message in mailboxAddr and returns a flag = -1.
If xmailbox is not empty, this routine returns a flag = 0 and does not store the
message. Does not execute Pause(). The message can be any 32-bit quantity
except 0; use TRY_TO_FSEND to send a floating point value as a message. For
example, the message can be an array address returned by ARRAYMEMBER() that
points to a block of data. To ensure that the state of the mailbox is correctly
determined, TRY_TO_SEND() disables interrupts for 16 to 50 cycles (4 to 12.5
microseconds). See SEND(), RECEIVE(), and MAILBOX.
Type: macro; Related QED-Forth function: ?SEND
Header file: mtasker.h

TWO_INTS
A union typedef that provides a way of converting two 16-bit integers into a 32-bit
long, or vis versa. The definition is:

typedef union { ulong int32;
struct { int msInt;

int lsInt;
} twoNums;

} TWO_INTS;
For example, the following code splits a 32-bit result in longvar into two 16-bit integers
in lower16bits and upper16bits:

ulong longvar;
int lower16bits, upper16bits; // we want to set these
TWO_INTS temporary; // allocate union to convert type
temporary.int32 = longvar;
lower16bits = temporary.twoNums.lsInt;
lower16bits = temporary.twoNums.msInt;

See the source code in the TYPES.H file.
Type: typedef
Header file: types.h

UABORT
A user variable (member of the currently active TASK.USER_AREA structure) that
contains the 32-bit code field address of the user-supplied abort routine that is
executed if the CUSTOM_ABORT flag is true (non-zero). If CUSTOM_ABORT is false

Main Glossary of Control-C Library Functions 83

(zero), Abort() executes the default SysAbort() routine. UABORT is initialized by
COLD to contain the code field address of SysAbort(). See Abort(), SysAbort(), and
CUSTOM_ABORT.
Type: macro; Related QED-Forth function: UABORT
Header file: user.h

UASK_KEY
A user variable (member of the currently active TASK.USER_AREA structure) that
contains the 32-bit code field address of the AskKey() routine. See AskKey().
Type: macro; Related QED-Forth function: U?KEY
Header file: user.h

UDEBUG
A user variable (member of the currently active TASK.USER_AREA structure) that
contains a flag. If the flag is non-zero then error checking and diagnostic stack printing
are enabled in the interactive QED-Forth interpreter/compiler.
Type: macro; Related QED-Forth function: DEBUG
Header file: user.h

UEMIT
A user variable (member of the currently active TASK.USER_AREA structure) that
contains the 32-bit code field address of the Emit() routine. See Emit().
Type: macro; Related QED-Forth function: UEMIT
Header file: user.h

UERROR
A user variable (member of the currently active TASK.USER_AREA structure) that
contains the 32-bit code field address of the error routine that is executed if the
CUSTOM_ERROR flag is true (non-zero). If CUSTOM_ERROR is false (zero), all
system errors call the default system error routine which prints descriptive error
messages. UERROR is initialized by COLD to contain the code field address of a
simple default error handler that prints the hexadecimal system error number and
executes Abort(). See CUSTOM_ERROR and Abort(), and consult the error message
appendix in the Software Manual.
Type: macro; Related QED-Forth function: UERROR
Header file: user.h

UKEY
A user variable (member of the currently active TASK.USER_AREA structure) that
contains the 32-bit code field address of the Key() routine. See Key().
Type: macro; Related QED-Forth function: UKEY
Header file: user.h

UP
A pointer to TASKBASE, which in turn is a pointer to the base of the current task's
user area. UP returns an address whose contents is the TASKBASE address of the
current task. See TASKBASE.
Type: macro; Related QED-Forth function: UP
Header file: user.h

84 Glossary I: QCard/QScreen/Handheld Control-C Glossary

UPAD
User variable (member of the currently active TASK.USER_AREA structure) that holds
the 32-bit base address of PAD. See PAD.
Type: macro; Related QED-Forth function: UPAD
Header file: user.h

void UpdateDisplay(void)
Writes the contents of the DisplayBuffer() to the LCD display. When finished, leaves
the display cursor pointing at the first position in the first line. For character displays,
the cursor is turned off during the write to the display and is restored to its prior state
after the update is complete, thus avoiding "flickering" of the cursor. Intermittently
disables interrupts for 28 cycles (7 µsec) per byte to implement clock stretching.
Type: _forth function; QED-Forth name: UPDATE.DISPLAY
Header file: intrface.h

void UpdateDisplayLine(int lineNum)
Writes the contents of the specified lineNum in the DisplayBuffer() to the LCD display.
lineNum is zero-based, and is clamped to a maximum of 1 less than the value returned
by LinesPerDisplay(). UpdateDisplayLine() writes CharsPerDisplayLine() characters
to the display. When finished, leaves the display cursor pointing at the first position in
the line following lineNum. For character displays, the cursor is blanked during the
write to the display and is restored to its prior state after the update is complete, thus
avoiding "flickering" of the cursor. The lineNum follows the same rules explained in the
description of BufferPosition(): for a graphics-style display the lineNum is interpreted
differently depending on whether the display is being used in "text mode" or "graphics
mode". In text mode, lineNum corresponds to the character line number; in graphics
mode, lineNum corresponds to the pixel line number which is 8 times the character line
number. Intermittently disables interrupts for 28 cycles (7 µsec) per byte to implement
clock stretching.
Type: _forth function; QED-Forth name: UPDATE.DISPLAY.LINE
Header file: intrface.h

void UpdateDisplayRam(void)
Writes the contents of the Display Buffer to the LCD display. Unlike the related
UpdateDisplay() function, UpdateDisplayRam() does NOT put the cursor and the
display ram pointer to the "home position" at the upper left corner before writing to the
display. When used with graphics displays, this function can be called after
IsDisplayAddress() to write display data into "off-screen" display RAM, and then data
can be scrolled onto the screen by changing the display's "home address". When
finished, UpdateDisplayRam() leaves the display cursor and the display ram pointer at
the first position in the first line. Intermittently disables interrupts for 28 cycles (7 µsec)
per byte to implement clock stretching. See IsDisplayAddress() and UpdateDisplay().
Type: _forth function; QED-Forth name: (UPDATE.DISPLAY)
Header file: intrface.h

USER_AREA
A struct typedef that declares the user area structure containing task-specific variables
and pointers. In turn, the USER_AREA structure is the first element in the TASK

Main Glossary of Control-C Library Functions 85

structure. For a full definition of this structure, see the source code in the user.h file.
See also TASK.
Type: typedef
Header file: user.h

void UseSerial1(void)
Installs the primary serial port (serial1) as the serial link called by Emit(), AskKey(),
and Key() used by the default task that runs at startup. The serial1 port is associated
with the 68HC11's on-chip hardware UART. Stores the code address of Key1() in
UKEY, the code address of AskKey1() in UASK_KEY, and the code address of Emit1()
in UEMIT. Thus the vectored routines Key(), AskKey(), and Emit() will automatically
execute the serial1 routines Key1(), AskKey1(), and Emit1() respectively. Initializes
the resource variable SERIAL1_RESOURCE to zero, and initializes the resource
variable associated with the prior serial channel in use (typically either
SERIAL1_RESOURCE or SERIAL2_RESOURCE) to zero. Does not disable the
serial2 port.
Type: _forth function; QED-Forth name: USE.SERIAL1
Header file: comm.h

void UseSerial2()
Installs the secondary serial port (serial2) as the serial link called by Emit(), AskKey(),
and Key() used by the default task that runs at startup. Calls InitSerial2() to initialize
the serial2 port, and globally enables interrupts to allow the serial2 port to operate.
The serial2 port is supported by QED-Forth's software UART using hardware pins PA3
(input) and PA4 (output). UseSerial2() stores the code address of Key2() in UKEY, the
code address of AskKey2() in UASK_KEY, and the code address of Emit2() in UEMIT.
Thus the vectored routines Key(), AskKey(), and Emit() will automatically execute the
serial1 routines Key2(), AskKey2(), and Emit2() respectively. Initializes the resource
variable SERIAL2_RESOURCE to zero, and initializes the resource variable
associated with the prior serial channel in use (typically either SERIAL1_RESOURCE or
SERIAL2_RESOURCE) to zero. Does not disable the serial1 port. See Baud2() and
Serial2AtStartup().
Type: _forth function; QED-Forth name: USE.SERIAL2
Header file: comm.h

UTIB
User variable (member of the currently active TASK.USER_AREA structure) that holds
the 32-bit base address of the Terminal Input Buffer (TIB). See TIB.
Type: macro; Related QED-Forth function: UTIB
Header file: user.h

void Warm(void)
Restarts the QED-Forth system and clears the data and return stacks and executes
Abort(). Unlike Cold(), Warm() does not initialize all of the user variables to their
default values. Note that this function can be called interactively from the terminal by
typing:

WARM
Calling WARM interactively before downloading a program is good practice, as it aborts
any active multitasking program that may be in progress. See also COLD.

