
 April 2004

The GUI Software Toolkit for the
QScreen Controller

Kernel Verson 4.4

Glossary of GUI Functions

© 2004 Mosaic Industries, Inc.

www.mosaic-industries.com

Glossary of Terms 2

Mosaic Industries © 2004

RELEASE 3/31/2004 KERNEL EXTENSION V4.4

Glossary of Terms 5
Action flag 5
Array_pf struct 5
Button location 5
Button object 6
Col, Row 7
Dualmode 7
Graphic object 7
Graphics array 7
Keymap array 8
Menu 8
Menu manager 9
Modified xaddress 9
Object handler 9
Text array 9
Tvars struct 10
Xaddress 12

Glossary of Functions 13
Forth: ADD_BUTTON (button_location\ col\ row\ action_mask\ button_obj --) 16
C: ADD_BUTTON(uint button_location, uint col, uint row, uint action_mask, BUTTON *
button_obj) 16
Forth: ADD_GRAPHIC(col\ row\ action_mask\ graphic_obj_xaddr\ --) 16
C: ADD_GRAPHIC(uint col, uint row, uint action_mask, xaddr graphic_obj_xaddr) 16
Forth: ADD_TOUCH_BUTTON(col\ row\ action_mask\ button_obj --) 17
C: ADD_TOUCH_BUTTON(uint col, uint row, uint action_mask, BUTTON * button_obj) 17
Forth: BLANKBUTTON(flags\ draw_graphic_xaddr\ release_graphic_xaddr\ press_graphic_xaddr\
press_handler\ release_handler\ label1\ label2\ label3\ label4 <name> --) 18
C: BLANKBUTTON(uint flags, xaddr draw_graphic_xaddr, xaddr release_graphic_xaddr, xaddr
press_graphic_xaddr, (void *) press_handler, (void *) release_handler, char * label1, char * label2,
char * label3, char * label4,<name>) 18
Forth: BUILD_MENU 18
C: BUILD_MENU(arrayname, num_elements) 18
Forth: Button_Draw (col\ row\ tvars_addr\ tvars_page\ xpfa --) 19
C: void Button_Draw(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page, BUTTON *
button_xaddr) 19
Forth: Button_Draw_Textonly (col\ row\ tvars_addr\ tvars_page\ xpfa --) 19
C: void Button_Draw_Textonly(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,
BUTTON * button_xaddr) 19
Forth: Button_Erase_Textonly (col\ row\ tvars_addr\ tvars_page\ xpfa --) 19
C: void Button_Erase_Textonly(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,
BUTTON * button_xaddr) 19
Forth: Button_Press (col\ row\ tvars_addr\ tvars_page\ xpfa --) 19
C: void Button_Press(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page, BUTTON *
button_xaddr) 19
Forth: Button_Release (col\ row\ tvars_addr\ tvars_page\ xpfa --) 19
C: void Button_Release(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page, BUTTON *
button_xaddr) 19
Forth: Button_Repeat (col\ row\ tvars_addr\ tvars_page\ xpfa --) 19
C: void Button_Repeat(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page, BUTTON *
button_xaddr) 19

Glossary of Terms 3

Mosaic Industries © 2004
Forth: Calibrate_Touchscreen (raw0\raw1\raw2 --) 19
C: void Calibrate_Touchscreen(long raw0, long raw1, long raw2) 19
Forth: Clear_Graphics (tvars_addr\ tvars_page --) 20
C: void Clear_Graphics(GUI_VARS * tvars_addr, page tvars_page) 20
Forth: Clear_Pixel (x \ y --) 20
C: void Clear_Pixel(uint x, uint y) 20
Clears a pixel directly from the LCD display bypassing the graphics array. Since it erases directly
from the screen, and not from the graphics array, calling Update_Graphics will rewrite anything
removed from the screen by Clear_Pixel. See Set_Pixel. 20
Forth: Clear_Text (tvars_addr\ tvars_page --) 20
C: void Clear_Text(GUI_VARS * tvars_addr, page tvars_page) 20
Forth: colrow_to_button (row\ col -- button number) 20
C: COLROW_TO_BUTTON(col,row) 20
Forth: Config_Display (graphics_cols\ graphics_rows\ graphics_start\ background_fill\ text_cols\
text_rows\ text_start\ heap_bottom\ heap_top\ tvars_addr\ tvars_page --) 20
C: void Config_Display(uint graphics_cols, uint graphics_rows, addr graphics_start, uchar
background_fill, uint text_cols, uint text_rows, addr text_start, xaddr heap_bottom, xaddr heap_top,
GUI_VARS * tvars_addr, page tvars_page) 20
Forth: Direct_Draw_Graphic (col\ row\ tvars_addr\ tvars_page\ xpfa --) 21
C: void Direct_Draw_Graphic(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,
FORTH_CONST_ARRAY * graphic_xaddr) 21
Forth: Direct_Erase_Graphic (col\ row\ tvars_addr\ tvars_page\ xpfa --) 21
C: void Direct_Erase_Graphic(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,
FORTH_CONST_ARRAY * graphic_xaddr) 21
Forth: Do_Button (col\ row\ tvars_addr\ tvars_page\ action\ xpfa --) 21
C: void Do_Button(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page, uint action,
BUTTON * button_xaddr) 21
Forth: Do_Graphic (col\ row\ tvars_addr\ tvars_page\ action\ graphic_xaddr --) 23
C: void Do_Graphic (uint col, int row, GUI_VARS * tvars_addr, page tvars_page, uint action,
FORTH_CONST_ARRAY * graphic_xaddr) 23
Forth: Do_Menu (col\ row\ tvars_addr\ tvars_page\ action\ menu_xaddr --) 24
C: void Do_Menu(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page, uint action,
MENU * menu_xaddr) 24
Forth: Draw_Graphic (col\ row\ tvars_addr\ tvars_page\ xpfa --) 24
C: void Draw_Graphic(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,
FORTH_CONST_ARRAY * graphic_xaddr) 24
Forth: Erase_Graphic (col\ row\ tvars_addr\ tvars_page\ xpfa --) 24
C: void Erase_Graphic(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,
FORTH_CONST_ARRAY * graphic_xaddr) 24
Forth: FASTBUTTON(flags\ draw_graphic_xaddr\ release_graphic_xaddr \press_graphic_xaddr \
handler\ label1\ label2\ label3\ label4 <name> --) 24
C: FASTBUTTON(uint flags, xaddr draw_graphic_xaddr, xaddr release_graphic_xaddr xaddr
press_graphic_xaddr, (void *) handler, char * label1, char * label2, char * label3, char *
label4,<name>) 24
Forth: Init_Display (tvars_addr\ tvars_page --) 25
C: void Init_Display(GUI_VARS * tvars_addr, page tvars_page) 25
Forth: Init_Menu (offset\ col\ row\ tvars_addr\ tvars_page\ menu xpfa --) 25
C: void Init_Menu(uint offset, uint col, uint row, GUI_VARS * tvars_addr, page tvars_page, MENU
* menu_xaddr) 25
Forth: Init_Touch (tvars_addr\ tvars_page --) 25
C: void Init_Touch(GUI_VARS * tvars_addr, page tvars_page) 25
Forth: Menu_Install (offset\ col\ row\ tvars_addr\ tvars_page\ menu_xaddr --) 25
C: void Menu_Install(uint offset, uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,
MENU * menu_xaddr) 25
Forth: Menu_Remove (offset\ tvars_addr\ tvars_page\ menu_addr\ menu_page --) 26
C: void Menu_Remove(uint offset, GUI_VARS * tvars_addr, page tvars_page, MENU *
menu_xaddr) 26

