
1

Chapter 1

Chapter 1: QED-Flash Board and Wildcard Carrier
Board Memory Maps

The QED-4 (QED-Flash) Controller’s Memory Map
The QED-4 Controller (also called the QED-Flash Board) uses a paged memory system to expand
the processor’s 64Kbyte address space to 8 Megabytes of addressable memory. The top half (32
Kbytes) of the address space (at addresses 0x8000 to 0xFFFF) addresses a common memory page
that is always visible (i.e., accessible using standard 16-bit addresses) to any code running, no matter
where it resides in the memory space. The bottom half (32 Kbytes) of the address space (at ad-
dresses 0x0000 to 0x7FFF) is duplicated many times and addressed through the processor’s 16-bit
address bus augmented by an 8-bit page address. Together the address and page are held in a 32-bit
data type, an xaddress.

A subroutine on any page can fetch or store to any address on the same page or in the common
memory, or transfer control to another routine there. It “sees” a 64K address space comprising its
own page at addresses from 0x0000 to 0x7FFF and the common memory at addresses 0x8000 to
0xFFFF. To address memory on another page, or to call a routine on another page, special memory
access routines are used to change the page. The heap memory manager and array routines allow
you to think of the paged memory as contiguous memory for data storage. The operating system
automatically handles function calls and returns among the pages.

The operating system is designed so that there is very little speed penalty associated with changing
pages. The QED-Forth operating system automatically and transparently handles page changes.

Figure 1-1 illustrates the memory map of the QED Board. Briefly, the upper 32K of the 68HC11's
address space, the common memory, is always accessible without a page change. In the lower 32K
of the processor’s address space, the operating system creates 256 pages of memory selected by an 8
bit on-chip port, with each page containing 32 Kbytes. The 32K of common memory at addresses
0x8000 to 0xFFFF (the upper half of the processor’s memory space) is always accessible without a
page change. Up to 256 pages (32K per page) occupy the paged memory at addresses 0x0000 to
0x7FFF. All pages of the QED-4 Controller’s installed memory are shown in the figure.

2 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

32K Common Memory (visible at all page addresses)
Addresses: 8000 – FFFF

32K Extended Memory Pages, Addresses: 0000 – 7FFF

Page: 00 01 02 03 04 05 06 07 0C

K
er

ne
l

Fl
as

h

0000 0000 0000 0000 0000 0000 0000 0000

7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF

0000

7FFF

K
er

ne
l

Fl
as

h

Fl
as

h
fo

r K
er

ne
l

 E
xt

en
si

on
s

A
pp

lic
at

io
n

R
A

M

A
pp

lic
at

io
n

R
A

M

A
pp

lic
at

io
n

Fl
as

h

A
pp

lic
at

io
n

R
A

M

A
pp

lic
at

io
n

Fl
as

h

A
pp

lic
at

io
n

Fl
as

h
7FFF

C080–FFFF Kernel Flash
C000–C07F Memory mapped I/O
B400–BFFF Kernel Flash
B3F0–B3FF Real Time Clock Buffer
B3E0–B3EF Kernel RAM
B3D0–B3DF Kernel C/Forth ISR vectors
B200–B3CF Application RAM, Flash buffers
B000–B1FF Application ONCHIP_RAM
AEC0–AFFF Application EEPROM
AE00–AEBF Kernel EEPROM
8E00–ADFF 8K Application RAM
8500–8DFF Kernel buffers and stacks
8400–84FF Kernel Forth user area
8100–83FF Kernel buffers and stacks
8060–80FF Onboard hardware
8000–805F Processor Control Registers

0000

7FFF

Fl
as

h
fo

r K
er

ne
l

 E
xt

en
si

on
s

1K
 K

er
ne

l F
la

sh
0.

5K
 K

er
ne

l R
AM

0-
2F

FF
 K

er
ne

l F
la

sh
30

00
-7

FF
F

Ap
p

R
AM

0D 0E 0F

Figure 1-1 The paged memory space of the QED-Flash Board.

Common Memory

The common memory is addressed at locations 0x8000 – 0xFFFF. Some of it is used by the 68HC11
processor, some by the Forth kernel, and some is available for your programs to use. The proces-
sor’s registers are located at 0x8000 – 0x805F, onboard hardware occupies addresses through
0x80FF, and the operating system reserves memory through location 0x8DFF for user areas, buffers,
and stacks. For example, the default user area that runs the interactive Forth interpreter occupies
0x8400 – 0x84FF.

The 8 Kbytes at locations 0x8E00 – 0xADFF are available RAM for the user. The Control-C com-
piler uses this area for static variables, arrays, task areas, etc. The Forth memory map routine
USE.PAGE locates the variable area starting at address 8E00 in common memory. If you need
more than 8K for variables you will need to move the variable pointer, VP, to another section of
RAM. RAM pages 01-03 are available for application variables, buffers or other storage.

The processor’s on-chip EEPROM (Electrically Erasable Programmable Read Only Memory) is
located at 0xAE00 – 0xAFFF. The first few locations, at 0xAE00 – 0xAEBF, are reserved by the

The QED-4 (QED-Flash) Controller’s Memory Map 3

operating system for use by the SAVE and RESTORE utilities, and for interrupt vectors. The EEPROM
locations at 0xAEC0 – 0xAFFF is available to your programs.

Table 1-1 Partition of Flash and RAM among Kernel and Application Functions on
the QED-Flash Board

Function Size Memory
Page

Memory
Address Physical Location

Kernel Flash (96K)
Kernel 64K 00, 0C 0000 – 7FFF QED Board S1
Kernel 1K 0E various QED Board S1
Kernel 19K common B400 – FFFF QED Board S1
Kernel 12K 0F 0000 – 2FFF QED Board S1

Flash for Kernel Extensions (64K)
Kernel Extensions 64K 07, 0D 0000 –7FFF QED Board S1

Kernel RAM (4K)
Kernel 3.5K common 8000 – 8DFF QED Board S2
Kernel 0.5K 0E various QED Board S2
RTC 48 bytes B3D0– B3FF 68HC11

Kernel EEPROM (192 bytes)
Kernel 192 bytes common AE00 – AEBF 68HC11

Application Flash (96K)
Application code and graphic images 96K 04 – 06

(01– 03)
0000 – 7FFF QED Board S1

Application RAM (125K)

C Variables 512 bytes common B000 – B1FF 68HC11
C Variables, available at runtime but used
during download as a Flash write buffer

464 bytes common B200 – B3CF 68HC11

C Variables and task area,
optionally battery-backed

8K common 8E00 – ADFF QED Board S2

Arrays and heap memory,
optionally battery-backed

20K 0F 3000 – 7FFF QED Board S2

Arrays and heap memory,
optionally battery-backed

96K 01 – 03
(04 – 06)

0000 – 7FFF QED Board S2

Application EEPROM
EEPROM Variables 320 bytes common AEC0 – AFFF 68HC11

Notes:
1. Pages not enclosed in parentheses indicate the standard, or run-time memory map; pages in parentheses indicate

the addressing of the memory during program download, i.e., the download memory map.
2. The 128K RAM in socket S2 on the QED-Flash Board can be optionally battery-backed.
3. Pages 00, 0C, 0E and a portion of 0F are reserved to the operating system (the Kernel).
4. Pages 07 and 0D are flash that is available for downloading kernel extensions.
5. Your application code is free to reside on pages 04-06 and you may use pages 01-03 for variables and buffers.
6. Addresses from 8000 through FFFF comprise common memory that is visible to code on all pages.

4 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

Table 1-2 Locations of Flash and RAM on a Wildcard Carrier Board

Function Size Memory Page Memory Address

Application Flash (128K or 512K)
Application code and graphic images 128K 50 – 53

(40 – 43)
0000 – 7FFF

Application code and graphic images,
available with extended memory option

384K 54 –5F
(44 – 4F)

0000 – 7FFF

Application RAM (128K or 512K)
Variables, arrays and heap memory 128K 40 – 43

(50 – 53)
0000 – 7FFF

Variables, arrays and heap memory,
available with extended memory option

384K 44 – 4F
(54 – 5F)

0000 – 7FFF

Notes:
1. Pages not enclosed in parentheses indicate the standard, or run-time memory map; pages in parentheses indicate

the addressing of the memory during program download, i.e., the download memory map.

The 68HC11’s 1 Kbyte of on-chip RAM is located at 0xB000 – 0xB3FF. Locations 0xB3F0 –
0xB3FF are reserved for the real-time clock buffers. Locations 0xB3D0-0xB3DF are reserved for
support of Forth interrupt service routines called from C-compiled programs. Locations 0xB200 –
0xB3CF are reserved for the flash programming routines. Locations 0xB000 – 0xB1FF are always
available to the programmer (this area is named ONCHIP_RAM in the C linker command file; C pro-
grammers can locate data in this area using a #pragma directive).

Locations 0xB400 – 0xBFFF and 0xC100 – 0xFFFF contain kernel code. A notch at 0xC000 –
0xC07F is not decoded by any onboard devices, and provides a convenient place for the user to
memory map I/O that must be accessed quickly (that is, without requiring a page change). Of
course, an almost limitless amount of I/O can be mapped onto pages in the controller’s 8 Megabyte
address space.

Paged Memory

Occupying the paged memory space are 256K Flash and 128K RAM. Of the board’s 256K of Flash,
96K is available for your application program and data storage. The remainder is used by the QED
Forth Kernel for its multitasking operating system, debugger, interactive Forth compiler, assembler,
and hundreds of pre-coded device driver functions. Of the 128K of RAM, 96K of contiguous mem-
ory is available for application program use (for variables, buffers, or heaps), a 20K portion on page
0x0F is useful for placing a heap (but can be used for any other purpose too), and smaller portions
may be used for variables. The entire RAM can be optionally battery backed.

Table 1-1 illustrates the partitioning of the onboard memory between the operating system (Kernel)
and your application functions.

Frequently, a QED-Flash Board is used in conjunction with a Wildcard Carrier Board, which pro-
vides additional Flash and RAM. Table 1-2 shows the page locations of the RAM and Flash avail-
able on a Wildcard Carrier Board. The standard version of the WCB provides 128K each of RAM
and Flash, while an extended memory version provides 512K of each.

The QED-4 (QED-Flash) Controller’s Memory Map 5

Most of the Flash memory is available as blocks of contiguously addressable memory on pages 04-
06 of the QED-Flash Board and pages 50-53 on the Wildcard Carrier Board. RAM for your appli-
cation program is also available in the paged memory in contiguously addressable chunks, filling
pages 01-03 on the QED-Flash Board and 40-43 on the Wildcard Carrier Board. There is also 20K
available RAM on page 0F, and approximately 9K in the common memory. This 9K is particularly
important because it is used to hold C variables and task space for each separate task your applica-
tion program sets up.