86 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Type: _forth function; QED-Forth name: WARM
Header file: qedsys.h

WATCH_DATE
A structure element whose contents were updated by the most recent execution of
ReadWatch(). When used as the right-hand side of an assignment statement,
WATCH_DATE returns the current date (1...31). (Of course, this requires that a
properly set battery-operated real-time clock is installed on the QED Board.) See the
glossary entry for ReadWatch() for an example of use.
Type: macro
Header file: watch.h

WATCH_DAY
A structure element whose contents were updated by the most recent execution of
ReadWatch(). When used as the right-hand side of an assignment statement,
WATCH_DAY returns the current day (1...7). (Of course, this requires that a
properly set battery-operated real-time clock is installed on the QED Board.) See the
glossary entry for ReadWatch() for an example of use.
Type: macro
Header file: watch.h

WATCH_HOUR
A structure element whose contents were updated by the most recent execution of
ReadWatch(). When used as the right-hand side of an assignment statement,
WATCH_HOUR returns the current hour (0...23). (Of course, this requires that a
properly set battery-operated real-time clock is installed on the QED Board.) See the
glossary entry for ReadWatch() for an example of use.
Type: macro
Header file: watch.h

WATCH_HUNDREDTH_SECONDS
A structure element whose contents were updated by the most recent execution of
ReadWatch(). When used as the right-hand side of an assignment statement,
WATCH_HUNDREDTH_SECONDS returns the current hundredth-seconds (0...99)
since the last integral second. (Of course, this requires that a properly set battery-
operated real-time clock is installed on the QED Board.) See the glossary entry for
ReadWatch() for an example of use.
Type: macro
Header file: watch.h

WATCH_MINUTE
A structure element whose contents were updated by the most recent execution of
ReadWatch(). When used as the right-hand side of an assignment statement,
WATCH_MINUTE returns the current minute (0...59). (Of course, this requires that
a properly set battery-operated real-time clock is installed on the QED Board.) See
the glossary entry for ReadWatch() for an example of use.
Type: macro
Header file: watch.h

Main Glossary of Control-C Library Functions 87

WATCH_MONTH
A structure element whose contents were updated by the most recent execution of
ReadWatch(). When used as the right-hand side of an assignment statement,
WATCH_MONTH returns the current month (1...12). (Of course, this requires that a
properly set battery-operated real-time clock is installed on the QED Board.) See the
glossary entry for ReadWatch() for an example of use.
Type: macro
Header file: watch.h

watch_results
This structure located at 0xB3F8 is an instance of the CALENDAR_TIME typedef that
defines the bytes that hold the results of a read of the battery-backed real-time clock.
A set of macros (WATCH_SECONDS, WATCH_MINUTES, WATCH_HOUR, etc.)
have been pre-defined to facilitate easy access to the watch results; see the glossary
entry for ReadWatch().
Type: structure instance
Header file: watch.h

WATCH_SECONDS
A structure element whose contents were updated by the most recent execution of
ReadWatch(). When used as the right-hand side of an assignment statement,
WATCH_SECONDS returns the current seconds (0...59). (Of course, this requires
that a properly set battery-operated real-time clock is installed on the QED Board.)
See the glossary entry for ReadWatch() for an example of use.
Type: macro
Header file: watch.h

WATCH_YEAR
A structure element whose contents were updated by the most recent execution of
ReadWatch(). When used as the right-hand side of an assignment statement,
WATCH_YEAR returns the current year (0...99). (Of course, this requires that a
properly set battery-operated real-time clock is installed on the QED Board.) See the
glossary entry for ReadWatch() for an example of use.
Type: macro
Header file: watch.h

int WhichMap(void)
Returns a 0 if the current memory map is the "standard map", and returns a 1 if the
current map is the "download map". If the standard map is active, pages 4, 5, and 6
and 0x10-0x17 are addressed as flash, and pages 1, 2, and 3 (and pages 0x18-0x1F, if
present) are addressed in as RAM. If the download map is active, pages 4, 5, and 6
(and 0x10-0x17, if present) are addressed as RAM, and pages 1, 2, and 3 and pages
0x18-0x1F are addressed as flash memory. This routine allows a user or program to
verify which map is currently being used. After a "factory cleanup" operation, the
standard map is active. See STANDARD.MAP and DOWNLOAD.MAP. See
StandardMap() and DownloadMap().
Type: _forth function; QED-Forth name: WHICH.MAP
Header file: flash.h

88 Glossary I: QCard/QScreen/Handheld Control-C Glossary

long XaddrDifference(xaddr addr1, xaddr addr2)
Subtracts addr2 from addr1 to yield the signed double number result d. There is an
unchecked error if one of the xaddresses is in common memory (addr >= 0x8000) and
the other is in paged memory (addr <= 0x7FFF on any page). Note that in paged
memory, the address immediately following 0x7FFF is address 0x0000 on the following
page.
Type: _forth function; QED-Forth name: X1-X2>D
Header file: xmem.h

uint XADDR_TO_ADDR(xaddr xaddress)
This C macro converts the specified 32-bit extended address into its constituent 16-bit
address. It is present in \fabius\include\mosaic\types.h starting with V1.2 of the types.h
file.
Type: macro
Header file: types.h

int XADDR_TO_PAGE(xaddr xaddress)
This C macro converts the specified 32-bit extended address into its constituent page.
It is present in \fabius\include\mosaic\types.h starting with V1.2 of the types.h file.
Type: macro
Header file: types.h

XIRQ_ID
A constant that returns the interrupt identity code for the external non-maskable
interrupt called XIRQ. Used as an argument for ATTACH(). The XIRQ interrupt is
activated by an active-low signal on the XIRQ input pin and is enabled by the X bit in
the condition code register.
Type: constant; Related QED-Forth function: XIRQ.ID
Header file: interupt.h

uchar _peekTerminal(void)
A serial I/O primitive called by printf() and other C printing functions. Checks the
serial1 input port. If an input character is present, adds it to a 10-byte input buffer
located near the top of the 1K on-chip RAM. _peekTerminal() returns the number of
pending characters in the input buffer. See _readTerminal to access the contents of
the input buffer. See also AskKey(), _readChar() and _writeChar().
Type: C function
Header file: comm.h

uchar _readChar(void)
A serial I/O primitive called by printf() and other C printing functions. Calls
_readTerminal to retrieve the latest input character from the current serial port, and
then calls _writeChar to echo the character. Returns the input character. Does not
execute Pause() while waiting for the input character. See also Key(),
_readTerminal(), _peekTerminal() and _writeChar().
Type: C function
Header file: comm.h

uchar _readTerminal(void)

Main Glossary of Control-C Library Functions 89

A serial I/O primitive called by printf() and other C printing functions. Removes one
character from the input buffer associated with the current serial input port [see
_peekTerminal()] and returns the character. If the input buffer is empty, waits until the
next input character appears. See also _readChar() and _writeChar().
Type: C function
Header file: comm.h

void _writeChar(uchar chr)
A serial I/O primitive called by printf() and other C printing functions. Writes the
specified character chr to the current serial port. If chr is a linefeed (ascii 10), writes a
carriage return (ascii 13) to the serial port before writing the linefeed. Does not execute
Pause(). See also Emit(), _peekTerminal(), _readChar() and _writeTerminal().
Type: C function
Header file: comm.h

_Q
A macro whose default definition is simply:

_pascal
Used in front of a function declaration or definition, it instructs the C compiler to label
the function as a pascal type and to use the pascal calling convention (push leftmost
parameter first, pass rightmost parameter in registers). This macro is used to enable
the interactive debugging features offered by the QED Board. Functions declared with
the _Q specifier may be individually executed in an interactive fashion from your
terminal; this greatly speeds debugging. Without the interactive capability, a compiled
C program can only execute one function (main), and if you want to test individual
functions in the program you must continually recode main to call the function and then
recompile the program. Using the _Q debugging feature offers a simpler alternative.
Instead of having to revector the "main" routine to execute the function of interest, you
can interactively execute each function in the program with a variety of input parameters
of your choice. This lets you test each function to isolate bugs. There is no significant
performance penalty for using the _Q specifier; in fact, the _pascal functions are more
memory-efficient than the standard functions (because the "stack cleanup" code is
compiled in the function itself, rather than in each calling function.)
Example of use:

_Q float Square(float input)
{ return (input * input);
}

After this function is compiled in a program and the .TXT download file is sent to the
QED Board, you can test the function with any input. For example, to test the
Square() function with an input of 3.5, simply execute from the terminal

Square(float 3.5)
Note that there is no space between the "e" and the "(", and there must be at least one
space between the "(" and the next character. The "float" keyword is required to tell the
interpreter that the input parameter is a floating point number. The QED Board will
respond with a summary of the return value in several formats:

Rtn: 16708 0 =0x41440000=fp: 12.25
We know that this routine returns a floating point number, so we see that the return
value is 12.25, which is the correct answer. For more details, see the "Interactive

90 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Debugging Routines" section of this glossary, as well as the debugging chapter of the
"Getting Started" booklet.
Type: macro
Header file: types.h

Interactive Debugger Glossary

Introductory Notes

This glossary summarizes functions and keywords that can be interactively typed at the terminal and
interpreted by the QED-Forth debugger and operating system. Note that Forth tokens are delim-
ited by spaces, and the tokens themselves may contain any printable non-space character, includ-
ing parentheses, commas, periods, and exclamation points, etc. Also note that Forth is case-
insensitive, so that any keyword can be typed in all capitals, all small letters, or any combination.

To improve the readability of this glossary, all of the QED-Forth interactive debugger functions
are CAPITALIZED to distinguish them from the type parameters that specify the input and output
parameters. This is especially important for glossary entries such as "INT", where the name of the
QED-Forth function is spelled the same as the type designator "int" that we use to describe the
input and output parameters.

Many of the entries in this glossary refer to entries in the Main Glossary. For example, the inter-
active QED-Forth function PRIORITY.AUTOSTART which sets up a program to automatically
start each time the QED Board turns on is fully described in the Main Glossary entry for Priority-
Autostart().

We use some non-ANSI notation when specifying the input parameters of these functions. For
example, when an input parameter can be one of several types, we use the notation:

function_name ([type1] or [type2] or [type3])

Forth compilers are more forgiving than C compilers when it comes to accepting input parameters of
differing types.