Glossary of Terms 4

Mosaic Industries © 2004
Forth: NEW_MENU: and BUILD_MENU 26
C: NEW_MENU and BUILD_MENU(arrayname, num_elements) 26
Forth: NORMBUTTON(flags\ draw_graphic_xaddr\ release_graphic_xaddr \press_graphic_xaddr \
handler\ label1\ label2\ label3\ label4 <name> --) 27
C: NORMBUTTON(uint flags, xaddr draw_graphic_xaddr, xaddr release_graphic_xaddr, xaddr
press_graphic_xaddr, (void *) handler, char * label1, char * label2, char * label3, char *
label4,<name>) 27
Forth: Read_Touchscreen (tvars_addr \ tvars_page – n | 0 <= n <= 20) 28
C: int Read_Touchscreen(GUI_VARS * tvars_addr, page tvars_page) 28
Forth: Read_Raw_Coords (tvars_addr \ tvars_page – raw_coords) 28
C: long Read_Raw_Coords(GUI_VARS * tvars_addr, page tvars_page) 28
Forth: Service_Touch (button number \ tvars_addr \ tvars_page --) 28
C: void Service_Touch(int button, GUI_VARS * tvars_addr, page tvars_page) 28
Forth: Set_Cursor_State (isvisible\ isflashing --) 29
C: void Set_Cursor_State(boolean isvisible, boolean isflashing) 29
Forth: Set_Display_Mode (mode --) 29
C: void Set_Display_Mode(uint mode) 29
Forth: Set_Display_State (graphics\ text --) 29
C: void Set_Display_State(boolean graphics, boolean text) 29
Forth: Set_Gr_Area (columns --) 29
C: void Set_Gr_Area(uint columns) 29
Forth: Set_Gr_Home_Addr (address --) 29
C: void Set_Gr_Home_Addr(addr address) 29
Forth: Set_Pixel (x\y --) 30
C: void Set_Pixel(uint x, uint y) 30
Forth: Set_Text_Area (columns --) 30
C: void Set_Text_Area(uint columns) 30
Forth: Set_Text_Home_Addr (address --) 30
C: void Set_Text_Home_Addr(addr address) 30
Forth: Set_Text_Mode (modebyte --) 30
C: void Set_Text_Mode(uchar modebyte) 30
Forth: Std_Display (tvars_addr\ tvars_page --) 31
C: void Std_Display(GUI_VARS * tvars_addr, page tvars_page) 31
Forth: Uninit_Menu (offset\ col\ row\ tvars_addr\ tvars_page\ menu xpfa --) 31
C: void Uninit_Menu(uint offset, uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,
MENU * menu_xaddr) 31
Forth: Update_Graphics (tvars_addr\ tvars_page --) 31
C: void Update_Graphics (GUI_VARS * tvars_addr, page tvars_page) 31
Forth: Update_Here_With (address\ graphics_resource_addr\ graphics_resource_page\
garray_xaddr --) 32
C: void Update_Here_With(addr address, addr * graphics_resource_addr, page
graphics_resource_page, FORTH_ARRAY * garray_xaddr) 32
Forth: Update_Text (tvars_addr\ tvars_page --) 32
C: void Update_Text(GUI_VARS * tvars_addr, page tvars_page) 32
Forth: Update_Text_And_Graphics (tvars_addr\ tvars_page --) 32
C: void Update_Text_And_Graphics(GUI_VARS * tvars_addr, page tvars_page) 32
Forth: Wait_For_Press (tvars_addr\ tvars_page --) 32
C: void Wait_For_Press(GUI_VARS * tvars_addr, page tvars_page) 32
Forth: Wait_For_Release (tvars_addr\ tvars_page --) 32
C: void Wait_For_Release(GUI_VARS * tvars_addr, page tvars_page) 32
Forth: Wait_Then_Service_Touch (tvars_addr\ tvars_page --) 32
C: void Wait_Then_Service_Touch(GUI_VARS * tvars_addr, page tvars_page) 32

Glossary of Terms 5

Mosaic Industries © 2004

Glossary of Terms
Action flag

A flag that is passed to an object handler with an object to determine the behavior of
the object. Some actions are used by several object types and others have meaning
only to one specific type of object. The actions are described in the Glossary of
Functions under the object handlers for which they are used. See Do_Graphic and
Do_Button for contextual explanations of the actions.

Array_pf struct
Forth array parameter field structure describing the geometry of a forth array. The
actual array data is contained in the heap pointed to by a heap handle.
CFORTH_ARRAY structure
Offset Type Element name Description
0x0000 xaddr handle Xaddress of the pointer (heap xhandle) to

the beginning of the data
0x0004 addr cur_heap 16 bit addr of top of heap (same page as

xhandle)
0x0006 uint bytes_per_element # of bytes in each element
0x0008 uint num_dimensions # of dimensions in array
0x000A uint num_cols # of columns (1st dimension)
0x000C uint num_rows # of rows (2nd dimension)
0x000E uint num_pages # of pages (3rd dimension)
0x0010 uint num_books # of books (4th dimension)

Button location
An integer value describing one of the 20 touch sensitive areas of the touchscreen
panel. This quantity is used to index the keymap array when buttons are pressed.
Below is a map of the button locations on the touchscreen.

1 5 9 13 17

2 6 10 14 18

3 7 11 15 19

4 8 12 16 20

Glossary of Terms 6

Mosaic Industries © 2004
Button object

A data structure of type BUTTON that describes a button. The button object handler,
Do_Button, accepts the xaddress of this structure, an action flag, and a col/row
location.
BUTTON structure
Offset Type Element name Description
0x0000 uint flags A set of bitmapped flags describing

button’s behavior
0x0002 xaddr graphic_handler_xcfa The xaddress of Do_Graphic
0x0006 xaddr draw_graphic Xaddress of graphic object drawn for

DRAW_ACTION
0x000A xaddr release_graphic Xaddress of graphic object drawn for

RELEASE_ACTION
0x000E xaddr press_graphic Xaddress of graphic object drawn for

PRESS_ACTION
0x0012 xaddr press_handler Xaddress of user code executed for

PRESS_ACTION
0x0016 xaddr release_handler Xaddress of user code executed for

RELEASE_ACTION
0x001A xaddr label1 Modified xaddress of text string for line

1 of the button
0x001E xaddr label2 Modified xaddress of text string for line

2 of the button
0x0022 xaddr label3 Modified xaddress of text string for line

3 of the button
0x0026 xaddr label4 Modified xaddress of text string for line

4 of the button
The flags in the above structure determine the specific behavior of the button. All
other elements are irrelevant if unused. The flags, which are constants that may be
ORed together, determine which elements will be required. Button defining macros
configure common flags. If a bit is set, then the flag is true. If it is cleared, then it is
false. The possible flags are:
DRAW_GRAPHIC_FLAG

Indicates that there is a valid xaddress for a graphic object in the draw_graphic
field to be drawn for the DRAW_ACTION.

RELEASE_GRAPHIC_FLAG
Indicates that there is a valid xaddress for a graphic object in the release_graphic
field to be drawn for the RELEASE_ACTION.

PRESS_GRAPHIC_FLAG
Indicates that there is a valid xaddress for a graphic object in the press_graphic
field to be drawn for the PRESS_ACTION.

DIR_DRAW_GRAPHIC_FLAG
When drawing the draw_graphic object, use direct to screen drawing.

DIR_RELEASE_GRAPHIC_FLAG
When drawing the release_graphic object, use direct to screen drawing.

DIR_PRESS_GRAPHIC_FLAG
When drawing the press_graphic object, use direct to screen drawing.

Glossary of Terms 7

Mosaic Industries © 2004
DRAW_TEXT_FLAG

Print the text strings whose xaddress are stored in label1, label2, label3, and
label4 in the button.

PRESS_HANDLER_FLAG
Execute the code at the xaddress stored in the press_handler field when the button
is given a PRESS_ACTION.

RELEASE_HANDLER_FLAG
Execute the code at the xaddress stored in the release_handler field when the
button is given a RELEASE_ACTION.

REPEAT_FLAG
If the button is pressed and held, start executing the press_handler repeatedly. If
the press handler is not enabled by having the PRESS_HANDLER_FLAG set,
then the REPEAT_FLAG will have no effect.

TEXT_UPDATE_PRESS_FLAG
Call Update_Text when the button is given a PRESS_ACTION.

TEXT_UPDATE_RELEASE_FLAG
Call Update_Text when the button is given a RELEASE_ACTION.

GRAPHICS_UPDATE_PRESS_FLAG
Call Update_Graphics when the button is given a PRESS_ACTION.

GRAPHICS_UPDATE_RELEASE_FLAG
Call Update_Graphics when the button is given a RELEASE_ACTION.

C_STYLE_TEXT_FLAG
Interpret strings in label fields as C style strings instead of Forth.

The macros used to create buttons are FASTBUTTON, NORMBUTTON, and
BLANKBUTTON. They are described in the Glossary of Functions.

Col, Row
Used to describe position on the LCD screen. When used in reference to graphics,
unless otherwise stated, col is a unit of 6 horizontal pixels and row is a unit of 1
vertical pixel. When used in reference to text, unless otherwise stated, col is a unit of
1 character width, 6 pixels, and row is a unit of 1 character line, 8 pixels.

Dualmode
Refers to the technique of operating the LCD display simultaneously in text and
graphics modes. The QScreen has internal display routines that control the text layer
of the display while the dualmode driver extensions contained in the GUI Toolkit
extend the capabilities to allow graphics mode to be used in tandem with text mode.

Graphic object
Image to be displayed on the LCD display handled by Do_Graphic. Graphic objects
are constant 2 dimensional forth arrays generated by the Image Conversion Program.
The Image Conversion Program also generates a header file comprising constants that
refer to the xaddresses of the graphic objects. See Do_Graphic.

Graphics array
An array in RAM that contains a shadow of the graphics layer on the display. The
graphics array is a forth array dimensioned in the display heap area. The tvars struct

Glossary of Terms 8

Mosaic Industries © 2004
contains the graphics array’s parameter field (array_pf struct). The location of the
display heap is also specified in the tvars struct. DRAW_ACTION,
REDRAW_ACTION, or ERASE_ACTION cause objects to write data to this array.
Subsequently calling Update_Graphics sends the graphics array data to the display.
Direct screen writes completely bypass this array. If Update_Graphics is called after
a direct screen write, then any data not mirrored in the graphics array is overwritten.
Init_Display dimensions and fills the graphics array with the background_fill member
of tvars.

Keymap array
A forth array whose parameter field is stored in the tvars struct. This is an array of
structures of type KEYMAP_ENTRY. It has the number of elements equal to the
number of touch sensitive areas on the touchscreen or keypad. For the standard
QScreen controller there are 20 elements. When a the touchscreen area is pressed or
released, the corresponding element of the keymap array is examined to determine if
anything should done in response. The menu manager looks to see if that element
contains a valid button object, and if so the button object’s handler is executed. The
parameters passed to the handler are the location of the button in the menu, the button
object’s xaddress, and the PRESS_ACTION, RELEASE_ACTION, or
REPEAT_ACTION. If that element contains 0x00000000 in the object field, then the
button press and the subsequent release are ignored.
KEYMAP_ENTRY structure
Offset Type Element name Description
0x0000 uint row The relative or absolute row position for the

button graphics*
0x0002 uint col The relative or absolute col position for the

button graphics*
0x0004 xaddr object The xaddress of the object structure
0x0008 xaddr obj_handler The xaddress of the object handler

* When this structure is used as part of the keymap, the row and col are absolute.
When it is used as part of a menu (see MENU_ENTRY struct), the row and col are
relative displacements from the upper left corner of the menu.