Table 1-3 Partition of the Common Memory

Address Size
(bytes)

Type Function

C100 – FFFF 16128 Flash Kernel – code
C000 – C0FF 256 I/O Memory mapped I/O
B400 – BFFF 3072 Flash Kernel – code
B3F0 – B3FF 16 RAM Kernel – Real Time Clock Buffer
B3E0 – B3EF 16 RAM Kernel
B3D0 – B3DF 16 RAM Kernel – C/Forth ISR vectors
B200 – B3CF 464 RAM Application – C variables at runtime, Flash write buffer during

program download
B000 – B1FF 512 ONCHIP_RAM Application – C variables
AEC0 – AFFF 320 EEPROM Application – nonvolatile storage
AE00 – AEBF 192 EEPROM Kernel
8E00 – ADFF 8192 RAM Application – C Variables and multitasking task areas, optionally

battery-backed
8500 – 8DFF 2304 RAM Kernel – buffers and stacks
8400 – 84FF 256 RAM Kernel – Forth user area
8060 – 83FF 928 RAM Kernel – buffers and stacks
8000 – 805F 96 RAM Kernel – processor Control Registers

Shaded entries indicate memory available for application programs.

The common memory is also partitioned between the operating system and application program.
Table 1-3 shows the addresses used by the operating system, and in boldfaced type those addresses
available to the application program.

Addressing Memory in C

Although 8-bits are sufficient to address the 256 possible pages, the page is padded out to a more
standard 16-bit date type so that the full address, lower 16 bits plus 16-bit page, occupies 32 bits.
We’ll refer to this full address as an xaddress (32-bit extended addresses). Three macros are avail-
able in the \mosaic\fabius\include\mosaic\types.h file to simplify the manipulation of
xaddresses and their constituent 16-bit addresses and pages. These C macros are:

TO_XADDR
XADDR_TO_ADDR
XADDR_TO_PAGE

Multi-page C programs rely on a “page change” routine in the common kernel memory to call func-
tions on other pages. Unlike the Forth compiler, the C compiler is not “page smart”, and does not
know at compile time whether a page change is needed. In fact, page changes are rarely needed,

6 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

because most functions call other functions that are located on the same page or in common mem-
ory. Calls to functions on the same page or to common memory take only 11.5 or 13.75 microsec-
onds, respectively, while function calls to other pages require just under 49 microseconds. Because
page changes are rare, the average execution speed of multi-page C applications is not significantly
impacted by the need for page changes.

Addressing Flash

Flash memory is nonvolatile, like PROM. Thus it retains its contents even when power is removed,
and provides an excellent location for storing program code. Simple write cycles to the device do
not modify the memory contents, so the program code is fairly safe even if the processor “gets lost”.
But flash memory is also re-programmable, and the flash programming functions are present right in
the QED-Flash Board's onboard software library. These functions invoke a special memory access
sequence to program the flash memory contents “on the fly”. This allows you to modify your oper-
ating software (for example, to perform system upgrades). You can also store data in the flash de-
vice. You can program from 1 byte up to 65,535 bytes with a single function call using the pre-
coded flash programming routine. Programming time is approximately 60 milliseconds per kilo-
byte.

Six special functions facilitate access to Flash memory. Their function names in C are:

DownloadMap() PageToFlash() PageToRam()
StandardMap() ToFlash() WhichMap()

and their names in Forth are:

DOWNLOAD.MAP PAGE.TO.FLASH PAGE.TO.RAM
STANDARD.MAP TO.FLASH WHICH.MAP

The FLASH programming functions use a buffer in the 68HC11's on-chip RAM starting at hex
addresses B200-B3CF. The remaining on-chip RAM at B000 to B1FF is available to you. Also,
because FLASH programming is generally not done at run-time, you can still use the Flash buffer
for run-time variables.

Software Development Using Flash Memory
Because code cannot be downloaded or compiled directly into flash memory, the flash memory map
implements page swapping to provide a mechanism for getting the compiled code into the flash
memory. There are two page-swap modes: one is called the Standard Map and the other is called
the Download Map. As the names suggest, the Standard Map is used during run-time, and the
Download Map is used during downloading and compilation of Forth source code or C-compiler S-
records from the PC to the QED Board. The two maps are very similar; the effect of changing from
the Standard to the Download map is to swap the locations of pages between the flash and the RAM.

Locating Nonvolatile Data in EEPROM 7

Table 1-4 Addressing the Flash and RAM in
Standard and Download Memory Maps

Flash Pages RAM Pages

Standard Address Map 04 – 06 50 – 5F 01 – 03 40 – 4F

Download Address Map 01 – 03 40 – 4F 04 – 06 50 – 5F

In normal operation the Flash memory is addressed on pages 04-06 and 50-5F, and the RAM is
addressed on pages 01-03 and 40-4F. During download their addresses are swapped, so that the
Flash is addressed at pages 01-03 and 40-4F and the RAM at pages 04-06 and 50-5F.

To see how it works let’s consider a hypothetical download. Suppose you have compiled code
intended to load into the Flash and run from it at addresses on page 04. Automated commands con-
tained in the download file establish the download map, load the code into RAM, transfer the code
to flash, and re-establish the standard map. In this case, the download file would:

1. Swap the addresses of the RAM and Flash (by executing the command DOWNLOAD.MAP) so that
the RAM is now addressed on page 04;

2. Download the code to its proper addresses on page 04;

3. Copy the code (using the command PAGE.TO.FLASH) from page 04 into the Flash addressed on
page 01; then,

4. Swap (by executing the command STANDAD.MAP) the RAM and Flash addresses back so that
the Flash is now addressed on page 04, and the RAM on page 01 is available for run-time use
by your program.

The Control-C download file does all this for you so you don’t need to worry about the details. But
if you’re interested, just peruse the download file in the editor where you’ll see the commands it
uses to manage memory during the download process.

Locating Nonvolatile Data in EEPROM
The QED Board’s built-in EEPROM provides an ideal place to store calibration constants or other
data that must be changed from time to time, but that must be retained even when power is removed.
The EEPROM (Electrically Erasable Programmable Read-Only Memory) can be modified up to
10,000 times before it loses its ability to retain data. The ANALOGIO.C file presents an example of
how to locate a static “variable” in EEPROM.

The EEPROM variable should be declared as an un-initialized static variable; these are located by
the linker in the “data” section, which normally points to system RAM where normal variables are
stored. By following the syntax presented here, you can relocate the data section to point to
EEPROM while defining the EEPROM variables, and then restore the data section to its standard
RAM location. To define an EEPROM variable, use the following code:

#pragma option data=.eeprom // put the following variables in eeprom
static uchar numsamples;
static int nonvolatile_int;

8 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

static float calibration_value;
#pragma option data=.data // restore the data area to RAM

The #pragma statements are pre-processor directives that are interpreted by the linker. In the code
fragment above, we located three nonvolatile variables in EEPROM; note that we did NOT include
initializers in the declaration statements. Initializers don’t make any sense for EEPROM variables,
because special functions must be called to store values into EEPROM, so initialization can’t be
accomplished by placing initialization data in the download file. These EEPROM variables must be
initialized programmatically at run-time.

To store data into the EEPROM variables, use the following functions which are declared in the
XMEM.H file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory:

void StoreEEChar(char value, char* addr)
void StoreEEInt(int value, int* addr)
void StoreEELong(long value, long* addr)
void StoreEEFloat(float value, float* addr)

To learn how to interactively modify the contents of EEPROM variables, read the glossary entries
for these functions in the Control-C Glossary.

These EEPROM storage functions are easy to use. For example, to store the value 123 into the
character variable numsamples, you would place the following statement in your program:

StoreEEChar(123, &numsamples);

To avoid wearing out the EEPROM by executing unneeded write cycles, these functions check
whether each EEPROM byte already holds its specified contents. If so, the write is not performed.
Thus there is no penalty for redundant execution of commands that initialize particular locations in
EEPROM.

While EEPROM variables must initialized programmatically at run-time the first time they are used,
they don’t need to be re-initialized each time the processor starts up because the nonvolatile
EEPROM retains the data. Even so, initializations can be performed every time the processor starts
up, with no adverse effects on the life span of the EEPROM. For example, initialization code in an
autostart routine could execute ATTACH functions to ensure that all needed interrupt vectors are
properly initialized each time the processor restarts. If the EEPROM cells have been corrupted for
some reason, the ATTACH command installs the correct contents, but if the specified interrupt
vector information is already in the EEPROM, the memory cells are not needlessly rewritten.

Using C Arrays and Forth (Kernel) Arrays 9

Interrupts are disabled during writes to EEPROM
All of the EEPROM storage routines globally disable interrupts while each EEPROM
byte is being programmed, and it takes 20 milliseconds to program each byte. Thus you
should avoid storing values in EEPROM while time-critical events are being serviced by
interrupts.
For experts and the curious: Interrupts are disabled during stores to EEPROM because
QED-Forth vectors all interrupts via the EEPROM, and the 68HC11 hardware does not
allow any EEPROM cells to be read while a single EEPROM cell is being written to.
Thus if an interrupt occurs while one of the EEPROM storage functions is writing to
EEPROM, the interrupt will not be able to read the instruction code in the interrupt vec-
tor. Disabling interrupts prevents this error, but the interrupt service is delayed until the
EEPROM write is finished.

Write-Protecting EEPROM

It is possible to write-protect locations within the EEPROM to ensure the integrity of calibration
constants or other vital information. This is done using the EEPROM block protect register named
BPROT (MC68HC11F1 Technical Data Manual, p.8-2). Four blocks of size 32, 64, 128, and 288
bytes may be individually protected by storing an appropriate configuration value to BPROT. The
contents of the BPROT register may be changed using the C function InstallRegisterInits or
the QED-Forth word INSTALL.REGISTER.INITS; please consult its glossary entry for details.

To make a turnkeyed application maximally “bullet-proof” and fail-safe, consider using the BPROT
register to protect the first three blocks in the EEPROM totaling 224 bytes. This protects the on-
board kernel’s configuration region (the first 32 bytes in EEPROM) plus the interrupt vectors (the
next 160 bytes in EEPROM) plus an additional 32 bytes available the programmer. The remaining
288 bytes of EEPROM then remain available for modification by the application program.

Once values have been stored in the EEPROM, they may be read using the conventional memory
fetch operations such as C@, @, and 2@.

Using C Arrays and Forth (Kernel) Arrays

Storing Data Acquisition Results in C Arrays and Forth Arrays

Programs written in Control-C use space in common memory to store variables. You may store
simple variables or arrays of variables there using standard C syntax. However, common memory is
a limited to approximately 9K. It can get used quickly in multitasking systems because each task
requires a task area of about 1K. Consequently, the programmer may require access to additional
RAM. Access is provided through the use of Kernel Arrays, also called Forth Arrays. Using Forth
Arrays you may dynamically dimension arrays of virtually any size in the extended address space –
and their memory allocation is automatically handled by the kernel’s heap memory manager.