Glossary Entries

(Alphabetized in ASCII Order)

void (EE!) (int val, int* addr)
Stores val at the specified addr in EEPROM. Any byte that already contains the
specified contents is not re-programmed; this helps lengthen the lifetime of the
EEPROM. See StoreEEInt() in the Main Glossary for an example of how to define a
"variable" in EEPROM and interactively initialize it.
Pronunciation: "paren-e-e-store"

Interactive Debugger Glossary 91

void (EE2!) (long val, long* addr)
Stores val at the specified addr in EEPROM. The most significant word is stored at
addr, and the least significant word is stored at addr+2. Any byte that already contains
the specified contents is not re-programmed; this helps lengthen the lifetime of the
EEPROM. See StoreEELong() in the Main Glossary for an example of how to define a
"variable" in EEPROM and interactively initialize it.
Pronunciation: "paren-e-e-two-store"

void (EEC!) (char val, char* addr)
Stores val at the specified addr in EEPROM. Any byte that already contains the
specified contents is not re-programmed; this helps lengthen the lifetime of the
EEPROM. See StoreEEChar() in the Main Glossary for an example of how to define a
"variable" in EEPROM and interactively initialize it.
Pronunciation: "paren-e-e-c-store"

void (EEF!) (float val, float* addr)
Stores val at the specified addr in EEPROM. The most significant word is stored at
addr, and the least significant word is stored at addr+2. Any byte that already contains
the specified contents is not re-programmed; this helps lengthen the lifetime of the
EEPROM. See StoreEEFloat() in the Main Glossary for an example of how to define a
"variable" in EEPROM and interactively initialize it.
Pronunciation: "paren-e-e-f-store"

void . (int)
Prints the input parameter as a signed integer. Number conversion is performed in the
current number base set by the most recent execution of DECIMAL or HEX.
Pronunciation: "dot"

void =CHAR (LHS: [addr] or [xaddr] ; RHS: [char] or [int] or [float] or [addr] or [xaddr])
=CHAR is a QED-Forth function that acts as an interactive assignment operator. It is
used in the form:

<destination> =CHAR <char_specifier>
where <destination> is a 16-bit address left on the data stack by a variable name, or a
32-bit xaddress left on the data stack by a FORTH_ARRAY element. <char_specifier>
is either a valid number or a variable name or FORTH_ARRAY element that contains a
byte. =CHAR assigns the byte specified by the right-hand-side (RHS) to the memory
location specified by the left-hand-side (LHS).
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static char data;
FORTH_ARRAY buffer8;
DIM(char, 3, 4, &buffer8);

Now all of the following interactive commands may be typed from the terminal:
Interactive Command Result
data =CHAR 0x44 Assigns hex 44 to the variable data
buffer8[1, 2] =CHAR 9 Assigns 9 to array element at row=1,col=2

92 Glossary I: QCard/QScreen/Handheld Control-C Glossary

data =CHAR buffer8[1,2] Assigns contents of array element to data
buffer8[2,3] =CHAR data Assigns contents of data to array element

In summary, the syntax is similar to a C assignment statement. Note that =CHAR
must be typed as one word and must be preceded and followed by spaces.

void =FLOAT (LHS: [addr] or [xaddr] ; RHS: [float] or [addr] or [xaddr])
=FLOAT is a QED-Forth function that acts as an interactive assignment operator. It is
used in the form:

<destination> =FLOAT <float_specifier>
where <destination> is a 16-bit address left on the data stack by a variable name, or a
32-bit xaddress left on the data stack by a FORTH_ARRAY element. <float_specifier>
is either a valid floating point number or a variable name or FORTH_ARRAY element
that contains a floating point number. =FLOAT assigns the float specified by the right-
hand-side (RHS) to the memory location specified by the left-hand-side (LHS).
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static float radius;
FORTH_ARRAY fbuffer;
DIM(float, 3, 4, &fbuffer);

Now all of the following interactive commands may be typed from the terminal:
Interactive Command Result
radius =FLOAT 1.2E3 Assigns 1,200. to the variable radius
fbuffer[1, 2] =FLOAT 2.3 Assigns 2.3 to array element at row=1,col=2
radius =FLOAT fbuffer[1,2] Assigns contents of array element to radius
fbuffer[2,3] =FLOAT radius Assigns contents of radius to array element

In summary, the syntax is similar to a C assignment statement. Note that =FLOAT
must be typed as one word and must be preceded and followed by spaces.

void =INT (LHS: [addr] or [xaddr] ; RHS: [char] or [int] or [float] or [addr] or [xaddr])
=INT is a QED-Forth function that acts as an interactive assignment operator. It is
used in the form:

<destination> =INT <integer_specifier>
where <destination> is a 16-bit address left on the data stack by a variable name, or a
32-bit xaddress left on the data stack by a FORTH_ARRAY element.
<integer_specifier> is either a valid number or a variable name or FORTH_ARRAY
element that contains an integer. =INT assigns the integer specified by the right-
hand-side (RHS) to the memory location specified by the left-hand-side (LHS).
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static int radius;
FORTH_ARRAY buffer16;
DIM(int, 3, 4, &buffer16);

Now all of the following interactive commands may be typed from the terminal:
Interactive Command Result
radius =INT 5 Assigns 5 to the variable radius
buffer16[1, 2] =INT 0x44 Assigns hex 44 to array element at row=1,col=2
radius =INT buffer16[1,2] Assigns contents of array element to radius
buffer16[2,3] =INT radius Assigns contents of radius to array element

Interactive Debugger Glossary 93

In summary, the syntax is similar to a C assignment statement. Note that =INT must
be typed as one word and must be preceded and followed by spaces.

void =LONG (LHS: [addr] or [xaddr] ; RHS: [char] or [int] or [addr] or [xaddr])
=LONG is a QED-Forth function that acts as an interactive assignment operator. It is
used in the form:

<destination> =LONG <long_specifier>
where <destination> is a 16-bit address left on the data stack by a variable name, or a
32-bit xaddress left on the data stack by a FORTH_ARRAY element. <long_specifier>
is either a valid number or a variable name or FORTH_ARRAY element that contains an
long. =LONG assigns the long specified by the right-hand-side (RHS) to the memory
location specified by the left-hand-side (LHS).
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static long data = 56789;
FORTH_ARRAY buffer32;
DIM(long, 3, 4, &buffer32);

Now all of the following interactive commands may be typed from the terminal:
Interactive Command Result
data =LONG 54321 Assigns 54321 to the variable data
buffer32[1, 2] =LONG 0x44 Assigns hex 44 to array element at r=1,c=2
data =LONG buffer32[1,2] Assigns contents of array element to data
buffer32[2,3] =LONG data Assigns contents of data to array element

In summary, the syntax is similar to a C assignment statement. Note that =LONG
must be typed as one word and must be preceded and followed by spaces.

void ABORT (void)
Aborts the current operation; to use, simply type at the terminal:

ABORT
If the CUSTOM_ABORT flag is true (non-zero), executes the abort routine whose xcfa
(32-bit extended code field address) is stored in the user variable UABORT, and then
returns to the routine that called ABORT. If CUSTOM_ABORT is false (zero),
executes the default routine SysAbort() which clears the data and return stacks, and
sets the page to the default page (0). If an autostart vector has been installed [see
Autostart() and PriorityAutostart()], SysAbort() executes the specified routine;
otherwise it executes QUIT which sets the execution mode and enters the QED-Forth
monitor. If the stack pointers do not point to common RAM, a COLD restart is
initiated. See the entry in the Main Glossary entry for Abort().

void AUTOSTART (xaddr)
Expects on the data stack a 32-bit code field xaddress (xcfa) of a function. Compiles a
6-byte sequence into the EEPROM in the 68HC11. On subsequent restarts and
ABORTs, the routine having the specified xcfa will be executed. This allows a finished
application to be automatically entered upon power up and resets.
CAUTION: To put your application into production, it is recommended that you use the
PRIORITY.AUTOSTART function which stores the 6-byte autostart sequence in flash
memory.
Usage: We recommend that Autostart() and PriorityAutostart() be executed
interactively from the QED-Forth monitor. The easiest way to do this is to use Forth

94 Glossary I: QCard/QScreen/Handheld Control-C Glossary

syntax instead of C syntax. After your application program is completed and
debugged, simply type from your terminal the command:

CFA.FOR MAIN AUTOSTART
This writes a pattern into EEPROM that causes MAIN to be executed upon all
subsequent resets and restarts.
Implementation detail: At location hex AE00 in EEPROM, AUTOSTART writes the
pattern 1357 followed by the four byte xcfa. To undo the effects of this command and
return to the default startup action, type the QED-Forth command
 NO.AUTOSTART
from your terminal. To recover from the installation of a buggy autostart routine, use
the special cleanup mode as described in the "Programming the QED Board in C"
chapter in the "Getting Started" Manual. See PRIORITY.AUTOSTART, and see the
entry in the Main Glossary entry for Autostart().

void BAUD1.AT.STARTUP (int baud)
Configures the QED Board so that the baud rate of the primary serial port (serial1)
supported by the 68HC11's hardware UART will equal the specified standard baud rate
upon all subsequent resets and restarts. Standard baud rates are 150, 300, 600,
1200, 2400, 4800, 9600, and 19200 baud.
Example of use: To set the baud rate of the serial1 port to 19,200 baud, type from
your terminal:

DECIMAL 19200 BAUD1.AT.STARTUP
Be sure to modify your terminal's baud rate setting to match the new baud rate. The
new rate will take effect upon all subsequent resets and restarts.
Implementation detail: This routine calls InstallRegisterInits() which writes into
EEPROM the required contents of INIT (=B8H), the contents of BAUD that corresponds
to the specified baud rate, and the contents of OPTION, TMSK2, and BPROT that are
present when this routine is executed. These values are installed in their respective
registers upon each subsequent reset and restart. To undo the effects of this
command, type from your terminal the command