Menu
An array of structures, each of type MENU_ENTRY, that serves as a grouping of
button and graphic objects. This array also contains location information about each
object. A typical menu might contain several buttons and perhaps a logo or other
graphic objects. Multiple menus may be displayed at the same time. Conflicts will
occur if the same location is used by two menus at the same time however. Each
element of the array is of type MENU_ENTRY. Macros simplify the creation of
menus. See NEW_MENU, ADD_BUTTON, ADD_GRAPHIC, and BUILD_MENU
for information on creating menus. See Init_Menu, Uninit_Menu, Do_Menu for
information on using menus. Each element of a menu is of the following form:

Glossary of Terms 9

Mosaic Industries © 2004
MENU_ENTRY structure
Offset Type Element name Description
0x0000 KEYMAP_ENTRY keymap_entry A sub-structure of type

keymap_entry that will be copied
into the keymap array when the
menu is installed.

0x000C uint action_mask Bitmask used to control what
action flags may be passed
through to the object for
Do_Menu.

0x000E uint button The relative keymap index of a
button object. If a nonzero
number is passed to Init_Menu
for the button offset, then it is
added to the relative keymap
index to form an absolute keymap
index.

Menu manager
The software routine that scans the keypad or touchscreen hardware and makes calls
to objects stored in the keymap array. The standard menu manager used in the GUI
Toolkit is called Wait_Then_Service_Touch, but any routine that can collect user
input and make the appropriate calls to the objects stored in a menu can act as a menu
manager.

Modified xaddress
See xaddress.

Object handler
The function that processes an object and its parameters and initiates its behavior.
Do_Graphic and Do_Button are the object handlers for graphic and button objects
respectively. These object handlers may be called from C as described in the
Glossary of Functions section, but they are also required as part of certain structures
such as BUTTON and KEYMAP_ENTRY. When programming in C, use the
following syntax for placing the 24 bit xaddress of these handlers in the structures
when building them manually.
TO_XADDR(DO_GRAPHIC_ADDR, DO_GRAPHIC_PAGE)
TO_XADDR(DO_BUTTON_ADDR, DO_BUTTON_PAGE)
The macros that assist in button and menu creation eliminate the need to build those
structures manually. Consequently, there is rarely a need to explicitly specify the
xaddresses. See Do_Graphic and Do_Button.

Text array
An array in RAM that contains a shadow of the text layer on the display. The text
array is a forth array dimensioned in the display heap area. Its parameter is field
stored at the address location returned by GARRAY_XPFA which is always in
common RAM. The forth equivalent garray.xpfa returns an xaddress with 0x00 as
the page. Although for historical reasons the name implies that it is used for

Glossary of Terms 10

Mosaic Industries © 2004
graphics, the GUI Toolkit only uses this array for storing text. This location is the
standard location for the display array parameter field on the QScreen. The elements
of this array contain ASCII data that has been shifted down by 0x20. The Toshiba
TC6963 chip on the display uses this modified ASCII method for storing text.
StringToDisplay (forth: $>display) requires that the text array to be located here.
Init_Display dimensions and clears the text array by filling it with 0x00 (ASCII space
shifted by 0x20).

Tvars struct
A structure that contains all the global variables used by the GUI Toolkit. The user’s
program must contain an instance of this structure of type GUI_VARS. Throughout
this document and in all of the example routines, the instance of this structure is
named tvars. The macro, TVARS is a replacement for (tvars, THIS_PAGE). Many
of the GUI Toolkit’s functions require the base address of this structure as one of the
arguments. Below is a description of the elements of this structure.

Glossary of Terms 11

Mosaic Industries © 2004
GUI_VARS structure
Offset Type Element name Description
0x0000 xaddr display_heap_top Xaddress of top (last byte) of display

heap
0x0004 xaddr display_heap_bottom Xaddress of bottom (first byte) of

display heap
0x0008 int background_fill Background fill byte for graphic layer.

The lower 6 bits describe a 6 pixel
horizontal field.

0x000A array_pf graphics_garray 18 byte long array_pf sub-structure
for the graphics layer array. This
array is dimensioned and initialized in
the display heap area by Init_Display.

0x001C xaddr display_resource Display resource variable for access
control

0x0020 addr gr_home_addr Address of graphics area on the
display controller

0x0022 addr text_home_addr Address of text area on the display
controller

0x0024 uint graphic_rows # of pixel lines on the display
0x0026 uint graphic_cols # of cols on the display (6 pixels/byte)

1 col=6 pixels
0x0028 uint text_rows # of text lines on the display
0x002A uint text_cols # of text columns on the display
0x002C array_pf keymap_array 18 byte long array_pf sub-structure

for the keymap array. This array_pf
struct is initialized and the array is
dimensioned and initialized to 0xFF
by Init_Touch in the current heap
when Init_Touch is called.

0x003E uint current_row* The row of the button being pressed
0x0040 uint current_col* The col of the button being pressed
0x0042 uint current_keynum* The button number of the button being

pressed
0x0044 xaddr current_button* The xaddress of the button object

being pressed
0x0048 uint repeat_delay # of timeslicer counts to wait before

repeating
0x004A uint repeat_period # of timeslicer counts to wait between

repetitions
* These quantities are never read by the GUI Toolkit routines. They are written to by
the menu manager to provide a means for the user’s handler code to implement
location sensitive behavior. For example, a handler could use these variables to
implement a modal set of selector buttons so that when one button is pressed, it stays
in the ‘pressed’ position while releasing the previously pressed button.

Glossary of Terms 12

Mosaic Industries © 2004
Xaddress

A 24 bit number consisting of a 16 bit address and an 8 bit page. Xaddresses occupy
32 bit fields. C functions that use pointers only return 16 bit addresses. The macros
used in the GUI Toolkit pad out the 16 bit addresses as needed to accommodate the
functions that do require full xaddresses. A modified xaddress is used to describe
strings of two possible types, forth style and C style. If the upper 8 bits of the
xaddress of a string are set to 0xFF, then the xaddress will be interpreted as a C style
null terminated string. If the upper 8 bits are set to 0x00, then the string will be
interpreted as a forth style counted string.

Glossary of Functions 13

Mosaic Industries © 2004

Glossary of Functions

Many of the functions in this glossary are not needed for typical GUI based
applications. They are provided to allow advanced programmers to use the tools in a
more manual and flexible way. These are the functions that are likely to be used in any
application.

ADD_BUTTON Adds button to menu in a menu definition
ADD_GRAPHIC Adds graphic to menu in a menu definition
ADD_TOUCH_BUTTON Adds touchscreen button to a menu
BUILD_MENU Terminates the creation of a menu
Calibrate_Touchscreen Calibrate the touchscreen
Clear_Graphics Clears the graphics layer
Clear_Pixel Clear a pixel from the display
Clear_Text Clears the text layer
Do_Graphic Handles graphic object actions
FASTBUTTON Creates a new button that is fast drawing
Init_Display Initializes the LCD display hardware
Init_Menu Displays and activates a menu
Init_Touch Initializes touchscreen environment vars
NEW_MENU Begins a new menu definition
Read_Touchscreen Read the calibrated touchscreen
Read_Raw_Coords Read raw values from the touchscreen
Service_Touch Processes a button press passed to it
Set_Cursor_State Sets flashing and visibility cursor attributes
Set_Pixel Set a pixel on the display
Std_Display Configures the LCD for typical defaults
Uninit_Menu Erases a menu from screen and nullifies it
Update_Graphics Updates the graphics layer on the LCD
Update_Text Updates the text layer on the LCD
Update_Text_And_Graphics Updates text and graphics layers
Wait_For_Press Wait for press of the touchscreen before returning
Wait_For_Release Wait for release of the touchscreen before returning
Wait_Then_Service_Touch Polls the touchscreen for a press
#include <mosaic/gui_tk/to_large.h> Must specify this before each set of button
or menu definitions if programming in C
#include <mosaic/gui_tk/fr_large.h> Must specify this at the end of each set of
button or menu definitions if programming in C

Glossary of Functions 14

Mosaic Industries © 2004

The Forth and C header files have many constants defined in them. Constants
shown in italics are only included in the Forth header file. Most of these are not useful in
most applications, but are provided to allow advanced programmers to have better access
to the GUI Toolkit configuration information. A complete listing of the constants in use
by the GUI Toolkit is provided below. If any of these names is used in the user’s Forth
code, a non-unique warning will be issued. In C programs, a preprocessor error is issued.
The constants in this list that are generally useful are described in detail in their relevant
glossary entries and manual sections.