10 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

The code presented in the sample program ANALOGIO.C uses a C array and a FORTH_ARRAY to
store the results of multiple A/D conversions. This section uses that code as an example to discuss
some interesting features of both C Arrays and FORTH_ARRAYs.

Declaring a C Array

The use of C arrays is discussed in detail in all standard C texts. In this program, the one-
dimensional 16-element character array named results_8 is declared and allocated in RAM using
the statement:

uchar results_8[DEFAULT_NUMSAMPLES];

where DEFAULT_NUMSAMPLES is a constant equal to 16. The arrays are easy to use. For example,
the following C statement assigns the last element in the array to a static variable named
my_variable:

my_variable = results_8[15];

To see another simple example that demonstrates how C arrays are accessed, look at the
InitAnalog() function in the ANALOGIO.C file. The results_8 array is zeroed by executing
the following statement:

for(i=0; i< DEFAULT_NUMSAMPLES; i++)
results_8[i] = 0; // zero the array

Note that this array is dimensioned and allocated by the compiler and linker. In contrast,
FORTH_ARRAYS are dimensioned and allocated dynamically by the run-time program itself.

Converting a 16 Bit Address to a 32 Bit xaddress

The AD8ToCArray() function that we just used provides an interesting example of type conversion.
The definition of the function is:

_Q void AD8ToCArray(int channel)
{ EXTENDED_ADDR buffer;
buffer.sixteen_bit.addr16 = results_8;
buffer.sixteen_bit.page16 = 0;
AD8Multiple(buffer.addr32,0,DEFAULT_NUMSAMPLES,channel);
}

The purpose of AD8ToCArray() is to properly call AD8Multiple() which is defined in the
ANALOG.H file. AD8Multiple() is optimized to use a FORTH_ARRAY buffer, and so expects a 32
bit buffer xaddress instead of a simple 16 bit buffer address. To convert the simple 16 bit address
returned by results_8 into a 32 bit extended address, we take advantage of the EXTENDED_ADDR
union defined in the TYPES.H file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory. The
union is defined as:

typedef union{ xaddr addr32;
struct{ uint page16;
char* addr16;
} sixteen_bit;
} EXTENDED_ADDR;

Using C Arrays and Forth (Kernel) Arrays 11

To convert a 16 bit address into a 32 bit xaddress, we use the EXTENDED_ADDR typedef to declare an
instance of the union (named “buffer” in this example), store the 16 bit address into the
buffer.sixteen_bit.addr16 element, and store 0 (the default page) into the
buffer.sixteen_bit.page16 element. Then we reference the corresponding 32 bit xaddress
via the buffer.addr32 element of the union. While it is rare that you will have to convert from
16 bit to 32 bit address types, this example provides a template for how to do it.

A Review of FORTH ARRAYs

FORTH_ARRAYs have two key advantages. First, they are allocated in paged memory, so they allow
your program to access the large 8 Megabyte memory space of the QED Board. In contrast, C ar-
rays must reside in the available common RAM which is limited to approximately 9 kilobytes on the
QVGA Controller. Second, they can be dynamically dimensioned, re-dimensioned and de-allocated
(deleted) while your program is running; this boosts efficiency by maximizing the use of the avail-
able memory.

To define a new Forth Array, simply use the FORTH_ARRAY typedef followed by a name of your
choice. For example, in the ANALOGIO.C file the following declaration appears:

FORTH_ARRAY results_12;

Before the FORTH_ARRAY can be accessed at runtime, it must be dimensioned. This is typically
accomplished by calling the DIM() macro defined in the ARRAY.H header file. For example, to
dimension the results_12 array to have 10 rows and 1 column of integer data, we would execute:

DIM(int, 10, 1, results_12);

In the ANALOGIO.C file, the pre-defined macro named DIM_AD12_BUFFER() invokes the DIM()
routine for us (its definition is in the ANALOG.H file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC
directory).

After the FORTH_ARRAY is dimensioned, it can be accessed by a family of macros and functions that
are defined in the ARRAY.H header file and are described in the Control-C Glossary. These include
functions that fetch from, store to, and calculate the address of individual elements, swap and copy
entire arrays, fill an array with a specified character, and delete the array so that it no longer requires
memory in the heap. The PrintForthArray() and InitAnalog() functions in ANALOGIO.C
provide examples of how to call a few of these functions.

Printing the Contents of a FORTH ARRAY

The PrintForthArray() function presented in ANALOGIO.C is a more general version of the
PrintFPArray() function in GETSTART.C as discussed in an earlier chapter. The function is
defined as follows:

_Q void PrintForthArray(int float_flag, FORTH_ARRAY* array_ptr)
// works for FORTH_ARRAYS dimensioned using the standard DIM() macro.
// float_flag is true if array holds float numbers, false otherwise.
{ int r, c;
putchar(‘\n’);
for (r = 0; r < NUMROWS(array_ptr); r++) // for each row
{ for (c = 0; c < NUMCOLUMNS(array_ptr); c++) // for each column
if(float_flag)

12 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

printf(“%9.4g “,FARRAYFETCH(float,r,c,array_ptr));
else
printf(“%9ld “,ARRAYFETCH(long,r,c,array_ptr));
putchar(‘\n’); // newline after each row is printed
PauseOnKey(); // implement xon/xoff output flow control
}
}

After calling putchar() to output a newline character, we enter nested for() statements that print
the contents of each element. Because the compiler treats floating point numbers differently than
numbers stored in other formats, we use FARRAYFETCH() to access floating point arrays, and
ARRAYFETCH() to access char, int or long arrays. The PauseOnKey() function is called once
per row to suspend the QVGA Controller’s printed output if the terminal program has sent the XOFF
handshake character; the printout resumes when the terminal sends the XON character.
PauseOnKey() also gives the user the ability to terminate the printout by typing a carriage return
character from the terminal.

This function can be tailored to meet the detailed needs of your application. You can change the
printf() formatting, or insert extra carriage returns to confine the printout to one screen width.

Access Routines for Arrays and Matrices

The routines 2ARRAY.STORE and 2ARRAY.FETCH have been added to the kernel to enable you to store
to and fetch from 2-dimensional arrays or matrices. The unique aspect of these routines is that they
properly handle data of different sizes (1 byte, 2 bytes, or 4 bytes) depending upon the way that the
array or matrix is dimensioned. For example, if an array named CHAR.ARRAY is dimensioned (using
the DIMENSIONED routine) to hold 1 byte per element, then executing

0 0 ‘ CHAR.ARRAY 2ARRAY.FETCH

will return the first 8-bit character in the array. If another array named DATA.ARRAY is dimensioned
to hold 16-bit data, then executing

0 0 ‘ DATA.ARRAY 2ARRAY.FETCH

will return the first 2-byte element in the array. These routines help support access to paged mem-
ory when programming in Control-C.

Using C Arrays and Forth (Kernel) Arrays 13

Wildcard Carrier Board Drivers
\
**

\ FILE NAME: To_xFlash.4th
\ Kernel extension for supporting memory management and flash programming for the
\ Wildcard Carrier Board and QVGA Controller Board
\ Copyright 2002-2003 Mosaic Industries, Inc. All rights reserved.
\ ---
\ DATE: 2/06/2003
\ VERSION: 1.2
\ SUPPORTED HARDWARE:
\ QED-4 (FLASH) Board
\ QVGA Controller Board
\ WildCard Carrier Board
\ ---
\ Please see the Wildcard Carrier Board User Guide for detailed instructions.
\
\ These are the User Functions defined by this driver:
\ To_xFlash (xsource_addr\xdestination_addr\numbytes -- success)
\ Query_xMemory (page -- device.size&type)
\ Is_xRAM (page -- flag)
\ Is_xFlash (page -- flag)
\ Page_To_xFlash (source.page --)
\ Download_Map_QVGA (--)
\ Download_Map_WCB (--)
\ Standard_Map_QVGA (--)
\ Standard_Map_WCB (--)
\
\ To_xFlash allows writes to the extra flash chip on the WCB, the QVGA Controller,
\ and/or the kernel flash chip. This function has the same behavior as To_Flash
\ (see its glossary entry in the QED-FLASH update notice), but uses the ID of the
\ flash device to determine how to perform the write.
\
\ Query_xMemory determines the size and type of an extra memory device. The value
\ returned is a signed integer of the size in kilobytes. The sign represents the
\ device type, a positive size for RAM, and negative for flash. A value of zero
\ means either no device resides at the base page, or a flash chip is installed with
\ either an unknown ID, or is write protected.
\ Two notes on Query_xMemory:
\ The base page of the device must equal the bitwise-AND of the page and 0xF0.
\ Zero is returned if the base is zero
\
\ Is_xRAM and Is_xFlash return true is the given page resides on the coorepsonding
\ memory device. Note, these functions are wrappers for Query_xMemory.
\

14 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

\ Page_To_xFlash is the To_xFlash replacement for PAGE.TO.FLASH. It is aware of the
\ RAM and flash devices available for the WCB and QVGA Controller, and provides
\ download friendly error reporting.
\ Note, it relies on Is_xRAM and Is_xFlash for parameter checking
\
\ Note, the above functions use the same buffer areas as the kernel routines
\ that they supercede (ie To.Flash and Page.To.Flash).
\ (buffers are located in the top half of onchip RAM from 0xB200-0xB3E0).
\ These routines are not re-entrant with respect to multitasking.
\ This means that a multitasking application cannot support simultaneous
\ flash programming by separate tasks unless a resource variable is defined
\ and GET and RELEASE are used.
\
\ Download_Map_QVGA, Download_Map_WCB, Standard_Map_QVGA, Standard_Map_WCB
provide a
\ simple way to set the memory map of a board while clearly stating what is being done.
\
\ Standard Map Download Map
\ RAM Flash RAM Flash
\ QED 01-03 04-06 04-06 01-03
\ WCB 40-4F 50-5F 50-5F 40-4F
\ QVGA 60-6F 70-7F 70-7F 60-6F
\
\ NOTE: The memory map of the QED Board is maintained across power cycles and resets,
\ but is cleared by a factory cleanup. However, the WCB and QVGA, revert to standard
\ map at powerup, but maintain their state across resets or factory cleanups.
\
\ The above functions should provide simple means to compile code for storage in the
\ flash devices of the QED Board, the Wildcard Carrier Board, or the QVGA Controller.
\
\ Top Level C Functions:
\ int To_xFlash (xaddr source, xaddr destination, uint numbytes)
\ int Query_xMemory (int page)
\ bool Is_xRAM (int page)
\ bool Is_xFlash (int page)
\ void Page_To_xFlash (int source_page)
\ void Download_Map_QVGA (void)
\ void Download_Map_WCB (void)
\ void Standard_Map_QVGA (void)
\ void Standard_Map_WCB (void)

Special Memory Areas for Forth Programmers 15

Special Memory Areas for Forth Programmers

The Kinds of Memory Available on the QED Board

[[Change to following to describe Flash program development instead of ROM program develop-
ment]]

RAM (Random Access Memory) can be both read and written to by the processor. Standard RAM
loses its contents when power is removed; it is “volatile”. On the other hand, ROM (Read-Only
Memory) and PROM (Programmable Read-Only Memory) can be read by the processor but cannot
be modified by the processor. PROM can be programmed in a PROM burner which applies pro-
gramming voltages in a specified pattern to initialize the contents of the memory. In this document
we use the terms “ROM” and “PROM” interchangeably. PROMs retain their contents when power
is removed; for this reason they are called “nonvolatile”. A small amount of EEPROM (Electrically
Erasable PROM) is available on the QED Board. EEPROM is nonvolatile and can be read by the
processor. It can also be programmed by the processor, but each byte takes 20 milliseconds to
modify, or about 10,000 times longer than it takes to write to a byte of RAM. Thus EEPROM is
useful for nonvolatile storage of quantities that are only rarely changed or updated, such as calibra-
tion constants.