DEFAULT.REGISTER.INITS
or invoke the special cleanup mode as described in the "Programming the QED Board
in C" chapter in the "Getting Started" Manual. See the entry in the Main Glossary
entry for Baud1AtStartup().

void BAUD2 (int baud)
Sets the baud rate of the secondary serial port (serial2) supported by QED-Forth's
software UART using hardware pins PA3 (input) and PA4 (output). Smooth file
transfers can be achieved at up to 4800 baud. The baud rate of serial2 is initialized to
1200 baud by the COLD restart routine. See UseSerial2().
Example of use: To set the baud rate of the serial2 port to 4800 baud, type from your
terminal:

DECIMAL 4800 BAUD2
Be sure to modify your terminal's baud rate setting to match the new baud rate, and
make sure that DIP switch#4 on the QED Board is in the ON position when using the
serial2 port. See the entry in the Main Glossary entry for Baud2().

int CALC.CHECKSUM (xaddr xbase, int numbytes)

Interactive Debugger Glossary 95

Calculates a 16-bit checksum for the buffer specified by xaddr and +n, where xaddr is
the starting address, and +n is the number of bytes (0 <= +n < 32,768). The buffer must
not cross a page boundary, and n must be an even number of bytes. The checksum is
calculated by initializing a 16-bit accumulator to zero, then adding in turn each 2-byte
number in the buffer to the accumulator; the checksum is the final value of the
accumulator. Using this routine provides a method of checking whether the contents of
an area of memory have changed since a prior checksum was calculated. This routine
is optimized for speed, and executes at less than 3 microseconds per byte.

void CALL.CFN (xaddr <input_parameter_list>)
A low-level function inserted by the "Make" utility in the .TXT download file. When
properly inserted in a QED-Forth function, enables interactive calls to C functions that
were declared using the _Q keyword. CALL.CFN expects on the data stack a 32-bit
xaddress representing the execution address of the function to be called. CALL.CFN
removes from the input stream a list of comma-delimited parameters terminated by the
) character. It then sets up the proper stack frame for a "pascal" type function (i.e., a
function declared using the _Q or _pascal keyword) that has been compiled by the
Control-C compiler. CALL.CFN calls the designated function, then prints the return
values (passed in the D and Y registers):

in the current number base as two 16-bit integers;
as a 32-bit hexadecimal number; and,
as a floating point number.

It is up to the programmer to decide which (if any) of these return value summaries is
relevant based on the declared type of the called function's return value.
Example of use: Assume that a function with the following prototype has been
compiled and downloaded as part of the GETSTART.C program:

static uint radius;
_Q float CalcArea(uint radius);

Then the GETSTART.TXT download file created by the Control-C compiler will include
the following QED-Forth declarations:

HEX
8E1B CONSTANT radius
: CalcArea(DIN 040182 CALL.CFN ;

While the exact numbers may vary, in this case DIN 040182 is the 32-bit execution
address of the CalcArea() function. If we interactively type at the terminal the following
commands to initialize the radius variable to 5 and then call the CalcArea() function :

radius =INT 5
CalcArea(int radius)

QED-Forth executes the function and prints the following summary of the return value:
Rtn: 17053 5242 =0x429D147A =fp: 78.54 ok

We know that CalcArea() returns a floating point (fp) result, so we identify the return
value as 78.54 (and indeed this is the area of a circle that has a radius equal to 5).
Consult the "Getting Started" book for a full discussion of interactive function calling.
Pronunciation: "call-c-function"

xaddr CFA.FOR (<function_name>)
Removes <function_name> from the input stream and leaves its extended code field
address (cfa) on the data stack. An error occurs if no <function_name> is given or if

96 Glossary I: QCard/QScreen/Handheld Control-C Glossary

<function_name> cannot be found in the QED-Forth dictionary. Typically used in
conjunction with AUTOSTART or PRIORITY.AUTOSTART. For example:

CFA.FOR MAIN PRIORITY.AUTOSTART
configures the QED Board so that the MAIN function is executed upon each subsequent
reset or restart.
Pronunciation: "c-f-a-for"

char CHAR([char] or [int] or [float] or [addr] or [xaddr])
CHAR is a QED-Forth function that examines the next token; if it is a valid number
such as 5 or 3.2, CHAR simply converts it to the nearest 8-bit byte. There is an
unchecked error if the input is not in the range 0-255 (unsigned char) or -128 to _127
(signed char). If the next token is a named 16-bit address (such as a variable name)
or a 32-bit xaddress (such as a FORTH_ARRAY element xaddress), CHAR extracts
the 8-bit contents stored at the specified memory location. CHAR is also used to
specify the type of an input parameter when interactively calling a function.
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static char ascii_code = 55;
FORTH_ARRAY buffer8;
DIM(char, 3, 4, &buffer8);
_Q void SaveByte(char val, int row, int col, FORTH_ARRAY* array_ptr)

{ ARRAYSTORE(val, row, col, array_ptr};
}

SaveByte(55, 1, 2, &buffer8);
Now all of the following interactive commands typed from the terminal will result in the
number "55" being printed by QED-Forth:

CHAR 55 U.
CHAR 55.45 U.
CHAR ascii_code U.
CHAR buffer8[1, 2] U.

Moreover, to initialize the element of buffer8 at row=0, col=1 to 34, we could
interactively type at the terminal:

SaveByte(CHAR 34, INT 0, INT 1, buffer16)
This demonstrates the use of the CHAR keyword in specifying the input parameter
types of interactive function calls; the syntax is similar to a C function prototype.

char CHAR* ([addr] or [xaddr])
CHAR* is a QED-Forth function that examines the next token; if it is a named 16-bit
address (such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY
element xaddress), CHAR* extracts the 16-bit pointer stored at the specified memory
location, and in turn extracts the 8-bit byte pointed to by the pointer.
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static char data = 5;
char* data_ptr = &data;
FORTH_ARRAY buffer16;
DIM(char*, 3, 4, &buffer16);
_Q void SavePtr(char* val, int row, int col, FORTH_ARRAY* array_ptr)

Interactive Debugger Glossary 97

{ ARRAYSTORE(val, row, col, array_ptr};
}

SavePtr(&radius, 1, 2, &buffer16);
Now all of the following interactive commands typed from the terminal will result in the
number "5" being printed by QED-Forth:

CHAR data U.
CHAR* data_ptr U.
CHAR* buffer16[1, 2] U.

void CLEAR.BOOT.VECTOR (void)
Removes a boot vector from page 0x0C. Note that the “page C write protect” jumper
must be removed for this function to be effective. This function is called during a
"factory cleanup", but it is not called by NO.AUTOSTART. See SET.BOOT.VECTOR.
This function is typically invoked interactively from the QED-Forth prompt.

void COLD (void)
Disables interrupts and restarts the QED-Forth system and initializes all of the user
variables to their default values. To use, simply type at your terminal the command:

COLD
Initializes the following machine registers:

PORTG, DDRG, TMSK2, SPCR, BAUD, SCCR1, SCCR2, BPROT,
OPT2, OPTION, HPRIO, INIT, CSCTL.

Initializes the vectors of the vital interrupts if InitVitalIRQsOnCold() has been executed.
Calls Abort() which clears the stacks and calls either the QED-Forth interpreter or an
autostart routine that has been installed using Autostart() or PriorityAutostart(). If
ColdOnReset() has been executed, every reset or power-up will invoke a Cold() as
opposed to a Warm() initialization sequence. See the entry in the Main Glossary entry
for Cold().

void COLD.ON.RESET (void)
Initializes a flag in EEPROM that causes subsequent resets to execute a cold restart (as
opposed to the standard warm-or-cold restart). This option is useful for turnkeyed
systems that have an autostart word installed; any error or reset causes a full Cold()
restart which initializes all user variables, after which the autostart routine completes
the system initialization and enters the application routine. To use, simply type at your
terminal:

COLD.ON.RESET
See STANDARD.RESET, and see the entry in the Main Glossary entry for
ColdOnReset().
Implementation detail: Initializes location hex AE1C in EEPROM to contain the pattern
13.

void D. (long)
Prints the input parameter as a signed long. Number conversion is performed in the
current number base set by the most recent execution of DECIMAL or HEX.
Pronunciation: "d-dot"

void DECIMAL (void)

98 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Sets the number conversion base to decimal. See HEX. The number conversions
occur when inputting numbers typed at the terminal, and when QED-Forth prints
numbers to the terminal.

void DEFAULT.REGISTER.INITS (void)
Undoes the effect of the INSTALL.REGISTER.INITS command; to use, simply type
at the terminal:

DEFAULT.REGISTER.INITS
Implementation detail: sets the contents of location 0xAE06 in EEPROM to 0xFF to
ensure that default initializations will be used after subsequent resets. The default
register initializations are:

Register Register Default
Name Address Value
OPTION 0x8039 0x33
TMSK2 0x8024 0x02
BPROT 0x8035 0x10
BAUD 0x802B 0x31

See the entry in the Main Glossary entry for DefaultRegisterInits().

xaddr DO[] (addr <input_parameter_list>)
A low-level function inserted by the "Make" utility in the .TXT download file. When
properly inserted in a QED-Forth function, enables interactive examination and
modification of FORTH_ARRAY elements. Expects on the data stack a 16-bit address
representing the pfa (parameter field address) of a FORTH_ARRAY. DO[] removes
from the input stream a row specifier, a comma, a column specifier, and a terminating
]. It leaves on the stack the 32-bit xaddress of the specified element in the specified
FORTH_ARRAY.
Example of use: Assume that the following declaration has been compiled and
downloaded as part of a C program:

FORTH_ARRAY circle_parameters;
Then the .TXT download file created by the Control-C compiler will include a QED-
Forth definition of the form:

: circle_parameters 8E03 DO[] ;
While the exact numbers may vary, in this case 8E03 is the 16-bit pfa of the
circle_parameters array. Now debugger expressions such as:

float circle_parameters[0,0] PrintFP
circle_parameters[1,0] =FLOAT 3.1416

can be interpreted and executed by the interactive debugger.
Pronunciation: "do-brackets"

void DOWNLOAD.MAP (void)
Sets a flag in EEPROM and changes the state of a latch in the onboard PALs to put the
download memory map into effect. After execution of this routine, and upon each
subsequent reset or restart, hex pages 4, 5, 6, and 0x10-17 are addressed in RAM, and
pages 1, 2, 3, and 0x18-1F are addressed in flash memory. This allows code (and
Forth names) to be compiled into RAM on pages 4, 5 and 6 (and, if a 512K RAM is
present, into pages 0x10-17) and then transferred to flash using the PAGE.TO.FLASH
function. To establish the standard memory map, see the glossary entry for

Interactive Debugger Glossary 99

STANDARD.MAP. Note that the standard map is active after a "factory cleanup"
operation.

void DUMP (xaddr start, uint numbytes)
Displays the contents of numbytes bytes starting at the specified start xaddr. The
contents are dumped as hexadecimal bytes regardless of the current number base,
and the ascii equivalent contents are also displayed. For example, to display 0x40
bytes starting at address 0x1000 on page 1, execute:

HEX 1000 1 40 DUMP
and to display the last 0x10 bytes on page 1 and the first 0x20 bytes on page 2,
execute

7FF0 1 30 DUMP
DUMP calls the function PAUSE.ON.KEY, so the dump responds to XON/XOFF
handshaking and can be aborted by typing a carriage return; see PauseOnKey() in the
Main Glossary.

void DUMP.INTEL (char* start, uint start_page, uint reported_start, uint numbytes)
The parameters start and start_page specify the location of the first byte to be dumped,
reported_start specifies the starting address reported in the dump, and numbytes is the
number of bytes to be dumped. Dumps the contents of numbytes bytes starting at start
on start_page using the standard ascii Intel hex format which is useful for transferring
data between devices. The line format is:

:{#bytes}{reported.addr}{00}{byte}{byte} ...{byte}{checksum}
All numbers are in hexadecimal base. Each line starts with a : character, followed by a
2-digit number of bytes (20, indicating that the contents of 0x20 bytes are displayed per
line), followed by a 4-digit starting address for the line, followed by 00, followed by the
contents of the memory locations (2 hex digits per byte), and concluding with a
checksum followed by a carriage return/linefeed. The checksum is calculated by
summing each of the bytes on the line into an 8-bit accumulator and negating (two's
complementing) the result. The hex dump ends with the line

:00000001FF
For example, to dump 0x40 bytes starting at QED Board address 0x1000\1 so that the
bytes reside at the beginning of a target memory device, execute:

HEX 1000 01 0000 40 DUMP.INTEL
which specifies 0x1000\1 as the starting address, 0000 as the reported base address in
the memory device, and 0x40 as the number of bytes to be dumped. To dump the last
0x20 bytes on page 1 and the first 0x40 bytes on page 2 so that they reside at locations
0x7FE0 through 0x803F in the target memory device, execute

7FE0 1 7FE0 60 DUMP.INTEL
The complementary word RECEIVE.HEX loads QED memory starting at any location
based on a received Intel or Motorola hex file. DUMP.INTEL calls the word
PAUSE.ON.KEY, so the dump responds to XON/XOFF handshaking and can be
aborted by typing a carriage return. See DUMP.S1, DUMP.S2, RECEIVE.HEX and
PAUSE.ON.KEY.

void DUMP.S1 (char* start, uint start_page, uint reported_start, uint numbytes)
The parameters start and start_page specify the location of the first byte to be dumped,
the 16-bit reported_start specifies the starting address reported in the dump, and
numbytes is the number of bytes to be dumped. Dumps using the standard ascii

100 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Motorola S1 hex format which is useful transferring data between devices. Motorola
S1 records report 16 bit addresses. (To report full 24 bit addresses, see DUMP.S2.)
Outputs an S0 header record which is

S00900004845414445524D
then as many S1 data records as required, followed by an S9 termination record which
is

S9030000FC
The Motorola S1 hex line format is:

S1{#bytes}{16bit.reported.addr}{byte}...{byte}{chksum}
All numbers are in hexadecimal base. Each line starts with a the record type (S1 in this
case), followed by a 2-digit number of bytes (23, which equals 0x20 bytes per line plus 3
bytes for the reported address and checksum), followed by a 4-digit starting address for
the line, followed by the contents of the memory locations (2 hex digits per byte), and
concluding with a checksum. The checksum is calculated by summing each of the
bytes on the line (excluding the record type) into an 8-bit accumulator and (one's)
complementing the result.
For example, to dump 0x40 bytes starting at QED Board address 0x1000\1 so that the
bytes reside at the beginning of a target memory device, execute:

HEX 1000 01 0000 40 DUMP.S1
which specifies 0x1000\1 as the starting address, 0000 as the reported base address in
the memory device, and 0x40 as the number of bytes to be dumped. To dump the last
0x20 bytes on page 1 and the first 0x40 bytes on page 2 so that they reside at locations
0x7FE0 through 0x803F in the target memory device, execute:

7FE0 1 7FE0 60 DUMP.S1
The complementary word RECEIVE.HEX loads QED memory starting at any location
based on a received Motorola or Intel hex file. DUMP.S1 calls the word
PAUSE.ON.KEY, so the dump responds to XON/XOFF handshaking and can be
aborted by typing a carriage return. See DUMP.S2, DUMP.INTEL, RECEIVE.HEX and
PAUSE.ON.KEY.

void DUMP.S2 (char* start, uint start_page, long reported_start, uint numbytes)
The parameters start and start_page specify the location of the first byte to be dumped,
the 32-bit reported_start specifies the starting address reported in the dump, and
numbytes is the number of bytes to be dumped. Dumps using the standard ascii
Motorola S2 hex format which is useful for transferring data between devices.
Motorola S2 records report 24 bit addresses. (To report 16 bit addresses, see
DUMP.S1.) Dumps an S0 header record which is

S00900004845414445524D
then as many S2 data records as required, followed by an S9 termination record which
is

S9030000FC
The Motorola S2 hex line format is:

S2{#bytes}{24bit.reported.addr}{byte}...{byte}{chksum}
All numbers are in hexadecimal base. Each line starts with a the record type (S2 in this
case), followed by a 2-digit number of bytes (24, which equals 0x20 byte per line plus 4
bytes for the reported address and checksum), followed by a 6-digit starting address for
the line, followed by the contents of the memory locations (2 hex digits per byte), and
concluding with a checksum. The checksum is calculated by summing each of the
bytes on the line (excluding the record type) into an 8-bit accumulator and (one's)

Interactive Debugger Glossary 101

complementing the result. DUMP.S2 calls the word PAUSE.ON.KEY, so the dump
responds to XON/XOFF handshaking and can be aborted by typing a carriage return.
See DUMP.S1, DUMP.INTEL, RECEIVE.HEX and PAUSE.ON.KEY.
Example of use: Assume that you have created an application program in pages 4, 5,
and 6, and used PRIORITY.AUTOSTART to configure a flash-based autostart vector so
that the application runs automatically upon each power-up and restart. To dump a
complete application program that resides on pages 4, 5 and 6, so that the bytes reside
at the beginning of a flash memory device, execute:

HEX
0000 04 DIN 000000 8000 DUMP.S2
0000 05 DIN 008000 8000 DUMP.S2
0000 06 DIN 010000 8000 DUMP.S2

Now you can edit the resulting file, concatenate the 3 dumps into 1 large S-record by
removing all but the first and last S0 (header) and S9 (termination) records, and re-save
the file. To transfer the application to a new QED Board, simply execute

DOWNLOAD.MAP
0 4 RECEIVE.HEX <send the captured file>
4 PAGE.TO.FLASH
5 PAGE.TO.FLASH
6 PAGE.TO.FLASH
STANDARD.MAP

This is a time-effective method of mass producing QED-based products running a
“turnkeyed” autostart program.

float FLOAT ([char] or [int] or [float] or [addr] or [xaddr])
FLOAT is a QED-Forth function that examines the next token; if it is a valid integer or
QED-formatted floating point number such as 5 or 3.2, FLOAT simply converts it to an
ANSI-C-formatted floating point number. If the next token is a named 16-bit address
(such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY element
xaddress), FLOAT extracts the 32-bit (float) contents stored at the specified memory
location. FLOAT is also used to specify the type of an input parameter when
interactively calling a function.
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static float radius = 5.25;
FORTH_ARRAY fbuffer;
DIM(float, 3, 4, &fbuffer);
_Q void FSave(float val, int row, int col, FORTH_ARRAY* array_ptr)

{ FARRAYSTORE(val, row, col, array_ptr};
}

FSave(5.25, 1, 2, &fbuffer);
Now all of the following interactive commands typed from the terminal will result in the
number "5.25" being printed by QED-Forth:

FLOAT 5.25 PrintFP
FLOAT radius PrintFP
FLOAT fbuffer[1, 2] PrintFP

Moreover, to initialize the element of fbuffer at row=0, col=1 to 12.34, we could
interactively type:

FSave(FLOAT 12.34, INT 0, INT 1, fbuffer)