Display hardware constants
*PRIOR_CURSOR_STATE Address of a display driver control variable
GRAPHICS_DATA_ADDR Hardware address of display data port
GRAPHICS_CMD_ADDR Hardware address of display command port
AWSET_CMD Command for AutoWrite Set
AWRESET_CMD Command for AutoWrite Release
SET_TX_HOME_CMD Command to set text layer home display address
SET_TX_AREA_CMD Command to set text layer width
SET_GR_HOME_CMD Command to set graphics layer home address
SET_GR_AREA_CMD Command to set graphics layer width
MODE_CMD Command to set display controller mode
DISPLAY_MODE_CMD Command to set display visibility mode
CURSOR_BLINK Bit flag to set cursor blink state
CURSOR_ON Bit flag to set cursor visibility
TEXT_MODE Bit flag to enable/disable text mode
GRAPHICS_MODE Bit flag to enable/disable graphics mode
OR_TEXT Bit flag to set text to be ORed with graphics
EXOR_TEXT Bit flag to set text to be XORed with graphics
AND_TEXT Bit flag to set text to be ANDed with graphics
LCD_TEXT_ADDR Default text home layer display address
LCD_GRAPHIC_ADDR Default graphics layer home display address
LINES_PER_CHAR Number of pixel rows per text mode character
GRAPHICS_COLUMNS Number of columns in bytes (6 pixels)
GRAPHICS_ROWS Number of pixel rows on the graphics layer
TEXT_COLUMNS Number of text columns on text layer
TEXT_ROWS Number of lines of text on text layer
DISPLAY_HEAP_TOP Xaddress of display heap top
DISPLAY_HEAP_BOTTOM Xaddress of display heap bottom
DEF_BACKGROUND_FILL Default fill byte for graphic layer background

Graphic object action flags
GRAPHICS_MASK Action mask for graphic objects
DRAW_ACTION Draw action flag
DIR_DRAW_ACTION Direct Draw action flag
REDRAW_ACTION Redraw action flag
ERASE_ACTION Erase action flag
DIR_ERASE_ACTION Direct erase action flag

Button object action flags
BUTTON_MASK Action mask for button objects
PRESS_REPEAT_ACTION Press while repeating action flag
PRESS_ACTION Press action flag
REL_ACTION Release action flag
DRAW_TEXTONLY_ACTION Draw only text portion action flag
ERASE_TEXTONLY_ACTION Erase only text portion action flag

Button object configuration flags
DRAW_GRAPHIC_FLAG Button uses draw graphic
RELEASE_GRAPHIC_FLAG Button uses release graphic
PRESS_GRAPHIC_FLAG Button uses press graphic
DIR_DRAW_GRAPHIC_FLAG Button directly draws draw graphic
DIR_RELEASE_GRAPHIC_FLAG Button directly draws release graphic
DIR_PRESS_GRAPHIC_FLAG Button directly draws press graphic

Glossary of Functions 15

Mosaic Industries © 2004

DRAW_TEXT_FLAG Button has text labels
PRESS_HANDLER_FLAG Button has a press handler
RELEASE_HANDLER_FLAG Button has a release handler
REPEAT_FLAG Button is repeating
TEXT_UPDATE_PRESS_FLAG Update_Text called when button is pressed
TEXT_UPDATE_RELEASE_FLAG Update_Text called when button is released
GRAPHICS_UPDATE_PRESS_FLAG Update_Graphics called when button is pressed
GRAPHICS_UPDATE_RELEASE_FLAG Update_Graphics called when button is released
C_STYLE_TEXT_FLAG Use C style interpretation of label strings

Menu object action flags
MENU_MASK Action mask for menu objects (obsolete)
INIT_ACTION Init action flag (obsolete)
UNINIT_ACTION Uninit action flag (obsolete)

Menu object entry configuration flags
BUTTON_NULL Disable menu entry slot
BUTTON_NONLOCAL Disable entry insertion into keymap
DEFAULT_REPEAT_PERIOD Default repeat period for repeating buttons
DEFAULT_REPEAT_DELAY Default repeat delay for repeating buttons

Constants used by the object building macros
BUTTON_COLS Number of button columns on the touchscreen
BUTTON_ROWS Number of button rows on the touchscreen
BUTTON_WIDTH Number of columns comprising a button
BUTTON_HEIGHT Number of pixel rows comprising a button
GRAPHICS_MASK Action mask for all drawing actions
FASTBUTTON_FLAGS Button configuration flags for fastbuttons
NORMBUTTON_FLAGS Button configuration flags for normbuttons

Glossary of Functions 16

Mosaic Industries © 2004

Forth: ADD_BUTTON (button_location\ col\ row\ action_mask\ button_obj --)
C: ADD_BUTTON(uint button_location, uint col, uint row, uint action_mask,

BUTTON * button_obj)
Adds a button object to a menu. Inside a menu definition, ADD_BUTTON is a
macro that inserts all the necessary information for a button object based on the
relative screen position specified by col and row and the address of the graphic
object. The button_location describes the relative button number used for this button.
If you are adding a touchscreen button, the macro ADD_TOUCH_BUTTON may be
used to eliminate the need for specifying the button_location.
ADD_TOUCH_BUTTON computes the button_location automatically based on the
col and row given. See Init_Menu for more details on how the button number is
used. The action_mask is a mask used to control which actions may be passed to the
object when Do_Menu is called. For most applications, DRAW_MASK should be
used. All of the actions are single bit flags thus several actions can be ORed together
to form an action mask. DRAW_MASK is a constant that ORs DRAW_ACTION,
ERASE_ACTION, DIR_DRAW_ACTION, REDRAW_ACTION,
DIR_ERASE_ACTION, DRAW_TEXTONLY_ACTION, and
ERASE_TEXTONLY_ACTION. Here is an example of the usage:

Forth:
NEW_MENU: mymenu_menu
...
12 3 32 DRAW_MASK mybutton1 ADD_BUTTON
...
...
BUILD_MENU

C:
NEW_MENU mymenu[4]=
{
... ,
ADD_BUTTON(12, 3, 32, DRAW_MASK, mybutton1),
... ,
...
};
BUILD_MENU(mymenu, 4);

Also see the example in the glossary entry for NEW_MENU.

Forth: ADD_GRAPHIC(col\ row\ action_mask\ graphic_obj_xaddr\ --)
C: ADD_GRAPHIC(uint col, uint row, uint action_mask, xaddr

graphic_obj_xaddr)
Adds a graphic object to a menu. Inside a menu definition, ADD_GRAPHIC is a
macro that inserts all the necessary information for a graphic object based on the
relative screen position specified by col and row and the address of the graphic
object. The action_mask is a mask used to control which actions may be passed to
the object when Do_Menu is called. For most applications, DRAW_MASK should
be used. All of the actions are single bit flags thus several actions can be ORed
together to form an action mask. DRAW_MASK is a constant that ORs
DRAW_ACTION, ERASE_ACTION, DIR_DRAW_ACTION,
REDRAW_ACTION, DIR_ERASE_ACTION, DRAW_TEXTONLY_ACTION, and

Glossary of Functions 17

Mosaic Industries © 2004

ERASE_TEXTONLY_ACTION. Since a graphic is simply a static image, it has no
touchscreen button associated with it. Here is an example of the usage:

Forth:
NEW_MENU: mymenu_menu
...
3 32 DRAW_MASK MY_LOGO ADD_GRAPHIC
...
...
BUILD_MENU

C:
NEW_MENU mymenu[4]=
{
... ,
ADD_GRAPHIC(3, 32, DRAW_MASK, MY_LOGO),
... ,
...
};
BUILD_MENU(mymenu, 4);

Also see the example in the glossary entry for NEW_MENU.

Forth: ADD_TOUCH_BUTTON(col\ row\ action_mask\ button_obj --)
C: ADD_TOUCH_BUTTON(uint col, uint row, uint action_mask, BUTTON *

button_obj)
Places an initializing data into a menu for a button. Inside a menu definition,
ADD_TOUCH_BUTTON is a macro that inserts all the necessary information for a
button object based on the relative screen position specified by col and row and the
address of the graphic object. The button_location is computed automatically based
on the col and row given since there is a direct relationship between the touchscreen
and the col and row position. The action_mask is a mask used to control which
actions may be passed to the object when Do_Menu is called. For most applications,
DRAW_MASK should be used. All of the actions are single bit flags thus several
actions can be ORed together to form an action mask. DRAW_MASK is a constant
that ORs DRAW_ACTION, ERASE_ACTION, DIR_DRAW_ACTION,
REDRAW_ACTION, DIR_ERASE_ACTION, DRAW_TEXTONLY_ACTION,
ERASE_TEXTONLY_ACTION. Here is an example of the usage:
Forth:

NEW_MENU: mymenu_menu
...
3 32 DRAW_MASK mybutton1 ADD_TOUCH_BUTTON
...
...
BUILD_MENU

C:
NEW_MENU mymenu[4]=
{
... ,
ADD_TOUCH_BUTTON(3, 32, DRAW_MASK, mybutton1),
... ,
...
};
BUILD_MENU(mymenu, 4);

Also see the example in the glossary entry for NEW_MENU.