Like PROM, battery-backed RAM retains its contents when power is removed, but unlike PROM, it
can be modified by the processor. Battery-backed RAM behaves exactly like PROM when it is
write-protected: it retains its contents when the board is powered down, and its contents cannot be
modified by the processor. The QED Board allows you to “emulate” the behavior of PROM by
flipping a switch to write-protect pages of battery-backed RAM. This feature speeds debugging by
obviating the need for PROM burning during the development of your application. You can see
exactly how your application will work once it is burned into PROM without actually having to burn
a PROM.

Overview of the Memory Areas

As described in the prior chapters of this manual, the QED Board uses a paged memory architecture
that yields an ample 8 Megabyte addressable memory space. Up to 384 Kbytes of memory (128K in
each of 3 sockets) can be accommodated on the QED Board. The “memory map” describes how the
available memory is allocated to specific uses by an application program. For example, Appendix A
details how memory is allocated after a COLD startup.

Before you start programming your application, you should decide upon an appropriate memory
map. This involves allocating the ten memory areas listed in Figure 3-1. A short summary of these
areas may help to clarify their functions. The user area is a region of up to 256 bytes that contains
the pointers and “user variables” that the QED-Forth task needs. In fact, the user area contains all of
the pointers and base addresses that define the memory map. Each task in an application has its own
user area, so each task can have a distinct memory map specified by its own user variables. The
location of the start of the user area is specified by the contents of a variable named UP (user
pointer).

16 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

The return stack holds the return addresses of subroutine calls, and the data stack holds parameters
passed among QED-Forth routines. The Terminal Input Buffer (TIB) holds the last line of serial
input. The POCKET buffer holds the last word interpreted by QED-Forth. The PAD buffer is a
scratchpad available to the user; number-to-string conversion is performed in the area below the
PAD buffer. The heap is a block of RAM available for dimensioning data structures such as arrays
and matrices. The variable area holds variable contents and parameter fields, the name area holds
the headers of the words in the dictionary, and the definitions area holds the object code that defines
the action of each word.

Configuring an appropriate memory map is not difficult. Fortunately, the first six of these ten mem-
ory areas are small buffers or regions occupying less than 1 Kbyte each, and often they can be left in
the default positions that they occupy after a COLD restart. The remaining four memory regions
(the heap, variable area, name area, and definitions area) should be initialized to appropriate loca-
tions by the programmer at the start of the programming session. The pre-defined utility
USE.PAGE described below helps you to locate these four memory areas.

The Default Memory Map in Common RAM

Figure 3.1 lists the ten key areas in the memory map, the user variables that set their locations, the
command that places the location on the data stack, the default address (in hex) in common memory
after a COLD restart, and their default size (in decimal). A “negative size” means that the area
grows downward in memory.

Table 1-5 Ten memory areas that specify an application’s memory map.

Memory Area User Variable
Name

Contents Default
Location

Default Size

User area1 UP UP @ 8400H 256

Return stack R0 R0 @ 8800H -768

Data stack S0 S0 @ 8B00H -768

Terminal Input Buf UTIB TIB 8B00H 96

Pocket UPOCKET POCKET 8B60H 36

Pad UPAD PAD 8BA8H +88, -36

Heap end CURRENT.HEAP CURRENT.HEAP X@ 8DFFH 512

Variable area VP VHERE 8E00H 512

Name area NP NHERE 9000H 512

Definitions area DP HERE 9200H 1024

1. UP is a variable, not a user variable.
2. Negative sizes indicate that memory use grows downward, towards lower addresses.

A COLD restart initializes the system so that all of the memory areas are in the common RAM. The
programmer can move the memory areas by modifying the appropriate user variables.

The stacks, user area, and POCKET must reside in common RAM. Recall that the common mem-
ory includes all addresses above 8000H (that is, the top 32K of memory). QED-Forth reserves the

Special Memory Areas for Forth Programmers 17

1K of RAM from 8000H through 83FFH for system needs, 1/2K EEPROM is located at AE00H
through AFFFH, and the kernel occupies B400H through FFFFH. The common RAM areas from
8400H through ADFFH (10.5K) and B000H through B3FFH (1K RAM on the 68HC11 chip) are
available for the programmer’s use.

The User Area

The user area is a 256-byte block of memory which contains all of the user variables that set the
memory map and facilitate compilation and execution of QED-Forth code. Each user variable re-
turns an extended address that is calculated relative to the contents of the user pointer UP. When
executed, a user variable adds its unique offset to the contents of UP and places this address (under
0, the default page) on the stack. For example, to find the current base address of the user area,
execute

HEX UP

ok [2] \ 8200 \ 0

?

8400 ok

Thus the current user area starts at 8400H. The definitions pointer DP is a user variable that leaves
its address on the stack when executed:

DP

ok [2] \ 8408 \ 0

DP is defined with the word USER as a user variable that adds the offset 8 to the current value of
UP. The user area is described in detail in Chapter 15.

The user area facilitates multitasking, as the multitasking executive only needs to change the con-
tents of the single variable UP to perform a context switch to a new task’s user area. Each task can
have its own memory map, stacks, and task-private variables. These topics are covered in detail in
the “Multitasking” Chapter.

The following sections describe each of the memory areas listed in Figure 3.1. The location of each
area may be changed by storing an address in the appropriate user variable.

Return and Data Stacks

The user variables R0 (R-zero) and S0 (S-zero) hold the 16-bit addresses of the bottoms of the return
and data stacks, respectively. Both stacks must be in common ram. The default locations for the
return and data stacks are 8B00H and 8800H. Each stack is allocated 3/4K of space, and grows
downward in memory. The first item on the stack is stored at the two bytes below the value in R0 or
S0. For example, the default value in R0 is 8800H, so the first item on the stack is stored with its
most significant byte at 87FE and its least significant byte at 87FF. The S register of the 68HC11 is
the return stack pointer. The kernel word (RP) returns the address of the most significant byte of the
top item on the return stack. The Y register is used as the data stack pointer; it points to the most
significant byte of the top item on the data stack. The kernel word (SP) places on the data stack the
value of the Y register that existed just before (SP) was executed.

18 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

Terminal Input Buffer

The terminal input buffer (TIB) holds an ascii representation of the last line of input from the serial
port. The default location of the TIB is at 8B00H, and its default size is 96 characters. The kernel
word QUERY, a key routine in the QED-Forth interpreter, executes

TIB CHARS/LINE @ EXPECT

to get the next line of input into the terminal input buffer, and then loads the number of characters
received into the user variable #TIB. The default value of the user variable CHARS/LINE is 96,
which is the size of the TIB. Unless you move the TIB and/or the POCKET buffer just above it in
memory, you should not set the user variable CHARS/LINE to a value greater than 96. Doing so
could cause a long command line to overwrite the memory area above the TIB.

The TIB may be placed at any RAM location. It need not be in the common memory; however, the
buffer may not cross a page boundary. To change the location of the TIB, use X! to store a 32-bit
starting address into the user variable UTIB. Executing the word TIB places the 32-bit starting
address of the buffer on the data stack.

POCKET

POCKET is a buffer used by the WORD routine in QED-Forth’s interpreter. The interpreter parses
each blank-delimited word in the input stream, clamps its size to a maximum of 31 characters, and
moves the counted ascii string to POCKET, which must be in the common RAM. (For experts:
Larger strings may be parsed using the word PARSE). To change the location of POCKET, use ! to
store a 16-bit starting address (which must be in the common RAM) into the user variable
UPOCKET. Executing the kernel word POCKET leaves the starting address of the pocket buffer
under a 0 (the default page) on the data stack.

PAD

PAD is a scratchpad buffer. The memory area above PAD is available for the programmer, and the
memory below PAD is used by QED-Forth’s number conversion routines. PAD can be in RAM on
any page or in the common area, as long as the buffer does not cross a page boundary. At least 32
bytes below PAD (starting at PAD - 1) must be available for the integer and floating point number-
to-string conversion routines. The memory above PAD is used to hold incoming characters by the
words RECEIVE.HEX, INPUT.STRING, ASK.NUMBER, and ASK.FNUMBER. The location of
PAD may be altered by using X! to store a 32-bit base address into the user variable UPAD. Exe-
cuting PAD leaves the base address of the buffer on the stack. The default memory map allocates
36 bytes below PAD for number conversion, and 88 bytes above PAD for use by the programmer.

Heap

The user variable CURRENT.HEAP holds the 32-bit extended address of the end of the heap (actu-
ally, it points 1 byte above the end of the heap). The other variables that configure the heap are
stored near the top of the heap, just below the address in CURRENT.HEAP. This makes it easy to
switch among multiple heaps, if needed, by changing only a single 32-bit user variable. The size of
the heap is limited only by the amount of available contiguous RAM, and the heap can occupy mul-

Special Memory Areas for Forth Programmers 19

tiple contiguous pages. The default heap is only 1/2K in size; it can be resized and/or relocated
using the command

IS.HEAP (start.xaddr\end.xaddr --)

which sets CURRENT.HEAP and initializes the other heap configuration variables.

The heap must always be in RAM, even after the application is finished and the dictionary areas are
write-protected or ROMmed. Chapter 5 describes the heap memory manager in detail.

Variable Area

The variable area holds the parameter fields of variables, self-fetching variables, arrays, and matri-
ces. The parameter fields of variables hold the contents of the variables, and the parameter fields of
arrays, matrices, and other heap items hold handles to the heap items and dimensioning information.
The variable area must be in RAM, and can be on any page. To modify its location, use X! to store
a 32-bit extended starting address into the user variable VP (variable pointer).

Executing VHERE places the current contents of VP on the data stack. VALLOT increments the
contents of VP, and aborts if a page boundary is crossed. In general, the parameter field of a data
structure such as an array or a matrix cannot cross a page boundary.