102 Glossary I: QCard/QScreen/Handheld Control-C Glossary

This demonstrates the use of the FLOAT keyword in specifying the input parameter
types of interactive function calls; the syntax is similar to a C function prototype.

float FLOAT* ([addr] or [xaddr])
FLOAT* is a QED-Forth function that examines the next token; if it is a named 16-bit
address (such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY
element xaddress), INT* extracts the 16-bit pointer stored at the specified memory
location, and in turn extracts the 32-bit float pointed to by the pointer.
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static float radius = 5.6;
float* radius_ptr = &radius;
FORTH_ARRAY buffer16;
DIM(float*, 3, 4, &buffer16);
_Q void SavePtr(float* val, int row, int col, FORTH_ARRAY* array_ptr)

{ ARRAYSTORE(val, row, col, array_ptr};
}

SavePtr(&radius, 1, 2, &buffer16);
Now all of the following interactive commands typed from the terminal will result in the
number "5.6" being printed by QED-Forth:

FLOAT radius PrintFP
FLOAT* radius_ptr PrintFP
FLOAT* buffer16[1, 2] PrintFP

float FP_CtoQ (float ansi_fp_num)
Converts the ANSI/IEEE-standard formatted input floating point number into the QED-
Forth floating point format. Converts denormalized input numbers to zero; that is, if
the biased exponent = 0, the returned QED-formatted floating point number = zero.
NAN (not a number) inputs are converted to +/- infinity depending on their sign bit.
The least significant bit (lsb) of the mantissa is not rounded, resulting in up to 1 lsb
error during the conversion. See the entry in the Main Glossary entry for FP_CtoQ().

float FP_QtoC (float qed_fp_number)
Converts the QED-Forth formatted input floating point format into an ANSI/IEEE-
standard formatted floating point number. See the entry in the Main Glossary entry for
FP_QtoC().

void ENABLE.DOWNLOAD (void)
If the download map is set, this function does nothing. If the standard map is set, this
command prepares for a code download by copying pages 4, 5, and 6 to RAM, then
setting the download map. When combined with ALL.TO.FLASH, this function ensures
that an application program up to 96 Kbytes long compiled on pages 4, 5, and 6 is
properly transferred to flash after a download. Usage: When paired with the
ALL.TO.FLASH command, this function simplifies the loading of a Forth program. Place
the ENABLE.DOWNLOAD command at the top of the first file to be loaded, and place
ALL.TO.FLASH at the end of the last file to be loaded. This ensures proper compilation
of code into RAM pages 4, 5 and 6 in the download map, followed by transfer to flash
and setting of the standard map. It is also possible to put ENABLE.DOWNLOAD at the
top of each source code file, and ALL.TO.FLASH at the bottom of each source file. This

Interactive Debugger Glossary 103

technique ensures proper compilation of any given source code file during the
development process. Of course, this command may also be typed at the QED-Forth
prompt before code is downloaded.

void HEX (void)
Sets the number conversion base to hexadecimal. See DECIMAL. The number
conversions occur when inputting numbers typed at the terminal, and when QED-Forth
prints numbers to the terminal.

void INIT.VITAL.IRQS.ON.COLD (void)
Undoes the effect of the NO.VITAL.IRQ.INIT command, and causes subsequent cold
restarts to perform the default action of checking the interrupt vectors for the COP,
clock monitor, illegal opcode and OC2 interrupts and initializing them if they do not
contain the standard interrupt service vectors. To use, simply type at your terminal:

INIT.VITAL.IRQS.ON.COLD
Implementation detail: sets location 0xAE1B in EEPROM to 0xFF.
See the entry in the Main Glossary entry for InitVitalIRQsOnCold().
Pronunciation: "init-vital-i-r-qs-on-cold

void INSTALL.REGISTER.INITS (char option, char tmsk2, char bprot, char baud)
Compiles a 7-byte sequence into the EEPROM that specifies the contents to be loaded
into the "protected registers" plus the BAUD register after subsequent resets. The
protected registers are those that must be initialized within 64 machine cycles after a
reset; after that their contents cannot be changed. They are INIT, OPTION, TMSK2,
and BPROT. The BAUD register controls the BAUD rate of the primary serial
communications interface (serial1), and is included so that a user-specified baud rate
can be set upon every restart. The INIT register controls the location of the on-chip
RAM and the registers. This value is set to 0xB8 (on-chip RAM at 0xB000, and
registers at 0x8000); other values are not compatible with QED-Forth. The contents
of the other 4 registers may be specified by the user. Once
INSTALL.REGISTER.INITS is executed, subsequent resets will cause B8H to be
stored in INIT, byte1 in OPTION, byte2 in TMSK2, byte3 in BPROT, and byte4 in
BAUD. To undo the effects of this word and return to the default contents of the
protected registers use the DEFAULT.REGISTER.INITS command; see its glossary
entry for a list of the default values for each of the registers.
Example of use: To set OPTION = 0x33, TMSK2 = 0x02, BPROT = 0x10, and BAUD
= 0x31, type from the terminal:

HEX 33 02 10 31 INSTALL.REGISTER.INITS
Implementation detail: INSTALL.REGISTER.INITS writes the hex pattern 13 at
location hex AE06 in the EEPROM. The five bytes following the pattern contain the
specified contents of INIT (=B8H), OPTION, TMSK2, BPROT, and BAUD,
respectively.
See the entry in the Main Glossary entry for InstallRegisterInits().

int INT ([char] or [int] or [float] or [addr] or [xaddr])
INT is a QED-Forth function that examines the next token; if it is a valid integer or
floating point number such as 5 or 3.2, INT simply converts it to the nearest integer. If
the next token is a named 16-bit address (such as a variable name) or a 32-bit
xaddress (such as a FORTH_ARRAY element xaddress), INT extracts the 16-bit

104 Glossary I: QCard/QScreen/Handheld Control-C Glossary

contents stored at the specified memory location. INT is also used to specify the type
of an input parameter when interactively calling a function.
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static int radius = 5;
FORTH_ARRAY buffer16;
DIM(int, 3, 4, &buffer16);
_Q void SaveElement(int val, int row, int col, FORTH_ARRAY* array_ptr)

{ ARRAYSTORE(val, row, col, array_ptr};
}

SaveElement(5, 1, 2, &buffer16);
Now all of the following interactive commands typed from the terminal will result in the
number "5" being printed by QED-Forth:

INT 5 U.
INT 5.45 U.
INT radius U.
INT buffer16[1, 2] U.

Moreover, to initialize the element of buffer16 at row=0, col=1 to 1234, we could
interactively type at the terminal:

SaveElement(INT 1234, INT 0, INT 1, buffer16)
This demonstrates the use of the INT keyword in specifying the input parameter types of
interactive function calls; the syntax is similar to a C function prototype.

int INT* ([addr] or [xaddr])
INT* is a QED-Forth function that examines the next token; if it is a named 16-bit
address (such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY
element xaddress), INT* extracts the 16-bit pointer stored at the specified memory
location, and in turn extracts the 16-bit integer pointed to by the pointer.
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static int radius = 5;
int* radius_ptr = &radius;
FORTH_ARRAY buffer16;
DIM(int*, 3, 4, &buffer16);
_Q void SavePtr(int* val, int row, int col, FORTH_ARRAY* array_ptr)

{ ARRAYSTORE(val, row, col, array_ptr};
}

SavePtr(&radius, 1, 2, &buffer16);
Now all of the following interactive commands typed from the terminal will result in the
number "5" being printed by QED-Forth:

INT radius U.
INT* radius_ptr U.
INT* buffer16[1, 2] U.

long LONG([char] or [int] or [float] or [addr] or [xaddr])
LONG is a QED-Forth function that examines the next token; if it is a valid number
such as 5 or 1234567 or 453.2, LONG simply converts it to the nearest 32-bit long
number. If the next token is a named 16-bit address (such as a variable name) or a
32-bit xaddress (such as a FORTH_ARRAY element xaddress), LONG extracts the

Interactive Debugger Glossary 105

32-bit (long) contents stored at the specified memory location. LONG is also used to
specify the type of an input parameter when interactively calling a function.
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static long data = 56789;
FORTH_ARRAY buffer32;
DIM(long, 3, 4, &buffer32);
_Q void SaveLong(long val, int row, int col, FORTH_ARRAY* array_ptr)

{ ARRAYSTORE(val, row, col, array_ptr};
}

SaveLong(56789, 1, 2, &buffer32);
Now all of the following interactive commands typed from the terminal will result in the
number "56789" being printed by QED-Forth:

LONG 56789 D.
LONG data D.
LONG buffer32[1, 2] D.