Glossary of Functions 18

Mosaic Industries © 2004

Forth: BLANKBUTTON(flags\ draw_graphic_xaddr\ release_graphic_xaddr\
press_graphic_xaddr\ press_handler\ release_handler\ label1\ label2\ label3\
label4 <name> --)

C: BLANKBUTTON(uint flags, xaddr draw_graphic_xaddr, xaddr
release_graphic_xaddr, xaddr press_graphic_xaddr, (void *) press_handler,
(void *) release_handler, char * label1, char * label2, char * label3, char *
label4,<name>)
Creates a new button object. This macro integrates the creation and initialization of
the BUTTON structure. BLANKBUTTON is a lower level macro than its more used
cousins, FASTBUTTON and NORMBUTTON. It simply automates the creation of
the object. The specified value for the flags is stored in the flags field of the button.
The other parameters are stored in their respective fields in new button. The name
given to the new button is specified by <name>. Here is an example:
Forth:

DRAW_GRAPHIC_FLAG \ It has a draw graphic
RELEASE_GRAPHIC_FLAG or \ It has a release graphic
PRESS_GRAPHIC_FLAG or \ It has a press graphic
DRAW_TEXT_FLAG or \ It has text
PRESS_HANDLER_FLAG or \ It has a press handler
GRAPHICS_UPDATE_PRESS_FLAG or \ Call Update_Graphics on press
GRAPHICS_UPDATE_RELEASE_FLAG or \ Call Update_Graphics on release
LBLANK_PCX \ Graphic for DRAW_ACTION
LBLANK_PCX \ Graphic for RELEASE_ACTION
LBLACK_PCX \ Graphic for PRESS_ACTION
cfa.for myfunction \ The code xaddress for press handler
0\0 \ Dummy value for release handler
” ” \ Line 1 label
” Start” \ Line 2 label
” Pump” \ Line 3 label
” ” \ Line 4 label
BLANKBUTTON mybutton1 \ Instantiate the new button

C:
BLANKBUTTON(
DRAW_GRAPHIC_FLAG | // Has draw graphic
RELEASE_GRAPHIC_FLAG | // It has a release graphic
PRESS_GRAPHIC_FLAG | // It has a press graphic
DRAW_TEXT_FLAG | // It has text
PRESS_HANDLER_FLAG | // It has a press handler
GRAPHICS_UPDATE_PRESS_FLAG | // Call Update_Graphics on press
GRAPHICS_UPDATE_RELEASE_FLAG, // Call Update_Graphics on release
LBLANK_PCX, // Graphic for DRAW_ACTION
LBLANK_PCX, // Graphic for RELEASE_ACTION
LBLACK_PCX, // Graphic for PRESS_ACTION
myfunction, // The code address for press handler
0, // Dummy value for release handler
””, // Line 1 label
”Start”, // Line 2 label
”Pump”, // Line 3 label
””, // Line 4 label
mybutton1); // Instantiate the new button

Forth: BUILD_MENU
C: BUILD_MENU(arrayname, num_elements)

See NEW_MENU.

Glossary of Functions 19

Mosaic Industries © 2004

Forth: Button_Draw (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Button_Draw(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, BUTTON * button_xaddr)
Direct call to that carries out the DRAW_ACTION of a button. See Do_Button.

Forth: Button_Draw_Textonly (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Button_Draw_Textonly(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, BUTTON * button_xaddr)
Direct call to that carries out the DRAW_TEXTONLY_ACTION of a button. See
Do_Button.

Forth: Button_Erase_Textonly (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Button_Erase_Textonly(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, BUTTON * button_xaddr)
Direct call to that carries out the ERASE_TEXTONLY_ACTION of a button. See
Do_Button.

Forth: Button_Press (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Button_Press(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, BUTTON * button_xaddr)
Direct call to that carries out the PRESS_ACTION of a button. See Do_Button.

Forth: Button_Release (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Button_Release(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, BUTTON * button_xaddr)
Direct call to that carries out the RELEASE_ACTION of a button. See Do_Button.

Forth: Button_Repeat (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Button_Repeat(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, BUTTON * button_xaddr)
Direct call to that carries out the REPEAT_ACTION of a button. See Do_Button.

Forth: Calibrate_Touchscreen (raw0\raw1\raw2 --)
C: void Calibrate_Touchscreen(long raw0, long raw1, long raw2)

A function that calibrates the analog touchscreen using the raw touchscreen readings
of three points. The raw touchscreen readings are obtained with Read_Raw_Coords.
The points are chosen to avoid non-linearities (points that are not too close to the
edge), minimize scaling errors (points that are not too close to each other), and yield
non-redundant simultaneous equations. The raw touchscreen readings are turned into
coefficients that are applied to raw touchscreen readings each time the touchscreen is
pressed. The coefficients are stored into flash.

Glossary of Functions 20

Mosaic Industries © 2004

Forth: Clear_Graphics (tvars_addr\ tvars_page --)
C: void Clear_Graphics(GUI_VARS * tvars_addr, page tvars_page)

Clears the graphics array by filling it with background_fill, a member of the tvars
struct. Clear_Graphics then calls Update_Graphics so that the graphics layer on the
display is cleared.

Forth: Clear_Pixel (x \ y --)
C: void Clear_Pixel(uint x, uint y)

Clears a pixel directly from the LCD display bypassing the graphics array. Since it
erases directly from the screen, and not from the graphics array, calling
Update_Graphics will rewrite anything removed from the screen by Clear_Pixel. See
Set_Pixel.

Forth: Clear_Text (tvars_addr\ tvars_page --)
C: void Clear_Text(GUI_VARS * tvars_addr, page tvars_page)

Clears the text array by filling it with spaces. ASCII values in this array are shifted
down by 0x20, a requirement of the TC6963 display controller. Clear_Text then calls
Update_Text so that the text layer on the display is cleared.

Forth: colrow_to_button (row\ col -- button number)
C: COLROW_TO_BUTTON(col,row)

Converts from column and row coordinates to a button number (0-19). This macro is
used by ADD_TOUCH_BUTTON to convert the specified graphical positional
information to a button number corresponding to the touchscreen button location.

Forth: Config_Display (graphics_cols\ graphics_rows\ graphics_start\
background_fill\ text_cols\ text_rows\ text_start\ heap_bottom\ heap_top\
tvars_addr\ tvars_page --)

C: void Config_Display(uint graphics_cols, uint graphics_rows, addr
graphics_start, uchar background_fill, uint text_cols, uint text_rows, addr
text_start, xaddr heap_bottom, xaddr heap_top, GUI_VARS * tvars_addr, page
tvars_page)
Fills the variables that control the display initialization with configuration parameters.
Below is a summary of the parameters.

graphic_cols, graphic_rows -- the col, row size of the graphics array
graphics_start -- the starting address inside the LCD display for the graphics
data
background_fill -- the background fill byte used by the Clear_Graphics function
text_cols, text_rows -- the col, row size of the text array
text_start -- the starting address inside the display for the text data
heap_bottom -- the xaddress of the first byte of the display heap to be used
heap_top -- the xaddress of the last byte of the display heap to be used
tvars_addr, tvars_page -- the address of the structure tvars

Glossary of Functions 21

Mosaic Industries © 2004

Although this function fills the variables that control the initialization of the display,
it does NOT initialize the display. That must be done by Init_Display.
Config_Display simply initializes the variables needed by Init_Display. Std_Display
calls this function to set up the display according to a generic set of defaults. If you
are using a QScreen Controller, use Std_Display. See Std_Display for the default
values.

Forth: Direct_Draw_Graphic (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Direct_Draw_Graphic(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, FORTH_CONST_ARRAY * graphic_xaddr)
Direct call to that carries out the DIR_DRAW_ACTION of a graphic. See
Do_Graphic.

Forth: Direct_Erase_Graphic (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Direct_Erase_Graphic(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, FORTH_CONST_ARRAY * graphic_xaddr)
Direct call to that carries out the DIR_ERASE_ACTION of a graphic. See
Do_Graphic.

Forth: Do_Button (col\ row\ tvars_addr\ tvars_page\ action\ xpfa --)
C: void Do_Button(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,

uint action, BUTTON * button_xaddr)
Action handler for all button objects. Col and row specify the location of the upper
left corner of the image. Tvars_addr and tvars_page is the global structure that
contains control variables used by the GUI Toolkit. This function’s behavior is
determined by the action passed to it. The actions are described below. The
button_xaddr refers to a button object’s xaddress. The button objects are structures of
type BUTTON that contain xaddresses of three graphic objects, the draw graphic,
release graphic, and press graphic. The button structure also contains a bitmapped set
of switches that further shape the behavior of the button as well as xaddresses for the
user code to be executed upon press, release, or both depending on which bitmapped
flags are set. Here is how Do_Button is called:

C: Do_Button (<col>, <row>, <tvars>, <action>, <button_xaddr>);
Forth: <col> <row> <tvars> <action> <button_xaddr> Do_Button

Buttons are used as parts of menus. The menu manager is responsible for calling this
function to react to a touchscreen or keypad button press/release detection.
Generally, your application would not call this function directly, but you can use this
function to simulate button a press/release. This function can be used to produce the
exact same effect as actually pressing or releasing the button. The action passed to
Do_Button is one of the following predefined constants:

DRAW_ACTION
Draws the draw graphic member of the button structure to the graphics array with
col, row as the upper left corner. You must subsequently call Update_Graphics to

Glossary of Functions 22

Mosaic Industries © 2004

make the image appear on the LCD display unless the
DIR_DRAW_GRAPHIC_FLAG is set in which case the graphic will be drawn
directly to the display. See DIR_DRAW_ACTION under Do_Graphic.

DIR_DRAW_ACTION
For button objects, this action is equivalent to DRAW_ACTION. In order for a
button to be directly drawn to the display, the flag
DIR_DRAW_GRAPHIC_FLAG must be set. See DRAW_ACTION.

REDRAW_ACTION
For button objects, does the same thing as DRAW_ACTION.

ERASE_ACTION
Writes the tvars background_fill byte to the graphics array in the area previously
occupied by the button object at specified screen location. If the
DIR_DRAW_GRAPHIC_FLAG is set, then the button is directly erased from the
display. If that flag is not set, then you must then call Update_Graphics to make
the change evident on the screen.

DIR_ERASE_ACTION
For button objects, this action is equivalent to ERASE_ACTION. In order for a
button to be directly erased from the display, the flag
DIR_DRAW_GRAPHIC_FLAG must be set. See ERASE_ACTION.

DRAW_TEXTONLY_ACTION
If the button has text labels, then this action causes them to be printed to the
display. You must call Update_Text for this to become apparent on the screen.