The programmer must guarantee that the variable area will always be in RAM, even after the appli-
cation is finished and the dictionary is write-protected or ROMmed.

Name Area

The name area holds the headers of the words in the dictionary. Each header contains the count and
first several characters (determined by WIDTH) in the name, a pointer to the code field of the word,
and a link to the previous name in the dictionary. (Appendix C describes the header format in de-
tail). The name area must be in modifiable RAM during compilation, but sections of the name area
containing the headers of defined words can be write-protected, and the entire name area may be
write-protected or burned into PROM when the application program is finished.

The name area can be spread throughout the memory space. For example, a portion of the name
area will be in a block of memory specified by the programmer, and another portion of the name
area is in a separate block on page 15 where the headers for the kernel routines are stored. The
interpreter automatically links each new header to the previous header to maintain the integrity of
the name list.

The user variable NP (name pointer) points to the next available location in the name area. Execut-
ing NHERE (name here) places the contents of NP on the data stack. To initialize the location of
the name area, use X! to store a 32-bit extended address into NP. NP is automatically incremented
each time a new word is defined. If the creation of a new word causes NP to cross a page boundary,
an error message is issued. An individual header cannot cross a page boundary. In response to such
an error message, you should store a new value into NP to reset the name area to a new page before
compiling more definitions.

20 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

Definitions Area

The definitions area holds the code that defines the behavior of the words in the dictionary. The
user variable DP (definitions pointer) points to the next available location in the definitions area.
The area must be in RAM during compilation, but sections of the definitions area containing already
defined words can be write-protected, and the entire definitions area is typically write-protected or
burned into PROM when the application program is finished.

The user variable DP (definitions pointer) points to the next available location in the definitions
area. DP is initialized using an X! command, and HERE leaves the contents of DP on the data
stack. ALLOT advances the contents of DP, and issues an error message if DP crosses a page
boundary during a definition. In general, the definition code of a single word cannot cross a page
boundary. In response to such an error message, you should store a new value into DP to reset the
definitions area to a new page before compiling more definitions.

Customizing the Memory Map

After a COLD restart, all of the memory areas just described are located in the common RAM.
While the location and sizes of the user area, return and data stacks, TIB, POCKET, and PAD are
probably adequate for most purposes, the heap, name and definitions areas are too small for all but
the shortest development sessions. If you do not modify NP and DP, you may find that after defin-
ing several dozen words, the name area will start to over-run the definitions area, giving unpredict-
able results.

It is recommended that you set the memory map immediately after a COLD restart. For all but the
shortest debugging sessions, it is recommended that the name and definitions areas and the heap be
moved and resized.

The command

USE.PAGE (page --)

has been included in the kernel to make it easy to set up a memory map after a COLD restart. It lets
you specify a 32K page that will accommodate the name and definitions areas, and sets up the fol-
lowing memory map:

20 Kbyte definitions area starting at 0000H on the specified page

12K name area starting at 5000H on the specified page

4K variable area starting at 3000H on page 15 (0FH)

16K heap occupying 4000H to 7FFFH on page 15 (0FH)

The return and data stacks, TIB, POCKET, and PAD are left at their prior locations. Thus the vari-
able and heap areas are placed on page 15 which is guaranteed to be non-write-protected RAM so
the variable and heap areas will never be mistakenly ROMmed or write-protected. The definitions
and names areas are placed on the specified page and may be write-protectable; recall that pages 4,
5, 6, and 7 on the QED Board can be write-protected by flipping the on-board DIP switches.

An equivalent definition of USE.PAGE is:

Special Memory Areas for Forth Programmers 21

HEX
: USE.PAGE (page --)
 >R \ keep the page on the return stack
 0000 R@ DP X! \ set definitions pointer
 5000 R> NP X! \ set the name pointer
 3000 0F VP X! \ set variable pointer
 4000 0F 7FFF 0F IS.HEAP \ set heap
;

In keeping with the discussion earlier in this chapter, it is recommended that an ANEW command be
executed at the start of each debugging session immediately after changing the memory map.

For example, suppose that a 20K definitions area, 12K names area, 4K variable area, and 16K heap
are adequate for your application. The following commands would correctly configure your mem-
ory map:

4 USE.PAGE
ANEW APPLICATION.NAME \ choose any name you like here

The resulting memory map places the definition and name areas in page 4 where they can be write-
protected during development by turning DIP switch #1 ON. As described in the next section, this
memory map is also compatible with a production system which contains the 64K QED-Forth
PROM in socket S1, a 32K RAM in socket S2, and a 32K PROM in socket S3.

The memory map can be customized to meet the needs of each application. Some applications may
need a large heap, while others may need little or no heap space because they do not use arrays,
matrices, or other dynamic data structures. Several example memory maps are presented in the next
section.

Summary

In summary, remember that the user area, stacks and POCKET must be in the common memory, and
the other sections of the memory map may be placed anywhere in memory. Stacks, heap, variable
area, TIB, POCKET, and PAD should always be in modifiable memory (RAM) even after the name
and definitions areas have been write-protected or PROMmed. The name and definitions area must
be in RAM during compilation, but can be write-protected during debugging and burned into PROM
when the application is finished. USE.PAGE is a handy utility that sets up a default memory map,
and it is strongly recommended that you execute an ANEW command after changing the memory
map.

Designing a Memory Map for a “Turnkeyed” Application Program

Most users of the QED Board want to create a “turnkeyed” application program that is burned into
PROM and is set up to autostart each time the board is powered up. These users want to design their
application program to control a production instrument as opposed to a one-of-a-kind prototype. To
accomplish this goal, the memory map must be configured to properly allocate the memory areas
between the available RAM and PROM. This section describes how to perform this allocation. For
a detailed and very informative example of a turnkeyed application program, please see Chapter 17.

22 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

RAM vs. ROM

The first step in programming an application is assigning the memory areas that will be occupied by
the definitions, name area, variable area, and heap. The definitions area of a turnkeyed program
must be in PROM (or some type of write-protected nonvolatile memory) for the application to run
properly. If the definitions are not write-protected or in PROM, any “crash” could cause part of the
program to become corrupted. The name area must be present during development and debugging
so that you can compile and execute words. If names are required in the final application (for ex-
ample, if you want to give the end user the ability to execute commands from a terminal), then the
name area should be included in PROM or nonvolatile memory in the final turnkeyed system. The
name area can be left out of the final turnkeyed application if the end user need not execute Forth
commands to use the final instrument. Removing the names saves PROM space in the production
system, and can improve the “security” of the code by keeping informative English-sounding names
from would-be pirates who might try to decipher the code.

While the definitions and name areas should end up as PROM in the final system, the variable area
and heap must always be located in RAM. Both variables and the contents of the heap must be
subject to change while the application is running, so they can never be ROMmed.

Other Memory Areas

In addition to the four main memory areas, memory must be allocated in the common RAM for data
and return stacks, and for task areas. For most applications, the default data and return stacks of 768
bytes each in common RAM are adequate, and no further allocation is needed. In multitasking
applications, each task typically requires the default 1K task area in common RAM as described in
the glossary entry for BUILD.STANDARD.TASK. This task area includes the data stack, return
stack, PAD, POCKET, TIB, and user area for the task. The 6K of common RAM starting at 9600H
and labeled as “6K available RAM” in Appendix A is a convenient place to allocate task areas for
up to 6 standard tasks.

Required buffers such as the PAD (scratchpad area) and TIB (terminal input buffer, for receiving a
line from the serial port) may be allocated in common RAM or paged RAM; the POCKET buffer
must be allocated in common RAM. For the great majority of applications, the default locations of
these buffers are adequate and the programmer need not take any action to re-locate them (the mem-
ory map in Appendix A describes the default locations).

While compiling an application, all four main memory areas (definitions, names, variables, and
heap) are located in RAM. During debugging, the definitions and name areas may be optionally
write-protected. As described in the next section of this chapter, proper use of write-protection can
save you from having to re-download all of your code after a crash or mistaken command.

Available PROM and RAM on the QED Board

The QED Board has 3 memory sockets labeled S1, S2, and S3. Each can accommodate a memory
device ranging from 32 Kbytes to 128 Kbytes. Appendix A specifies the memory map in detail, and
the following brief summary may be helpful.

Special Memory Areas for Forth Programmers 23

Socket S1 accommodates the QED-Forth ROM which holds the development system as well as the
runtime libraries. This ROM must be present for the QED Board to function.

Socket S2 holds a 32K or 128K RAM, and at least 32K of RAM must be present in this socket for
the QED Board to operate. This memory cannot be write-protected. If a 32K RAM is installed, the
onboard logic places 20K of it on page fifteen (0FH) at addresses 3000H to 7FFFH and the remain-
der in common memory at addresses 8100H-ADFFH (but 8100H-83FFH is reserved for use by
QED-Forth). An additional 1K of common memory is available at addresses B000H-B3FFH; this is
the 68HC11’s on-chip RAM. The total amount of common RAM available to the programmer (in-
cluding the 68HC11 on-chip RAM and excluding the common RAM reserved by QED-Forth) is
11.5K. If a 128K RAM is installed in socket S2, the three 32K pages numbered 1, 2, and 3 are also
available.

Socket S3 is called the “RAM/ROM socket”. It accommodates either RAM (typically during pro-
gram development) or PROM (typically in your final product). During program development and
debugging, a 128K battery-backed RAM is typically installed in this socket. The memory is ad-
dressed at pages 4, 5, 6, and 7, and each page contains 32 Kbytes. Turning onboard DIP switch #1
ON write-protects pages 4 and 5, and turning DIP switch #2 ON write-protects pages 6 and 7.

This socket is an ideal location for the memory areas such as the definitions and name area that will
end up as PROM in the final system. During program development, code can be compiled into the
RAM in this socket, and the memory can be write-protected to emulate a PROM. When the appli-
cation is completely debugged, the contents can be burned into a PROM, and the PROM can be
plugged into the socket. Turning dip switch #3 ON configures the socket for a PROM, and the
system is complete. The PROM size can be 32K (page 4 only), 64K (pages 4 and 5), or 128K
(pages 4, 5, 6, and 7).

Setting Up the Memory Map

To set up the memory map for a turnkeyed application program, the following factors should be
taken into account:

1. The amount of memory space required by the application for each of the four main memory
areas (definitions, names, variables, and heap).

2. Whether or not the name area must be present in the final application.

3. Memory requirements for task areas in common RAM (see the “Multitasking” Chapter).

4. The amount and location of available PROM on the final production board which must ac-
commodate the definitions and name area (if present).

5. The amount and location of available RAM on the final production board which must accom-
modate the variable area, heap area, task areas, stacks and buffers.