To initialize the element of buffer32 at row=0, col=1 to 12345, we can interactively
type:

SaveElement(LONG 12345, INT 0, INT 1, buffer32)
This demonstrates the use of the LONG keyword in specifying the input parameter
types of interactive function calls; the syntax is similar to a C function prototype.

long LONG* ([addr] or [xaddr])
LONG* is a QED-Forth function that examines the next token; if it is a named 16-bit
address (such as a variable name) or a 32-bit xaddress (such as a FORTH_ARRAY
element xaddress), LONG* extracts the 16-bit pointer stored at the specified memory
location, and in turn extracts the 32-bit long pointed to by the pointer.
Example of use: Assume that the following C code has been compiled and downloaded
as part of a program:

static long data = 12345;
long* data_ptr = &data;
FORTH_ARRAY buffer16;
DIM(long*, 3, 4, &buffer16);
_Q void SavePtr(long* val, int row, int col, FORTH_ARRAY* array_ptr)

{ ARRAYSTORE(val, row, col, array_ptr};
}

SavePtr(&data, 1, 2, &buffer16);
Now all of the following interactive commands typed from the terminal will result in the
number "12345" being printed by QED-Forth:

LONG data D.
LONG* data_ptr D.
LONG* buffer16[1, 2] D.

void MAIN (void)
Executes the main() function which is located at address 0x0000 on page 0x04. Each
compiled program must contain one and only one definition of the main() function.

void NO.AUTOSTART (void)

106 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Undoes the effect of the AUTOSTART and PRIORITY.AUTOSTART commands and
attempts to ensure that the standard QED-Forth interpreter will be entered after
subsequent resets. This command is typically executed interactively using QED-Forth
syntax by typing from the terminal:

NO.AUTOSTART
Implementation detail: Erases the 0x1357 pattern at location 0xAE00 [put there by
Autostart()] in EEPROM, and erases the 0x1357 pattern at location 0x047FFA [put
there by PriorityAutostart()] in page 4 of paged memory. Note that the
priority_autostart vector at 0x047FFA cannot be erased if the memory is write-protected
when NO.AUTOSTART is executed. NO.AUTOSTART is invoked by the special
cleanup mode.

void NO.VITAL.IRQ.INIT (void)
Writes a pattern into EEPROM so that subsequent cold restarts will not initialize the
COP, clock monitor, illegal opcode, and OC2 interrupt vectors. This option is
provided for programmers interested in installing their own interrupt service routines in
any of these four vectors. Can be undone by INIT.VITAL.IRQS.ON.COLD. To
use, simply type from the terminal:

NO.VITAL.IRQ.INIT
Implementation detail: Initializes location hex AE1B in EEPROM to contain the pattern
13. See the entry in the Main Glossary entry for NoVitalIRQInit().
Pronunciation: "no-vital-i-r-q-init"

void PAGE.TO.FLASH (int source_page)
Transfers the 32 Kbyte contents of the specified RAM source page to the parallel page
in flash. If the current memory map is the "download map", then valid source pages are
4, 5, or 6, (and, if a 512K RAM is installed, pages 0x10-17). Page 4 RAM is transferred
to page 1 flash, page 5 RAM is transferred to page 2 flash, page 6 RAM is transferred to
page 3 flash, and pages in the range 0x10-17 are transferred to parallel flash pages in
the range 0x18-1F. If the current memory map is the "standard map", then valid source
pages are 1, 2, or 3 (and, if a 512K RAM is installed, pages 0x18-1F). Page 1 RAM is
transferred to page 4 flash, page 2 RAM is transferred to page 5 flash, page 3 RAM is
transferred to page 6 flash, and pages in the range 0x18-1F are transferred to parallel
flash pages in the range 0x10-17. An "invalid input parameter" error is issued if an
invalid source page is specified. A "can't program flash" error is issued if the flash
cannot be programmed. This function uses the 68HC11's on-chip RAM at hex B200 to
B3CF to manage the write to the flash (the real-time clock and C/Forth interrupt stack
reserve the bytes at B3D0 to B3FF). The remaining on-chip RAM at B000 to B1FF
remains available to the user.

void PAGE.TO.RAM (int source_page)
Transfers the 32 Kbyte contents of the specified flash source page to the parallel page
in RAM. If the current memory map is the "download map", then valid source pages are
1, 2, or 3 (and, if a 512K RAM is installed, pages 0x18-1F). Page 1 flash is transferred
to page 4 RAM, page 2 flash is transferred to page 5 RAM, page 3 flash is transferred to
page 6 RAM, and pages in the range 0x18-1F are transferred to parallel RAM pages in
the range 0x10-17. If the current memory map is the "standard map", then valid source
pages are 4, 5, or 6 (and, if a 512K RAM is installed, pages 0x10-17). Page 4 flash is
transferred to page 1 RAM, page 5 flash is transferred to page 2 RAM, page 6 flash is

Interactive Debugger Glossary 107

transferred to page 3 RAM, and pages in the range 0x10-17 are transferred to parallel
RAM pages in the range 0x18-1F. An "invalid input parameter" error is issued if an
invalid source page is specified.

void PrintFP (float)
Prints the input ANSI-C floating point parameter using the format specified by the most
recent execution of FIXED, SCIENTIFIC, or FLOATING. See the entry in the Main
Glossary entry for PrintFP().

void PRIORITY.AUTOSTART (xaddr)
Expects on the data stack a 32-bit code field xaddress (xcfa) of a function. Compiles a
6-byte sequence at locations 0x7FFA-7FFF on page 4 so that upon subsequent
restarts and ABORTs, the routine having the specified xcfa will be automatically
executed. This allows a finished application to be automatically entered upon power up
and resets. In contrast to the EEPROM-based AUTOSTART function, the
PRIORITY.AUTOSTART vector is located in paged memory which is in flash memory
in turnkeyed "production" boards. Thus PRIORITY.AUTOSTART facilitates the
autostarting of flash-based systems. ABORT (which is called by the error handler and
upon every reset or restart) checks the priority autostart vector first and executes the
specified routine (if any). If no priority autostart routine is posted or if the specified
routine terminates, ABORT then checks the EEPROM-based autostart vector (see
AUTOSTART) and executes the specified routine (if any). If no autostart routine is
posted or if the specified routine terminates, ABORT then invokes QUIT which is the
QED-Forth interpreter.
Usage: We recommend that Autostart() and PriorityAutostart() be executed
interactively from the QED-Forth monitor. The easiest way to do this is to use Forth
syntax instead of C syntax. After your application program is completed and
debugged, simply type from your terminal the command:

CFA.FOR MAIN PRIORITY.AUTOSTART
This writes a pattern into EEPROM that causes MAIN to be executed upon all
subsequent resets and restarts.
Implementation detail: At location 7FFAH on page 4, PRIORITY.AUTOSTART writes
the pattern 1357 followed by the four byte xcfa; make sure that page 4 is not write
protected when executing PRIORITY.AUTOSTART. To undo the effects of this
command and return to the default startup action, make sure that page 4 is un-write-
protected RAM and call NO.AUTOSTART (which clears both the priority autostart and
the EEPROM-based autostart vectors). To recover from the installation of a buggy
priority autostart routine if page 4 is RAM, make sure that page 4 is not write-protected
and invoke use the special cleanup mode (consult the QED-Forth manual). See
AUTOSTART, and see the Main Glossary entry for PriorityAutostart().

void RECEIVE.HEX (xaddr <text> --)
Accepts a download in standard Intel hex or Motorola S1 or S2 or S3 hex formats and
initializes the memory locations starting at the specified xaddr accordingly. The first
address specified in the <text> hex dump is stored in memory at xaddr, and all
subsequent bytes are stored in QED memory preserving the relative spacing of data
specified in the <text> hex dump. If the xaddress equals -1 (=0xFFFFFFFF), the
download is stored in the addresses as specified in the hex dump itself. The QED
paged memory is treated as a contiguous memory space; recall that the location

108 Glossary I: QCard/QScreen/Handheld Control-C Glossary

following 7FFF on a given page is location 0000 on the following page. Accepts empty
lines. If a format or checksum error is detected, emits an 'X' character to signal the
error, but does not abort. Aborts with a "Missing delimiter" message if the first
character on a line is not a : or S character. Terminates when an end-of-file record is
received; the final line of an Intel hex dump is

:00000001FF
and the standard final line of a Motorola hex dump is

S9030000FC
although any S7, S8, or S9 termination record will terminate reception. Motorola S0
header records are accepted and ignored. Each input text line is temporarily stored at
PAD. Be sure that the PAD buffer is large enough to accommodate a full line (decimal
80 bytes or more is safe). See the glossary entries for DUMP.INTEL, DUMP.S1, and
DUMP.S2 for descriptions of Intel and Motorola hex formats.
Implementation detail: RECEIVE.HEX calculates an offset as the specified xaddr
minus the first address specified in the <text> file. This offset is then added to every
byte's file address (specified in the <text> file) to calculate the QED destination
address. If the specified xaddr = -1 (0xFFFFFFFF), the offset is set to zero. This
scheme allows the data in a <text> hex dump file with arbitrarily reported addresses to
be loaded starting at any desired location in the QED memory space.
Pronunciation: "receive-hex"

void RESTORE (void)
Restores the memory map user variables stored by the last execution of SAVE to their
respective user variables. To use, simply type at your terminal:

RESTORE
See SAVE.

void SAVE (void)
Saves the current memory map so that it may be restored later. Saves the QED-Forth
dictionary pointer DP, names pointer NP, variable pointer VP, last xnfa in the FORTH
vocabulary, and CURRENT.HEAP in a reserved area in EEPROM (0xAE0C to
0xAE1A). RESTORE fetches these quantities and places them in the appropriate user
variables to restore the saved state. Useful for dictionary management and for
recovery from crashes. To use, simply type from the terminal:

SAVE
after sending a .TXT download file created by the WinEdit "Make" or "Rebuild" utilities.
Consult the Debugging chapter in the "Getting Started" book for more information.

void SERIAL1.AT.STARTUP (void)
Initializes a flag in EEPROM which installs the primary serial port (serial1) as the default
serial port used by the QED-Forth interpreter after each reset or restart. The serial1
port is supported by the 68HC11's on-chip hardware UART. To use, simply type at
the terminal:

SERIAL1.AT.STARTUP
Implementation detail: Sets the contents of address 0xAE1D in EEPROM to 0xFF.
Upon each reset or restart, the QED-Forth startup routine checks this byte, and
contents of 0xFF cause the USE.SERIAL1 routine to be executed. See the entry in
the Main Glossary entry for Serial1AtStartup().
Pronunciation: "serial-one-at-startup"