ERASE_TEXTONLY_ACTION
If the button has text labels, then this action causes them to be erased from the
display. You must call Update_Text for this to become apparent on the screen.

PRESS_ACTION
Executes the user code press_handler and draws the release graphic depending on
the value of the flags. If the PRESS_HANDLER_FLAG is set, then the code in
the press_handler field of the button structure is executed. If the
PRESS_GRAPHIC_FLAG is set, then the graphic object for the press_graphic
field is drawn. If the TEXT_UPDATE_PRESS_FLAG is set, then Update_Text
is called. If the GRAPHIC_UPDATE_PRESS_FLAG is set, then
Update_Graphics is called. If none of those flags is set, then this action has no
effect.

RELEASE_ACTION
Executes the user code release_handler and draws the release graphic depending
on the value of the flags. If the RELEASE_HANDLER_FLAG is set, then the
code in the release_handler field of the button structure is executed. If the
RELEASE_GRAPHIC_FLAG is set, then the graphic object for the
release_graphic field is drawn. If the TEXT_UPDATE_RELEASE_FLAG is set,
then Update_Text is called. If the GRAPHIC_UPDATE_RELEASE_FLAG is
set, then Update_Graphics is called. If none of those flags is set, then this action
has no effect.

REPEAT_ACTION
Executes the user code press_handler without drawing the press graphic. If the
REPEAT_FLAG or PRESS_HANDLER flags are not set, this action has no

Glossary of Functions 23

Mosaic Industries © 2004

effect. When a button is repeating, it is a waste of processor time to redraw the
same graphic for each repetition.

Forth: Do_Graphic (col\ row\ tvars_addr\ tvars_page\ action\ graphic_xaddr --)
C: void Do_Graphic (uint col, int row, GUI_VARS * tvars_addr, page tvars_page,

uint action, FORTH_CONST_ARRAY * graphic_xaddr)
Action handler for all graphics objects. Col and row describe the position of the
upper left corner of the object in absolute coordinates measured from the upper left
corner of the display. This function’s behavior is determined by the action flag
passed to it. The actions are described below. The graphic_xaddr refers to a graphics
object. Typically, such objects are created by the Image Conversion Program which
converts a pcx or bmp graphic image on a PC to a block of data that can be loaded
into the QScreen. The Image Conversion Program also provides a symbol listing of
constants named based on the filename of the graphic on the PC. This symbol listing
may be #included in a C file, or pasted into a forth file. The language in which the
constants are defined can be set using the Advanced Dialog Box of the Image
Conversion Program. The constant referring to the graphic objects address takes the
place of the graphic_xaddr. For example, if the original image was named logo.pcx
on the PC, then its name as a graphic object would be LOGO_PCX. Do_Graphic
would then be called as follows:

C: Do_Graphic (<col>, <row>, <tvars>, <action>, LOGO_PCX);
Forth: <col> <row> <tvars> <action> LOGO_PCX Do_Graphic

The actions passed to Do_Graphic can be one of the following predefined constants:

DRAW_ACTION
Draws the graphic object to the graphics array with col, row as the upper left
corner. You must subsequently call Update_Graphics to make the image appear
on the LCD display.

DIR_DRAW_ACTION
Draws the graphics object directly to the LCD display bypassing the graphics
array. This is useful for fast screen updates and animation. Since
DIR_DRAW_ACTION draws directly to the screen, and not to the graphics array,
calling Update_Graphics will overwrite anything placed on the screen by
DIR_DRAW_ACTION.

REDRAW_ACTION
For graphic objects, does the same thing as DRAW_ACTION.

ERASE_ACTION
Writes the tvars background_fill byte to the graphics array in the area previously
occupied by the graphic object at specified screen location. You must then call
Update_Graphics to make the change evident on the screen.

DIR_ERASE_ACTION
Writes the tvars background_fill byte directly to the LCD display over the area
previously occupied by the graphic object at specified screen location. See
DIR_DRAW_ACTION.

Glossary of Functions 24

Mosaic Industries © 2004

Forth: Do_Menu (col\ row\ tvars_addr\ tvars_page\ action\ menu_xaddr --)
C: void Do_Menu(uint col, uint row, GUI_VARS * tvars_addr, page tvars_page,

uint action, MENU * menu_xaddr)
Counts through each element of the menu executing each object with the specified
action. A menu may consist of graphic or button objects. For example, calling
Do_Menu with the action DRAW_ACTION would execute each object in the menu
with that action. The relative col and row of the objects is stored in the menu. The
col and row passed to Do_Menu is the desired position on the display of the upper
left corner of the entire menu. The col and row passed to Do_Menu will be added to
the col and row of the objects stored in the menu to get the absolute locations of the
actual objects contained in the menu. That new col and row will then be passed to the
object along with the action flag. Most commonly, this function is used to draw or
redraw a menu to the screen. Each element of the menu array has an action mask
which is ANDed with the action flag passed to Do_Menu before the object in the
menu is executed. If the ANDed result is zero, the object is skipped. This allows
certain objects in a menu to have some action flags disabled. See the following
example:

C: Do_Menu (<col>, <row>, <tvars>, <action>, <menu_xaddr>);
Forth: <col> <row> <tvars> <action> <menu_xaddr> Do_Menu

Forth: Draw_Graphic (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Draw_Graphic(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, FORTH_CONST_ARRAY * graphic_xaddr)
Direct call to that carries out the DRAW_ACTION of a graphic. See Do_Graphic.

Forth: Erase_Graphic (col\ row\ tvars_addr\ tvars_page\ xpfa --)
C: void Erase_Graphic(uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, FORTH_CONST_ARRAY * graphic_xaddr)
Direct call to that carries out the ERASE_ACTION of a graphic. See Do_Graphic.

Forth: FASTBUTTON(flags\ draw_graphic_xaddr\ release_graphic_xaddr
\press_graphic_xaddr \ handler\ label1\ label2\ label3\ label4 <name> --)

C: FASTBUTTON(uint flags, xaddr draw_graphic_xaddr, xaddr
release_graphic_xaddr xaddr press_graphic_xaddr, (void *) handler, char *
label1, char * label2, char * label3, char * label4,<name>)
Works in exactly the same way as NORMBUTTON, but with a different set of
default flags. FASTBUTTON has the default flags, DRAW_GRAPHIC_FLAG,
RELEASE_GRAPHIC_FLAG, PRESS_GRAPHIC_FLAG,
DIR_PRESS_GRAPHIC_FLAG, and DIR_RELEASE_GRAPHIC_FLAG. This type
of button uses the direct screen drawing for the pressed and released graphics, and
standard graphics array drawing for the initial drawing of the buttons. This technique
is quite effective for maximizing the responsiveness of the user interface while still
loosely following the paradigm of using a graphics array. It eliminates the need to
update the entire screen when only a small portion the size of a button is changing.
When using direct to screen drawing, you should not specify the
GRAPHICS_UPDATE_PRESS_FLAG or

Glossary of Functions 25

Mosaic Industries © 2004

GRAPHICS_UPDATE_RELEASE_FLAG since updating the display will overwrite
the directly drawn graphics. See graphics objects in the Glossary of Terms for more
information. Also see NORMBUTTON in the Glossary of Functions.

Forth: Init_Display (tvars_addr\ tvars_page --)
C: void Init_Display(GUI_VARS * tvars_addr, page tvars_page)

High level function that initializes the graphics hardware. This function sets up a
Toshiba TC6963C according to the variables in the tvars struct initialized by
Config_Display. Init_Display dimensions the graphics and text arrays to the
appropriate sizes in the display heap and enables the display hardware. Init_Display
zeros the display_resource variable in the tvars struct.

Forth: Init_Menu (offset\ col\ row\ tvars_addr\ tvars_page\ menu xpfa --)
C: void Init_Menu(uint offset, uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, MENU * menu_xaddr)
Draws and installs a menu at the given offsets. Offsets for the screen position, col and
row, are applied to the relative locations of the objects contained in the menu. The
resulting absolute screen locations are used to draw the objects to the screen.
Init_Menu then calls Menu_Install. Each element of the menu has a relative button
number associated with it which is added to the offset to get an absolute button
number. The resulting absolute button number is the keymap array index in which
the button object reference is stored by Menu_Install. This function is equivalent to
passing the DRAW_ACTION flag to Do_Menu followed by a call to Menu_Install.
When changing from one menu to another, you should call Uninit_Menu for the old
menu before calling Init_Menu for the next menu. Afterwards, you must update the
display since Uninit_Menu and Init_Menu do not automatically update the display.
See Menu_Install, Uninit_Menu, and Do_Menu.

Forth: Init_Touch (tvars_addr\ tvars_page --)
C: void Init_Touch(GUI_VARS * tvars_addr, page tvars_page)

Initializes the touchscreen variables keymap_array, repeat_delay, and repeat_period
in the tvars struct. It dimensions the keymap array for a 20 button
touchscreen/keypad in the current heap. All the elements are then filled with 0x00.
There must be a valid heap with enough room for the keymap array prior to calling
this Init_Touch. Repeat_delay and repeat_period are initialized to 80 and 10
timeslice counts respectively. This assumes that the timeslicer period is set to its
default value of 5 mS. If you change the timeslice period, may be necessary to adjust
the repeat_delay and repeat_period variables to maintain desired operation. This
function should be called as part of the start up initialization.