If a 20K definitions area and 12K name area in PROM and a 4K variable area and 16K heap in
RAM are adequate, then executing the simple commands

4 USE.PAGE
ANEW APPLICATION.NAME \ choose any name you like here

24 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

after a COLD restart conveniently initializes the memory map. The resulting memory map is con-
sistent with the minimum onboard memory configuration which is:

QED kernel ROM in socket S1

32K RAM in socket S2

32K application PROM in socket S3

The name area can be present in the final 32K PROM. If the names of the routines are not needed in
the final production instrument, we can simply neglect to transfer the names area to the PROM. If
the name area is not needed in the final application and we would like to use an entire 32K defini-
tions area, the following code could be used after a COLD restart to set up the memory map:

HEX
0000 4 DP X! \ set 32K definitions area on page 4
0000 5 NP X! \ set 32K name area on page 5
3000 F VP X! \ 4K variable area on page fifteen
4000 F 7FFF F IS.HEAP \ 16K heap on page fifteen
ANEW APPLICATION.NAME \ choose any name you like here

Notice that we execute the ANEW command after we have set up the memory map but before we
have defined the first entry in the dictionary.

To gain a comprehensive understanding of the creation of a turnkeyed program, it is strongly rec-
ommended that you read the final chapter of this manual titled “Putting It All Together: A Turn-
keyed Application Program”.

Splitting the Dictionary to Write-Protect Debugged Code

As with all computers, executing “buggy” code can cause the QED Board to “crash”, which means
it executes a set of instructions that it is not supposed to. This may cause the processor to write over
and corrupt memory locations that are not write-protected. If the dictionary is in RAM, definitions
may be corrupted. In some cases executing a buggy program can corrupt a small portion of the
dictionary and lead to hard-to-diagnose problems. Write-protecting the dictionary can minimize
these difficulties.

If you have spent several days debugging a portion of your program, a single crash can corrupt all of
your code if the full dictionary is in modifiable memory (RAM). After such a crash, you would be
forced to download all of your code to re-establish the dictionary.

The split-dictionary memory map solves this problem. The memory map can be configured so that
the portion of the dictionary that has been tested and debugged resides in a write-protected memory
page that cannot be corrupted by a crash. The variable and heap areas plus the portion of the dic-
tionary that is now being debugged are placed in a non-write-protected page of RAM. Then a crash
can corrupt only the portion of the dictionary that you are debugging, and cannot harm the write-
protected code. As more words are debugged, they can be transferred to the write-protected page of
memory.

Special Memory Areas for Forth Programmers 25

Using SAVE and RESTORE to Recover from a Crash

If a crash results in a cold restart, you’ll want to regain access to the words in the write-protected
dictionary. The kernel words SAVE and RESTORE provide this capability. SAVE stores in
EEPROM the contents of 5 key user variables: DP, NP, VP, CURRENT.HEAP, and the top link in
the FORTH vocabulary. The latter typically specifies the last name added to the dictionary.

Execute SAVE after you have compiled your definitions into RAM. Then you can flip the DIP
switch to write protect the definitions. This saves the key pointers in EEPROM. After a crash,
executing RESTORE will fetch the saved pointers and put them in their proper places in the user
area. This restores the memory map and dictionary to the state they were in when SAVE was exe-
cuted, giving you access to the write-protected portion of the dictionary. You can continue debug-
ging without having to re-download all of your code.

An Example of Dictionary Splitting

Let’s start with a clean slate by executing

COLD

to initialize the user area and memory map. Let’s say we need a 16K heap and a 4K variable area,
and we can leave the return and data stacks, TIB, POCKET, and PAD at their default locations in
common memory. In addition, assume that we want to be able to write protect page 4 after a num-
ber of words have been defined and debugged, and then continue compiling definitions in RAM on
page 6. To set up a useful memory map we can execute

4 USE.PAGE

which allocates a 4K variable area and 16K heap on page fifteen, and a 20K definitions area and
12K name area on page 4. Recall that DIP switch#1 controls the write-protection of pages 4 and 5;
it should be OFF to enable compilation of new definitions on page 4. Then we can start compiling
code into page 4, starting with an ANEW statement, as usual. For example,

ANEW SPLIT.DICTIONARY

MATRIX: 1MAT
INTEGER: 1INT

: 1ST.WORD (--)
 .” I’m the first word”
;

and so on. The code and names of these words are being compiled on page 4. The parameter fields
of 1MAT and 1INT are in the variable area in page fifteen. Now assume that we’ve compiled and
debugged enough words on page 4, and we want to write protect them so a crash can’t corrupt the
definitions. Simply execute

SAVE

to save the state so that it can be restored after a crash. Then dip switch #1 can be flipped to the
“on” position to write-protect pages 4 and 5.

To move the dictionary pointers to page 6, execute

26 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

HEX
0000 6 DP X! \ start of the definitions area; 20K
5000 6 NP X! \ start of the name area; 12K

and then some words can be defined on page 6:

ANEW PAGE6.WORDS

: CRASH (--)
 UP @ 0 100 ERASE
;

But when CRASH is executed, the system crashes and forces a cold restart (try it). This happened
because the user area that holds all of QED-Forth’s key variables was over-written with zeros. Now
neither CRASH nor any of the words we defined on page 4 is in the dictionary. This can be verified
by executing WORDS which lists the words in the dictionary starting at the last one defined. Type a
carriage return to abort the listing of the WORDS. But all is not lost. The definitions on page 1 are
intact. To regain access to them, execute

RESTORE

which restores the memory map and the vocabulary link to the states they had when SAVE was
executed. Typing WORDS again will confirm that the page 4 definitions are present. Now we can
continue with the debugging session where we left off, starting with the commands

HEX
0000 6 DP X! \ start of the definitions area; 20K
5000 6 NP X! \ start of the name area; 12K
ANEW PAGE6.WORDS

If another crash occurs, simply execute RESTORE again to restore the state that existed at the last
execution of SAVE.

When a fair number of words on page 6 have been debugged you may want to write protect them
also by compiling them on page 4 after the words that are already there. Turn DIP switch#1 OFF to
make page 4 write-able again. Execute RESTORE to restore the machine to the state it had just
after the last word was defined on page 4. Then download the source code for the additional de-
bugged words; they will be compiled onto page 4. Execute SAVE to save this new state. If your
application is finished, you may want to set up the top level word as a PRIORITY.AUTOSTART
program. Flip DIP switch#1 ON to write-protect your code. If you are not finished and want to
debug more words, you would again initialize NP and DP to page 6 locations, execute ANEW, and
start defining new words on page 6.

Summary of the Split-Dictionary and SAVE/RESTORE Technique

In summary, to use the split dictionary scheme, assuming for simplicity that page 4 is the write-
protectable page and page 6 is RAM that can accommodate additional definitions during debugging:

1. Decide how much memory is needed for heap, variables, names, etc.

2. Set the memory map, making sure that the heap and variable area are in un-write-protected
RAM.

The Heap Memory Manager 27

3. Compile definitions in page 4.

4. When ready to change dictionary pages, execute SAVE, write-protect page 4, and set the defi-
nitions and name pointers to page 6.

5. Execute ANEW and define additional words on page 6.

6. To recover from a crash, execute RESTORE, set the definitions and name pointers to page 6,
then repeat step 5.

The Heap Memory Manager
Like many workstations but unlike most microcontroller systems, QED-Forth provides a heap mem-
ory management system. QED-Forth’s advanced array and matrix math routines make extensive
use of the heap memory manager, but they do it transparently. To use these features you need only a
cursory familiarity with the information in this chapter. On the other hand, if you want to create
your own sophisticated dynamically allocated data structures, you should read this chapter carefully.

A “heap” is a pool of memory from which smaller blocks of memory of variable size are allocated.
The heap manager allocates blocks of memory requested by the user’s program from this pool.
When the program is finished with the block of memory, it can return it to the heap. This results in
efficient use of memory, especially for data structures which can vary in size and for temporary data
structures which are used and then de-allocated. The de-allocated memory becomes available for
use by other segments of the program. QED-Forth can maintain any number of heaps simultane-
ously, each containing numerous data structures.

Those interested in a the implementation of a heap manager may consult the final chapter in Object
Oriented Forth--Implementation of Data Structures, by Dick Pountain, Academic Press, 1987.
QED-Forth’s implementation of the heap manager is similar to that proposed by Pountain. It is also
similar to that used by the Apple Macintosh computer as described in Apple’s Inside Macintosh
publications.

Heap Compacting

The heap manager works by allocating blocks of memory beginning at the designated starting ad-
dress of the heap. When a heap item is de-allocated and returned to the heap, its memory is free for
use by other programs. A simple-minded heap manager which simply keeps track of which areas of
the heap are used and which are free encounters the problem of heap fragmentation. For example, if
heap items #1, #2, and #3 are sequentially allotted memory, they will occupy blocks of memory
starting at the bottom of the heap. Then if item #2 is de-allocated, the heap’s free memory will
consist of two disjoint sections: the memory that was occupied by item #2, and the memory above
item #3. As this process of allocation and de-allocation continues, the heap gets fragmented into
smaller available pieces so that less of the heap consists of contiguous memory. This makes it diffi-
cult or impossible for the heap manager to respond to requests for large blocks of contiguous mem-
ory.

28 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

To solve this problem, the QED-Forth heap manager “compacts the heap” each time a heap item is
de-allocated. This involves re-arranging the blocks in the heap so that all of the free heap memory is
available in one contiguous block above the allocated heap items.

Handles to Heap Items

The problem then becomes one of keeping track of where the items are in the heap. The process of
compaction moves the heap items so that the base addresses of the heap items change. But the pro-
gram that requests a heap allocation must have a reliable address that can be used to refer to the heap
item. The heap manager solves this problem by adding a level of indirection in the addressing.
Instead of informing the requesting program of the actual base address of the heap item when it is
allocated, the heap manager returns to the requesting program a “handle” (also called an “xhandle”)
which is an extended address that contains the extended base address of the heap item. As long as a
particular heap item is allocated, its handle does not change and can be used by the requesting pro-
gram. The heap manager changes the handle’s contents appropriately as the heap is compacted, and
the requesting program can fetch the contents of the handle at any time to obtain a valid base xad-
dress for the heap item.

Thus the problems of heap fragmentation and the changing of base addresses are solved by com-
pacting the heap and using handles instead of direct addresses.

Heap Size

In QED-Forth, the maximum size of a heap is limited only by the amount of available contiguous
RAM. A heap can flow over page boundaries. Likewise, the size of a data structure in the heap is
limited only by the available memory in the heap.

The only heap limitation is that the list of handles which is maintained near the top of the heap must
be on the last page of the heap, and the handle list cannot flow over a page boundary. Because each
handle requires only 4 bytes, this poses very little limitation for most practical applications.

The following implementation details clarify how the heap works. The next chapter discusses how
array and matrix data structures use the heap to facilitate dynamic dimensioning and memory allo-
cation.