Interactive Debugger Glossary 109

void SERIAL2.AT.STARTUP (uint baud_rate)
Initializes a flag in EEPROM which installs the secondary serial port (serial2) at the
specified baud_rate as the default serial port used by the QED-Forth interpreter after
each reset or restart. The serial2 port is supported by QED-Forth's software UART
using hardware pins PA3 (input) and PA4 (output). The specified baud rate u must a
power of 2 times 75 baud up to a maximum of 9600 baud. Thus the allowed baud
rates for this routine are 75, 150, 300, 600, 1200, 2400, 4800, and 9600 baud.
The effect of this routine is canceled by executing SERIAL1.AT.STARTUP. Note that
the serial2 port can support many more baud rates, but the options have been limited
to facilitate setting a reasonable startup baud rate based on a simple implementation as
described below. Note also that the maximum baud rate that can be sustained by the
serial2 port is less than 9600 baud; see the glossary entry for BAUD. For example, to
specify that the serial2 port is to be used at startup with a baud rate of 2400 baud, type
from the terminal:

DECIMAL 2400 SERIAL2.AT.STARTUP
Be sure to modify your terminal's baud rate setting to match the new baud rate, and
make sure that DIP switch#4 on the QED Board is in the ON position when using the
serial2 port. See the entry in the Main Glossary entry for Serial2AtStartup().

void SET.BOOT.VECTOR (xaddr xcfa --)
Compiles a 6-byte sequence at locations 0x7FFA-0x7FFF on page 0x0C so that upon
subsequent restarts and ABORTs, the function having the xcfa (execution address) will
be executed BEFORE any other autostart routines are executed. The execution order
at startup is: boot_vector, then priority_autostart, then autostart. Note that the “page C
write protect” jumper must be removed for this function to be effective. The boot vector
is most useful for extending the kernel in a "bullet-proof" way that cannot be overwritten
unless the page C write protect jumper is removed. For example, suppose that you want
to allow fail-safe field firmware upgrades using Compact Flash (CF) cards via Mosaic's
CF Wildcard. This can be accomplished by removing the page C hardware write protect
jumper, loading the CF Wildcard kernel extension on page 0x0C, and compiling a
startup function on page C that checks for the presence of an "AUTOEXEC.QED" file
that will be automatically executed (loaded) if present. Using SetBootVector, the startup
function can be declared as a boot vector, and then the page C write protect jumper can
be installed. The boot vector will be able check for the presence of a firmware upgrade
file, and the hardware write protection of page C prevents the erasure of the boot vector
or its code. To remove the boot vector, take off the page C write protect jumper and call
ClearBootVector (CLEAR.BOOT.VECTOR in Forth), or perform a “factory cleanup”. We
recommend that this function be invoked interactively from the QED-Forth prompt.
Assume that a function called Page_C_Startup has been defined. Forth programmers
can just execute:

CFA.FOR Page_C_Startup SET.BOOT.VECTOR
C programmers can use the *.map file generated by the C compiler to look up the
compilation address and page of the Page_C_Startup function, or the function can be
defined using the _Q prefix as:

_Q void Page_C_Startup(void) { function body goes here }
Then from the QED-Forth prompt, type

CFA.FOR Page_C_Startup SET.BOOT.VECTOR

110 Glossary I: QCard/QScreen/Handheld Control-C Glossary

Make sure that the page containing the debug headers is included in your final runtime
system.

void SP! (...)
Clears all items off the QED-Forth data stack and resets the data stack pointer to its
default location.
Pronunciation: "s-p-store"

void STANDARD.MAP (void)
Sets a flag in EEPROM and changes the state of a hardware latch to put the standard
memory map into effect. After execution of this routine, and upon each subsequent
reset or restart, hex pages 4, 5, 6, and 0x10-17 are addressed in flash memory, and
pages 1, 2, 3, and 0x18-1F are addressed in RAM. After code is downloaded to RAM
and transferred to flash using the PAGE.TO.FLASH function, establishing the standard
map allows code resident on pages 4, 5 and 6 (and pages 0x10-17) to be executed. To
establish the download memory map, see the glossary entry for DOWNLOAD.MAP.
Note that the standard map is active after a "factory cleanup" operation.

void STANDARD.RESET (void)
Undoes the effect of the COLD.ON.RESET command so that subsequent resets will
result in the standard warm-or-cold startup sequence. To use, simply type at the
terminal:

STANDARD.RESET
Implementation detail: sets the flag at location 0xAE1C in EEPROM to 0xFF.
See the entry in the Main Glossary entry for StandardReset().

int TO.FLASH (xaddr source, xaddr destination, uint numbytes)
Transfers numbytes (0 <= numbytes <= 65,535) starting at the specified source
extended address, to the specified destination extended address in flash. The source
may be anywhere in memory; it may even be in the flash which is being programmed.
The destination must be in flash. Returns a flag equal to -1 if the programming was
successful, or 0 if the programming failed. Reasons for failure include write protected
flash (e.g., attempting to program page 0x0C while the page C write protect jumper is
installed), or a destination that is not in a programmable page in flash memory. (If any
locations in the flash are programmed more than 10,000 times, the cell may wear out
causing a failure flag to be returned). Assuming that the standard 512 Kbyte flash is
present on the board, writable flash pages include pages hex 4, 5, 6, 7, 0xC, 0xD, and
0x10-17 in the standard map, and pages 1, 2, 3, 7, 0xC, 0xD, and 0x18-1F in the
download memory map. This function uses the 68HC11's on-chip RAM at hex B200 to
B3CF to manage the write to the flash (the real-time clock and C/Forth interrupt stack
reserve the bytes at B3D0 to B3FF). The remaining on-chip RAM at B000 to B1FF
remains available to the user. Caution: the prolonged disabling of interrupts by
TO.FLASH can adversely affect real-time servicing of interrupts including those
associated with the secondary serial line. See PAGE.TO.FLASH and ALL.TO.FLASH.

void U. (int)
Prints the input parameter as an unsigned integer. Number conversion is performed in
the current number base set by the most recent execution of DECIMAL or HEX.
Pronunciation: "u-dot"

Interactive Debugger Glossary 111

void USE.SERIAL1 (void)
Installs the primary serial port (serial1) as the serial link called by Emit(), AskKey(),
and Key(). The serial1 port is associated with the 68HC11's on-chip hardware
UART. Stores the xcfa of Key1() in UKEY, the xcfa of AskKey1() in UASK_KEY, and
the xcfa of Emit1() in UEMIT. Thus the vectored routines Key(), AskKey(), and Emit()
will automatically execute the serial1 routines Key1(), AskKey1(), and Emit1()
respectively. Initializes the resource variable SERIAL1.RESOURCE to zero, and
initializes the resource variable associated with the prior serial channel in use (typically
either SERIAL1.RESOURCE or SERIAL2.RESOURCE) to zero. Does not disable the
serial2 port. To use, simply type at the terminal:

USE.SERIAL1
See the entry in the Main Glossary entry for UseSerial1().

void USE.SERIAL2 (void)
Installs the secondary serial port (serial2) as the serial link called by Emit(), AskKey(),
and Key(), calls INIT.SERIAL2 to initialize the serial2 port, and globally enables
interrupts to allow the serial2 port to operate. The serial2 port is supported by QED-
Forth's software UART using hardware pins PA3 (input) and PA4 (output). Stores the
xcfa of Key2() in UKEY, the xcfa of AskKey2() in UASK_KEY, and the xcfa of Emit2()
in UEMIT. Thus the vectored routines Key(), AskKey(), and Emit() will automatically
execute the serial2 routines Key2(), AskKey2(), and Emit2() respectively. Initializes
the resource variable SERIAL2.RESOURCE to zero, and initializes the resource
variable associated with the prior serial channel in use (typically either
SERIAL1.RESOURCE or SERIAL2.RESOURCE) to zero. Does not disable the
serial1 port. To use, simply type at the terminal:

USE.SERIAL2
See BAUD2, and see the entry in the Main Glossary entry for UseSerial2().

void WARM (void)
Restarts the QED-Forth system and clears the data and return stacks and executes
ABORT. Unlike COLD, WARM does not initialize all of the user variables to their
default values. To use, simply type at the terminal:

WARM
See the entry in the Main Glossary entry for Warm().

int WHICH.MAP (void)
Returns a 0 if the current memory map is the "standard map", and returns a 1 if the
current map is the "download map". If the standard map is active, pages 4, 5, and 6
and 0x10-0x17 are addressed as flash, and pages 1, 2, and 3 (and pages 0x18-0x1F, if
present) are addressed in as RAM. If the download map is active, pages 4, 5, and 6
(and 0x10-0x17, if present) are addressed as RAM, and pages 1, 2, and 3 and pages
0x18-0x1F are addressed as flash memory. This routine allows a user or program to
verify which map is currently being used. After a "factory cleanup" operation, the
standard map is active. See STANDARD.MAP and DOWNLOAD.MAP.

void WORDS (void)
Prints all words in the CURRENT QED-Forth vocabulary; this can be a useful way of
reminding yourself of which recently defined QED-Forth function names can be

112 Glossary I: QCard/QScreen/Handheld Control-C Glossary

interactively typed. WORDS incorporates PAUSE.ON.KEY, so the printout can be
terminated by typing a carriage return or . (dot); it can be suspended and resumed by
typing other characters, and it responds to XON/XOFF handshaking (see
PAUSE.ON.KEY). Each word is printed left justified in a field of 16 or 32 characters,
3 names per line. Characters that are not saved in the headers are represented by the
appropriate number of _ characters. To use, simply type at the terminal:

WORDS
and then type an additional carriage return to stop the printout when you have seen
enough.