Forth: Menu_Install (offset\ col\ row\ tvars_addr\ tvars_page\ menu_xaddr --)
C: void Menu_Install(uint offset, uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, MENU * menu_xaddr)
Copies each item from the menu object’s array to the keymap array. Col, row, and
offset determine the position of the menu on the display. Each element of the menu
has a relative button number associated with it which is added to the offset to get an

Glossary of Functions 26

Mosaic Industries © 2004

absolute button number. The resulting absolute button number is the keymap array
index in which the button object reference is stored. Offsets for the screen position
location (col and row) are applied to the relative locations of the buttons contained in
the menu. The resulting absolute screen locations are stored in the keymap array.
Menu_Install does not draw the menu, but only places its buttons in the keymap so
that the menu manager will be able to access them. This function is called by
Init_Menu. See Wait_Then_Service_Touch, Menu_Remove, and Init_Menu.

Forth: Menu_Remove (offset\ tvars_addr\ tvars_page\ menu_addr\ menu_page --)
C: void Menu_Remove(uint offset, GUI_VARS * tvars_addr, page tvars_page,

MENU * menu_xaddr)
Removes a menu from the keymap array. Each element of the menu has a relative
button number that is added to the offset to determine which button areas of the
keymap array are occupied by the objects of the menu. Those areas are marked as
unused by filling them with 0x00. Menu_Remove does not erase the menu from the
screen. Uninit_Menu calls Menu_Remove. See Uninit_Menu and Menu_Install in
the Glossary of Functions.

Forth: NEW_MENU: and BUILD_MENU
C: NEW_MENU and BUILD_MENU(arrayname, num_elements)

Declares a new menu array. There are syntactical differences in how this macro is
used between C and forth. In C, NEW_MENU is actually a synonym for
MENU_ENTRY, a structure type. Here is an example:
Forth:

NEW_MENU: mymenu_menu
\ Below, the Col and Row are the screen positions of the upper left
\ corners of the objects relative to the upper left corner of the menu.
\ The upper left corner of the menu on the screen is determined by the
\ values passed to Init_Menu.
\ Col Row Action mask Object xaddress Object adding macro

0 38 DRAW_MASK numshift_button ADD_TOUCH_BUTTON
8 70 DRAW_MASK numdec_button ADD_TOUCH_BUTTON
24 102 DRAW_MASK num0_button ADD_TOUCH_BUTTON
3 32 DRAW_MASK MY_LOGO ADD_GRAPHIC
32 0 DRAW_MASK mybutton1 ADD_TOUCH_BUTTON
BUILD_MENU

C:
NEW_MENU mymenu[5]=
{
// Below, the Col and Row are the screen positions of the upper left
// corners of the objects relative to the upper left corner of the menu.
// The upper left corner of the menu on the screen is determined by the
// values passed to Init_Menu.
// Object adding macro (Col, Row, Action mask, Object xaddress)

ADD_TOUCH_BUTTON(0, 38, DRAW_MASK, numshift_button),
ADD_TOUCH_BUTTON(8, 70, DRAW_MASK, numdec_button),
ADD_TOUCH_BUTTON(24, 102, DRAW_MASK, num0_button),
ADD_GRAPHIC(3, 32, DRAW_MASK, MY_LOGO),
ADD_TOUCH_BUTTON(32, 0, mybutton1)
};
BUILD_MENU(mymenu, 5);

Glossary of Functions 27

Mosaic Industries © 2004

The menus built above are identical. When programming in forth, NEW_MENU acts
as a defining word that uses the stack to pass information to BUILD_MENU which
instantiates the menu. This should be done at compile time, not inside a colon
definition. Since C doesn’t have the ability for two functions to communicate at
compile time, it is important to restate the number of elements in the call to
BUILD_MENU. The name of the final menu pointer in both cases is mymenu_menu.
In C, a C style array called mymenu must first be created which is then used to create
a forth array parameter field called mymenu_menu. BUILD_MENU automatically
appends the suffix, _menu to the base name. This modified name is the name by
which the menu should be referred in calls to menu related functions, not mymenu.
In forth, the entire data structure is built at once and only has one name.

Forth: NORMBUTTON(flags\ draw_graphic_xaddr\ release_graphic_xaddr
\press_graphic_xaddr \ handler\ label1\ label2\ label3\ label4 <name> --)

C: NORMBUTTON(uint flags, xaddr draw_graphic_xaddr, xaddr
release_graphic_xaddr, xaddr press_graphic_xaddr, (void *) handler, char *
label1, char * label2, char * label3, char * label4,<name>)
Creates a new button object. This macro integrates the creation and initialization of
the BUTTON structure with some useful defaults. NORMBUTTON builds a button
that uses all three graphics (draw, release, and press). By default, only
DRAW_GRAPHIC_FLAG, RELEASE_GRAPHIC_FLAG, and
PRESS_GRAPHIC_FLAG are set. Additional flags should be specified to further
shape the button’s behavior. These flags are ORed with the default flags. For the
handler to be executed, you must specify PRESS_HANDLER_FLAG or
RELEASE_HANDLER_FLAG. If both PRESS_HANDLER_FLAG and
RELEASE_HANDLER_FLAG are specified, then the handler is executed twice,
once when the button is pressed, and again when it is released. Other flags that might
be useful are REPEAT_FLAG to make the button repeat or DRAW_TEXT_FLAG if
the label text is to be printed in the button. The other parameters are stored in their
respective fields in new button. The name given to the new button is specified by
<name>. Here is an example:
Forth:

DRAW_TEXT_FLAG or \ It has text
PRESS_HANDLER_FLAG or \ It has a press handler
GRAPHICS_UPDATE_PRESS_FLAG or \ Call Update_Graphics on press
GRAPHICS_UPDATE_RELEASE_FLAG or \ Call Update_Graphics on release
LBLANK_PCX \ Graphic for DRAW_ACTION
LBLANK_PCX \ Graphic for RELEASE_ACTION
LBLACK_PCX \ Graphic for PRESS_ACTION
cfa.for myfunction \ The code xaddress for press handler
” ” \ Line 1 label
” Start” \ Line 2 label
” Pump” \ Line 3 label
” ” \ Line 4 label
NORMBUTTON mybutton1 \ Instantiate the new button

C:
NORMBUTTON(
DRAW_TEXT_FLAG | // It has text
PRESS_HANDLER_FLAG | // It has a press handler
GRAPHICS_UPDATE_PRESS_FLAG | // Call Update_Graphics on press
GRAPHICS_UPDATE_RELEASE_FLAG, // Call Update_Graphics on release

Glossary of Functions 28

Mosaic Industries © 2004

LBLANK_PCX, // Graphic for DRAW_ACTION
LBLANK_PCX, // Graphic for RELEASE_ACTION
LBLACK_PCX, // Graphic for PRESS_ACTION
myfunction, // The code address for press handler
””, // Line 1 label
”Start”, // Line 2 label
”Pump”, // Line 3 label
””, // Line 4 label
mybutton1); // Instantiate the new button

Forth: Read_Touchscreen (tvars_addr \ tvars_page – n | 0 <= n <= 20)
C: int Read_Touchscreen(GUI_VARS * tvars_addr, page tvars_page)

Scans the touchscreen. If it is being pressed, returns the key number
(1<=keynumber<=20); does not wait for a release. If nothing is being depressed,
returns 0. Key 1 is in the upper left hand corner, key 2 is just below it, and key 20 is
in the lower right hand corner.

Forth: Read_Raw_Coords (tvars_addr \ tvars_page – raw_coords)
C: long Read_Raw_Coords(GUI_VARS * tvars_addr, page tvars_page)

Reads raw touchscreen values. The raw values are used by Calibrate_Touchscreen to
calibrate the touchscreen. See Calibrate_Touchscreen.

Forth: Service_Touch (button number \ tvars_addr \ tvars_page --)
C: void Service_Touch(int button, GUI_VARS * tvars_addr, page tvars_page)

This routine is very similar to Wait_Then_Service_Touch. Instead of polling the
hardware and then reacting as Wait_Then_Service_Touch does, this function accepts
a button number as collected by the calling environment using one of the built-in
kernel functions. Service_Touch then processes the button exactly as
Wait_Then_Service_Touch does, and if the button is being held down, then
Service_Touch blocks until it is released. This routine effectively serves as a non-
blocking version of Wait_Then_Service_Touch. See Wait_Then_Service_Touch.
The following examples show how to implement Wait_Then_Service_Touch yourself
using Service_Touch and the builtin kernel driver for the keypad:
C:
void My_Wait_Then_Service_Touch (GUI_VARS * tvars_addr, page tvars_page)
{
 int this_press=0; // Init to default
 while (this_press==0) // Keep looping until a button is pressed
 {
 this_press = Read_Touchscreen();
 }
 Service_Touch(this_press, TVARS); // we have a button press! Act on it
}

Forth:
: my_Wait_Then_Service_Touch (tvars --)
 locals{ x&tvars }
 begin
 Read_Touchscreen \ ([button number \ true] or [false] --)
 if \ (tvars \ button number --)
 x&tvars Service_Touch \ Process the button number received
 true \ cause an exit
 else
 false \ cause the loop to continue
 endif
 until \ loop if nothing yet

Glossary of Functions 29

Mosaic Industries © 2004

 ;

Forth: Set_Cursor_State (isvisible\ isflashing --)
C: void Set_Cursor_State(boolean isvisible, boolean isflashing)

Calls Set_Display_Mode to sets the state of the cursor using the 2 flags. Isvisible is
true if the cursor is visible and false if not. Isflashing is true for flashing and false for
non-flashing. See PutCursor (forth: put.cursor) in the main glossary.