Initializing the Heap

To create a heap, specify a starting extended address and an ending extended address and execute
IS.HEAP. For example, let’s designate the 20 Kbyte RAM area from 3000H to 7FFFH on page 15
as the heap by executing

HEX 3000 F 7FFF F IS.HEAP� ok

This command sets the user variable CURRENT.HEAP in the user area to 7FFF\FH, and initializes
the heap management variables on the heap page to indicate that START.HEAP is at 3000\FH and

The Heap Memory Manager 29

there are no allocated heap items. The hexadecimal number base is more convenient than decimal
for specifying memory map address locations, so it will be used for the remainder of the chapter.

The user variable called CURRENT.HEAP contains an extended address that specifies the address
and page of the top byte + 1 in the heap. The heap allocation begins in low memory at the extended
address pointed to by START.HEAP; a variable named HEAP.PTR holds the extended address of
the next byte available for allocation. The contents of START.HEAP and HEAP.PTR as well as 2
other variables that manage the heap (HANDLE.PTR and FREE.HANDLE) are kept in the heap
area, just below the specified end of the heap. The handles are kept below these variables in the
heap.

The kernel word ROOM calculates the amount of space available in the current heap and returns it
as a 32-bit number on the stack:

ROOM D.� 4FE7 ok

which is nearly 20 Kbytes, as expected. When all available heap memory has been allocated and no
more items can be added to the heap, ROOM returns 0\0.

Allocating Heap Items

To request a block of 1FEH bytes from the heap execute

DIN 1FE FROM.HEAP� ok [2] \ 7FEF \ F

which expects a double number size in bytes and returns the extended address of the handle for the
heap item. A non-zero handle indicates that the heap manager successfully allocated the memory.
The requesting program should save this handle because its contents contain the base address
needed to access the data in the heap item. It can be saved in a self-fetching variable whose name
corresponds to the function of the heap item. For example,

XADDR: 1ST.DATA.BLOCK� ok [2] \ 7FEF \ F

TO 1ST.DATA.BLOCK� ok \ save the handle in the variable

A handle of 0\0 is returned if there is not enough memory in the heap to allocate the item. None of
the heap manager words ABORT if an error is detected; rather, they signal the error by passing a
zero handle or an error flag to the calling program. It is the calling program’s responsibility to take
the appropriate response in case of an error.

If the requested size passed to FROM.HEAP is not an even multiple of 4 bytes, the heap manager
rounds the size up to the next 4-byte multiple. In this case, the size is rounded up to 200H which is
2 bytes more than the requested size. In addition, the heap manager ensures that the base address of
each heap item is an even multiple of 4 bytes. These steps speed heap compaction and also assure
proper operation of the fast vector and matrix arithmetic functions which require all elements to be
aligned on 4-byte boundaries.

To obtain the base address of the heap item, fetch the extended base address from the handle:

30 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

1ST.DATA.BLOCK X@� ok (2) \ 3004 \ F

SP!� ok \ clear the data stack

The contents, 3004H on page FH, specify the base address of the heap item at this time. The heap
manager saves the 32-bit size of the heap item in the four bytes below the base address. The word
?HANDLE.SIZE expects the extended handle address on the stack and returns the 32-bit size of the
heap item:

1ST.DATA.BLOCK ?HANDLE.SIZE D.� 200 ok

which prints 200H as expected.

The word .HANDLES prints the status of the current heap:

.HANDLES�

Size Addr Handle

200 3004\ F 7FEF\ F

ok

This shows that one handle (7FEF\FH) has been allocated with current base address 3004\FH and
size 200H. .HANDLES always prints in hexadecimal base, regardless of the current number con-
version base.

Another heap item can be allocated as

XADDR: 2ND.DATA.BLOCK� ok

DIN 400 FROM.HEAP� ok [2] \ 7FEB \ F

TO 2ND.DATA.BLOCK� ok

The heap manager returns a handle 7FEB\FH and again the allocation is successful.

De-allocating Heap Items

To de-allocate the first heap item heap item execute

1ST.DATA.BLOCK TO.HEAP .� FFFF ok

TO.HEAP expects a handle xaddress on the stack, and returns a success flag. A true flag indicates
that the handle is valid and that the heap item has been successfully de-allocated, and a false flag
indicates that the handle was invalid and no action was taken. Execute .HANDLES to see the effect
of the de-allocation:

.HANDLES�

Size Addr Handle

The Heap Memory Manager 31

400 3004\ F 7FEB\ F

* 0\ 0 7FEF\ F

ok

The handle of 1ST.DATA.BLOCK that was returned to the heap is shown with an asterisk to indi-
cate that it is not in use (because it has been de-allocated) and that the listed base address and size
are not significant. The handle of 2ND.DATA.BLOCK has not changed, but its base address has
been changed to 3004\FH. It was moved to the bottom of the heap during the heap compaction that
occurred when 1ST.DATA.BLOCK was de-allocated. The heap manager moved the memory and
adjusted the contents of the handle to implement the heap compaction. All of the available memory
is maintained as one contiguous block above the last allocated heap item.

Maximizing the Efficiency of Heap Compaction

Heap compaction occurs each time an item is returned to the heap. All of the bytes above the de-
allocated item are moved down in memory. This move requires 17 microseconds per byte, or 17
milliseconds per Kbyte. Notice, however, that compacting the heap to de-allocate the last item allo-
cated is accomplished by simply adjusting the heap pointer; there is no need to move a block of
memory in the heap. When possible, programs should de-allocate heap items in the proper order so
that the last item allocated is the first item de-allocated; this maximizes execution speed. For exam-
ple, when allocating several temporary matrices to hold the intermediate results of a calculation, de-
allocating them in the proper order improves performance.

Resizing and Copying Heap Items

RESIZE.HANDLE expects a valid 32-bit handle under a 32-bit number of bytes on the stack, and
tries to resize the heap item to the specified size, preserving as much of the item’s data as possible.
The heap must have enough room to copy the heap item. A flag is returned to indicate whether the
resizing was successful.

DUP.HEAP.ITEM expects a handle xaddress on the stack, and creates a copy of the specified item
in the current heap. The copy’s handle is returned if the duplication was successful; otherwise 0\0 is
returned. For example, to duplicate 2ND.DATA.BLOCK, execute

XADDR: 2ND.COPY� ok \ create a name for the new heap item

2ND.DATA.BLOCK DUP.HEAP.ITEM� ok [2] \ 7FEF \ F

TO 2ND.COPY� ok \ save the handle

To verify that the heap item has been duplicated, execute .HANDLES

.HANDLES�

Size Addr Handle

400 3004\ F 7FEB\ F

32 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

400 3408\ F 7FEF\ F

ok

The heap manager has re-used the handle from the recently de-allocated word 1ST.DATA.BLOCK
and assigned it to the newly allocated item.

Multiple Heaps

In a timesliced multitasking environment where several tasks are using heap memory, each task
must have its own separate heap. If tasks share a single heap, an interrupting task could compact the
heap and change the contents of a handle that is about to be used by another task. Thus multitasking
environments may require multiple heaps. There may be other cases where it is advantageous for a
single task to have multiple heaps.

To use multiple heaps, the programmer must manage the user variable CURRENT.HEAP. To see
how this works, let’s set up a second heap with a size of 8 Kbytes that starts on page 6 at address
7000H and ends on page 7 at 1000H. Check to be sure that a 128K RAM is installed in the
RAM/ROM socket of your board so that this memory area is available, and turn DIP switch #2 OFF
to make sure that pages 6 and 7 are not write protected. Then execute:

7000 6 1000 7 IS.HEAP� ok \ set up new heap

XADDR: 1ST.HEAP� ok

XADDR: 2ND.HEAP� ok \ define save variables for CURRENT.HEAP

7FFF F TO 1ST.HEAP� ok

1000 7 TO 2ND.HEAP� ok \ initialize the save variables

The self-fetching variables 1ST.HEAP and 2ND.HEAP hold the values of CURRENT.HEAP that
specify the two heaps. Recall that the contents of the 32-bit user variable CURRENT.HEAP speci-
fies the heap in which heap items are to be allocated and de-allocated. Thus manipulating the single
extended address in CURRENT.HEAP enables multiple heaps to be managed. For example, to
make the heap on page F the current heap, execute

1ST.HEAP CURRENT.HEAP X!

and to make the heap on pages 6 and 7 the current heap, execute

2ND.HEAP CURRENT.HEAP X!

Transferring Heap Items

TRANSFER.HEAP.ITEM copies a heap item into any specified heap on any page. For example, to
transfer a heap item from the 1ST.HEAP into 2ND.HEAP, put the handle of the source heap item
and the destination CURRENT.HEAP on the stack and execute TRANSFER.HEAP.ITEM as

The Heap Memory Manager 33

XADDR: 3RD.DATA.BLOCK� ok

2ND.DATA.BLOCK 2ND.HEAP TRANSFER.HEAP.ITEM� ok [2] \ FF0 \ 7

TO 3RD.DATA.BLOCK� ok \ save the new handle

The new item resides in 2ND.HEAP and its handle is saved in 3RD.DATA.BLOCK. The transfer
was successful; otherwise, TRANSFER.HEAP.ITEM would have returned a handle of 0\0 .

To verify the status of 2ND.HEAP, execute

2ND.HEAP END.HEAP X! \ set current heap

.HANDLES�

Size Addr Handle

400 7004\ 6 FF0\ 7

ok

which shows that the heap item was copied to 2ND.HEAP .

Heap-Based Data Structures

Data structures that are maintained in the heap are usually created by “defining words” such as
ARRAY: and MATRIX:. These defining words create and initialize a parameter field in the vari-
able area, as described in the next chapter. The contents of the parameter field are filled in when the
data structure is dimensioned or allocated. When the data structure is dimensioned it is assigned to
the heap specified by CURRENT.HEAP. At this same time the dimensioning information (e.g.,
number of rows and columns), the handle (which contains the base xaddress of the data) and the
value of CURRENT.HEAP are saved in the parameter field associated with the data structure.
Based on the information in the parameter field, the memory manager can resize, copy, or de-
allocate the heap item irrespective of the current contents of the user variable CURRENT.HEAP.

For example, the word DELETED which de-allocates arrays and matrices automatically saves
CURRENT.HEAP, looks at the parameter field of the item to be deleted, puts its heap specification
into the user variable CURRENT.HEAP, executes TO.HEAP to de-allocate the item, and restores
the original value of CURRENT.HEAP. Thus arrays and matrices in any heap can be deleted.
Other array and matrix operations perform similar user-transparent manipulations of
CURRENT.HEAP to make the words powerful and remove book-keeping chores from the pro-
grammer.

Because both the heap and the variable area where the parameter field is stored are in modifiable
memory (RAM), the data structure can be allocated, re-dimensioned, or de-allocated “on the fly” as
the program executes. This is a powerful programming capability. It is the basis for the compre-
hensive matrix mathematics package which is discussed in detail in the next chapter.