Forth: Set_Display_Mode (mode --)
C: void Set_Display_Mode(uint mode)

Sets the mode byte of the display controller. This word uses the lower 4 bits of mode
to determine the operating mode. Details about the meaning of the mode flag can be
found in the datasheet for the TC6963 controller, but it is handled for you by
Set_Cursor_State and Set_Display_State which call Set_Display_Mode.

Forth: Set_Display_State (graphics\ text --)
C: void Set_Display_State(boolean graphics, boolean text)

Calls Set_Display_Mode to enable or disable graphics or text according to the 2 flags.
Graphics is true to indicate that the graphics layer is enabled and text is true to
indicate that the text layer is enabled. Init_Display sets this automatically based on
the display configuration specified by Config_Display. Either text or graphics may
be written to the display even when that layer has been disabled with this function.
The layer may then be re-enabled to make visible the data currently stored in the
display. This may be useful for blanking the screen during an update. Most
applications don’t need this ability.

Forth: Set_Gr_Area (columns --)
C: void Set_Gr_Area(uint columns)

Sets the width for graphics in the TC6963 display controller. The graphics area value
should be equal to the number of graphics columns. This is not the same as the
number of pixels of display width, but the number of bytes required to represent a
line of graphics. The 240x128 display is configured for 6 bits per byte meaning that
the number of columns is 240/6 or 40, the same as text. Init_Display sets this
automatically.

Forth: Set_Gr_Home_Addr (address --)
C: void Set_Gr_Home_Addr(addr address)

Sets the home address for graphics in the TC6963 display controller. Only the rarest
of circumstances require altering the display’s internal memory configuration. The
address specified will become the starting address inside the display module for the
graphics data. It is set automatically by Init_Display.

Glossary of Functions 30

Mosaic Industries © 2004

Forth: Set_Pixel (x\y --)
C: void Set_Pixel(uint x, uint y)

Sets a pixel directly to the LCD display bypassing the graphics array. Since it writes
directly to the screen, and not to the graphics array, calling Update_Graphics will
overwrite anything set on the screen by Set_Pixel. See Clear_Pixel.

Forth: Set_Text_Area (columns --)
C: void Set_Text_Area(uint columns)

Sets the width for text in the TC6963 display controller. The text area value should
be equal to the number of character columns. Characters are 6 pixels wide meaning
that there are 240/6 or 40 text columns on the display. Init_Display sets this
automatically.

Forth: Set_Text_Home_Addr (address --)
C: void Set_Text_Home_Addr(addr address)

Sets the home address for text in the TC6963 display controller. Only the rarest of
circumstances would require altering the display’s internal memory configuration.
The address specified will become the starting address inside the display module for
the text data. It is set automatically by Init_Display.

Forth: Set_Text_Mode (modebyte --)
C: void Set_Text_Mode(uchar modebyte)

Sets the text attribute bits. Only the lower 4 bits used, and the other bits are ignored.
Bit 3 is 0 for character generator ROM mode and 1 for character generator RAM
mode. Unless you are using custom fonts uploaded to the display, this bit should be
0. If it is set to 1, then the cg offset pointer, a register in the TC6963 display
controller chip, must be set to point to the base address of the character table in the
display’s RAM. An example of how to do this may be found in the fonts directory of
the distribution of the GUI Toolkit package. Bits 2, 1, and 0 determine the display
mode for text.
Constant Bit2 Bit1 Bit0 Description
OR_TEXT 0 0 0 Text is ORed with graphics (default)
EXOR_TEXT 0 0 1 Text is EXORed with graphics
AND_TEXT 0 1 1 Text is ANDed with graphics

1 0 0 Text is in special attribute mode. This
specialized mode is not usable with
graphics mode and is not discussed
here. See TC6963 Datasheet for more
info.

Glossary of Functions 31

Mosaic Industries © 2004

Forth: Std_Display (tvars_addr\ tvars_page --)
C: void Std_Display(GUI_VARS * tvars_addr, page tvars_page)

Sets the display configuration information in the tvars struct to default values for the
240x128 display used on the QScreen controller. When using such a display, simply
calling this function prior to calling Init_Display will eliminate the need to use
Config_Display which can be unwieldy. This function calls Config_Display with the
following parameters. Don’t forget to call Init_Display after calling Std_Display.

graphic_cols, graphic_rows -- 40, 128
graphics_start -- 0x0280
background_fill -- 0
text_cols, text_rows -- 40, 16
text_start -- 0x0000
heap_bottom -- 0x0F47FF
heap_top -- 0x0F3000

See Init_Display and Config_Display in the Glossary of Functions.

Forth: Uninit_Menu (offset\ col\ row\ tvars_addr\ tvars_page\ menu xpfa --)
C: void Uninit_Menu(uint offset, uint col, uint row, GUI_VARS * tvars_addr, page

tvars_page, MENU * menu_xaddr)
Erases and uninstalls the menu at the given offsets. Offsets for the screen position,
col and row, are applied to the relative locations of the objects contained in the menu.
The resulting absolute screen locations are used to erase the objects from the screen.
Uninit_Menu then calls Menu_Remove. Each element of the menu has a relative
button number associated with it which is added to the offset to get an absolute button
number. The resulting absolute button number is the keymap array index in which
the button object reference is deleted by Menu_Remove. This function is equivalent
to calling Do_Menu with the ERASE_ACTION flag followed by a call to
Menu_Remove. When changing from one menu to another, you should call
Uninit_Menu for the old menu before calling Init_Menu for the next menu.
Afterwards, you must update the display since Uninit_Menu and Init_Menu do not
automatically update the display. See Menu_Remove, Init_Menu, and Do_Menu

Forth: Update_Graphics (tvars_addr\ tvars_page --)
C: void Update_Graphics (GUI_VARS * tvars_addr, page tvars_page)

Calls Update_Here_With to send the entire contents of the graphics array to the LCD
display. Call this function after modifying the graphics array to update the display.
The contents of the graphics array are transferred to the memory address inside the
display specified by Gr_Home_Addr in the tvars struct. Any graphics that were
drawn directly to the LCD bypassing the graphics array will be overwritten when
Update_Graphics is called.

Glossary of Functions 32

Mosaic Industries © 2004

Forth: Update_Here_With (address\ graphics_resource_addr\
graphics_resource_page\ garray_xaddr --)

C: void Update_Here_With(addr address, addr * graphics_resource_addr, page
graphics_resource_page, FORTH_ARRAY * garray_xaddr)
Directly copies the contents of the 2 dimensional array pointed to by garray_xaddr to
the display starting at address in the display’s memory. This function honors the
resource variable pointed to by graphics_resource_addr and graphics_resource_page.
The display resource must be available or this function will hold up execution until it
can take control of the display to perform the update. Update_Here_With is a low
level function that shouldn’t be needed in most circumstances. It is called by
Update_Text and Update_Graphics. Update_Here_With is useful for loading special
areas of the display memory with data such as custom fonts. See Update_Text and
Update_Graphics.

Forth: Update_Text (tvars_addr\ tvars_page --)
C: void Update_Text(GUI_VARS * tvars_addr, page tvars_page)

Calls Update_Here_With to send the entire contents of the text array to the LCD
display. Call this function after modifying the text array to update the display. The
contents of the text array are transferred to the memory address inside the display
specified by Text_Home_Addr in the tvars struct.

Forth: Update_Text_And_Graphics (tvars_addr\ tvars_page --)
C: void Update_Text_And_Graphics(GUI_VARS * tvars_addr, page tvars_page)

Sends the contents of the text and graphics arrays to the LCD display. This function
is the equivalent of calling Update_Text and Update_Graphics. See Update_Text and
Update_Graphics

Forth: Wait_For_Press (tvars_addr\ tvars_page --)
C: void Wait_For_Press(GUI_VARS * tvars_addr, page tvars_page)

Waits until a press is detected on the touchscreen before returning. See
Wait_For_Release and Read_Touchscreen.

Forth: Wait_For_Release (tvars_addr\ tvars_page --)
C: void Wait_For_Release(GUI_VARS * tvars_addr, page tvars_page)

Waits until a release of the touchscreen before returning. See Wait_For_Press and
Read_Touchscreen.

Forth: Wait_Then_Service_Touch (tvars_addr\ tvars_page --)
C: void Wait_Then_Service_Touch(GUI_VARS * tvars_addr, page tvars_page)

This routine serves as a runtime menu manager for monitoring the user input
hardware (touchscreen or keypad). It waits for a keypad or touchscreen press. When
a button is pressed, held, or released the touchscreen/keypad hardware driver returns
a button number which is used as an index to the keymap array.
Wait_Then_Service_Touch then examines the indexed element of the keymap array
and invokes the PRESS_ACTION, REPEAT_ACTION, or RELEASE_ACTION to
the object whose xaddress is stored in the indexed keymap array element.

Glossary of Functions 33

Mosaic Industries © 2004

Wait_Then_Service_Touch does not loop. After one press/release cycle, it exits. If
the button has the REPEAT_FLAG set, then Wait_Then_Service_Touch invokes the
REPEAT_ACTION to the button repeatedly according to the repeat times,
represented in timeslicer counts, stored in the repeat_period and repeat_delay
variables in the tvars struct. The timeslicer must be running for buttons to repeat.
Wait_Then_Service_Touch is usually used inside a loop that iterates for each
press/release cycle. Wait_Then_Service_Touch calls Pause while awaiting a button
press. Any user handlers associated with the buttons will run under the same task as
Wait_Then_Service_Touch since Wait_Then_Service_Touch executes the code.