34 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

Using Arrays
QED-Forth provides a set of data structures and associated operations that simplify and streamline
sophisticated processing tasks. Arrays and matrices can be easily created, dynamically dimen-
sioned, deleted, initialized, and copied. Matrices, which are 2-dimensional arrays of floating point
numbers, support a comprehensive set of pre-programmed data editing and matrix algebra opera-
tions. This chapter describes how to define and use Arrays. Matrices are discussed in a following
chapter.

An array is a data structure stored in memory whose elements can be individually addressed and
accessed. QED-Forth supports dynamically dimensioned arrays whose elements are stored in heap.
The array can be redimensioned as needed under program control and the array’s storage space can
be dynamically re-allocated. Consult the “Array” section of the Categorized Word List in the QED-
Forth Glossary for a list of available routines in the array library.

Array Size and Dimensions

The number of elements per dimension must be between 1 and 16,383, and the number of bytes per
element must be between 1 and 65,535. The size of an array is limited by the amount of space
available in the current heap. The size of the heap, in turn, is limited only by the amount of avail-
able contiguous RAM. The heap may occupy multiple contiguous pages.

The value stored in the user variable MAX#DIMENSIONS determines the maximum number of
dimensions in an array; the default is 4, but you can specify any number up to a maximum of 255.
The higher the contents of MAX#DIMENSIONS, the more memory is required in the array’s pa-
rameter field which holds the dimensioning information of each array. Each additional dimension
requires 2 additional bytes in the parameter field.

If you wish to change the default value of MAX#DIMENSIONS, it is recommended that you do so
before any arrays are defined. Unpredictable behavior may result if arrays are defined while
MAX#DIMENSIONS is small, and then it is increased. This is because the value of
MAX#DIMENSIONS determines the size of the array’s parameter field when the array is created.
If MAX#DIMENSIONS is later increased, operations on the array will assume a larger size pa-
rameter field, perhaps writing over memory that is associated with the parameter field of another
array.

Creating Arrays

To create a named array execute ARRAY: followed by a name of your choice, as

ARRAY: ARRAY.NAME� ok

The array is created but no heap memory is assigned to it yet. Memory is allocated and the array is
dimensioned using the command DIMENSIONED which requires the limits of the indices under the
number of indices under the number of bytes per element under the array’s extended parameter field
address (xpfa). There can be up to MAX#DIMENSIONS indices (the default is 4). For example to

Using Arrays 35

dimension an already named array to have 2 dimensions, 5 rows and 10 columns, with 2 bytes per
element, execute

DECIMAL� ok \ set base to decimal

5 10 2 2 ‘ ARRAY.NAME DIMENSIONED� ok

where ‘ (pronounced “tick”) places the extended parameter field address on the stack; the xpfa is
used to refer to the array as a whole. Memory for the array is allocated in the current heap. If the
heap has insufficient room for the specified array, QED-Forth will ABORT and print the message:

ARRAY.NAME is too large. Not enough memory !

Addressing Array Elements

Individual elements are referred to by placing the element’s indices on the stack and stating the
array’s name; the element’s extended address is then left on the stack. The element size and all
indices are 16-bit unsigned integers, and indices are zero-based. This means that for a two dimen-
sional array with 5 rows and 10 columns the rows are numbered 0 through 4 and the columns are
numbered 0 through 9. To store the integer 104 at the second row (row#1) and seventh column
(column#6) you can say

104 1 6 ARRAY.NAME !� ok

and to fetch and print the value from the same location you can execute,

1 6 ARRAY.NAME @ .� 104 ok

If DEBUG is ON, indices are checked to insure that they are within their limits. Out-of-range indi-
ces cause an ABORT and an error message. For example,

5 6 ARRAY.NAME @�

Error at [] ARRA______ 5 is an out-of-range index ! ok

The error message reports the routine that detected the error (which is [], a word that calculates an
address given the indices), the name of the array, the offending index, and the reason for the
ABORT. Note that only the first 4 letters of the array’s name were printed. This is because we
assume that the user variable WIDTH equals its default value of 4. The remainder of the name is
represented by the underbar character. (To improve the reporting of names in error messages, you
can increase WIDTH with a simple ! command).

If DEBUG is OFF, error checking is not done, and array element addressing occurs more rapidly.

References to Entire Arrays

An entire array can be referred to, as opposed to referring to only an individual element, by using
the kernel word ‘ (tick) before the name. Executing ‘ followed by the array’s name leaves the 32-bit
extended parameter field address (xpfa) of the array on the stack; this address must be used when-

36 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

ever an entire array is treated as a single object. It is useful when you need to pass an entire array to
a FORTH word which then operates on all elements of the array rather than on just a single element.
References to arrays can be passed from one word to another without the called word needing prior
knowledge of the array’s name.

Operations for Entire Arrays

An entire array can be initialized to zero as

‘ ARRAY.NAME ZERO.ARRAY� ok

Suppose a character array is needed to hold a character string. To define and dimension a 1-
dimensional array with 80 single-byte elements, execute

ARRAY: CHARACTER.ARRAY 80 1 1 ‘ CHARACTER.ARRAY DIMENSIONED� ok

and then initialize it to contain ascii blanks as

‘ CHARACTER.ARRAY BLANK.ARRAY� ok

The array can be initialized to contain any specified character using FILL.ARRAY. For example, to
initialize an array to hold ascii zeros (whose code is 48), execute

‘ CHARACTER.ARRAY ASCII 0 FILL.ARRAY� ok

Try fetching and printing the first element of the array to verify that the operation worked:

0 CHARACTER.ARRAY C@ .� 48 ok

Note that C@ was used to retrieve a single byte from the array; @ would have retrieved two succes-
sive bytes.

The word SWAP.ARRAYS expects the xpfa’s of two arrays on the stack. It swaps the contents of
the parameter fields of the arrays (which contain dimensioning information and an indirect pointer
to the contents) without moving the contents in the heap. Thus the swap is accomplished very rap-
idly.

The contents of one array can be copied to another array, irrespective of the prior dimensions or
contents of the destination array, using COPY.ARRAY. For example, to copy ARRAY.NAME to
CHARACTER.ARRAY, execute

‘ ARRAY.NAME ‘ CHARACTER.ARRAY COPY.ARRAY� ok

Deleting an array de-allocates its memory in heap, undimensions it by clearing its parameter field,
and leaves only its name remaining. It is accomplished by executing

‘ CHARACTER.ARRAY DELETED� ok

Using Arrays 37

Determining a Pre-existing Array’s Dimensions

?ARRAY.SIZE returns the 32-bit number of elements (not number of bytes!) of an array:

‘ ARRAY.NAME ?ARRAY.SIZE D.� 50 ok

and the limits of all its indices are returned by

‘ ARRAY.NAME ?DIMENSIONS� [4] \ 5 \ 10 \ 2 \ 2 ok

which are the dimensions we specified. The stack may be cleared using

SP!� ok

Internal Representation of Arrays

This section is provided for those interested in understanding the definitions of array defining words.
You need not read or understand this section to use arrays.

An array has four parts:

Name: Stored in the name area of the dictionary.

Action: Performed by the FORTH word [] which is automatically called when the array’s name is
executed with indices on the stack; the extended address of the specified array element is placed on
the stack. Error checking is done if DEBUG is ON.

Parameter field: Holds the limits for each of the array indices, the number of dimensions, the ele-
ment size, a handle to the array’s storage space in the heap, and a reference to CURRENT.HEAP.
The parameter field is stored in the variable area in RAM.

Contents: Stored in the heap as a relocatable block of memory.

After an array name is created, the array dimensions (index limits) and element size are stored in the
parameter field and the array elements are stored in the heap.

The contents of the parameter field are as follows:

Address Description

pfa+0 32-bit extended handle to the array’s contents in heap

pfa+4 addr of CURRENT.HEAP (page is same as handle’s)

pfa+6 size in bytes of each element

pfa+8 number of dimensions; 255 is maximum allowed

pfa+10 limit of first index (#cols); for 0,1,2,...n : limit=n+1

pfa+12 limit of second index (#rows)

38 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

pfa+14 limit of third index, etc....

...

pfa+10+2*MAX#DIMENSIONS limit of last index

If the handle is zero then the array is undimensioned. The element size and all indices are 16-bit
unsigned integers. Indices are all zero-based. The command

ARRAY: <name>

creates a dictionary entry for <name> and initializes its dimensions to 0. It does not allocate heap
space. Memory is allocated when arrays are dimensioned or redimensioned using DIMENSIONED.
For example:

#index.n #index.n-1 ... #index.1 n element.size ‘ <name> DIMENSIONED

allocates sufficient memory from the heap for the array and stores the handle and dimensions in the
parameter field of <name>. Any prior contents of the array are deleted. The command

‘ <name> DELETED

de-allocates memory for the array and returns its handle to the heap manager.

Note that executing an X@ from the xpfa of the array returns the extended address of the handle to
the heap item; executing an X@ from this handle returns the base xaddress of the heap item. As
discussed in the heap chapter, the handle remains valid as long as the array is dimensioned, but the
base xaddress (the contents of the handle) may change every time the heap is compacted. The array
words take care of address calculation for you so you don’t have to perform explicit memory fetches
to find the address of an array element. Just place the indices on the stack and state the array’s name
to obtain an element’s address.

Using Structures
A “structure” is an object that groups different types of data according to a template designed by the
programmer, and allows the programmer to designate names that can be used to store and retrieve
the data items in the structure. While arrays hold data that is all one size and refer to the data ele-
ments using index numbers, structures let you group data of different sizes and refer to them using
names of your choice. The structure defining words declare the type of the data (integer, real, ad-
dress, extended address, etc.) and this enhances the clarity of the program.

Using structures involves defining them, instantiating them, and addressing their elements which are
called “members”. Defining a structure can be thought of as setting up a template for the data. The
template comprises a set of named offsets that specify the position of each member relative to the
base of the structure. Instantiating a structure creates an instance of the structure and assigns it to a
particular named memory location, either in the variable area, the definitions area of the dictionary,
or in the heap. Addressing a member in a structure is accomplished by stating the name of the
structure instance followed by the name of the structure member. Executing the name of the struc-
ture instance leaves its base xaddress on the stack, and then executing the name of the structure

Using Structures 39

member automatically adds an offset to the base xaddress to produce the extended address of the
member. Standard fetch and store operations can then be used to access the member.

Defining Structures

To define a structure, execute STRUCTURE.BEGIN: followed by the name of the structure. Then
state the appropriate member defining commands followed by member names that you choose.
STRUCTURE.END finishes the definition.

For example, the following commands create a structure to hold customer information:

STRUCTURE.BEGIN: CUSTOMER.INFO \ name the structure as a whole

INT-> +ACCOUNT# \ now name each of the members

40 STRING-> +CUSTOMER.NAME

50 STRING-> +STREET

35 STRING-> +CITY&STATE

DOUBLE-> +ZIP.CODE

REAL-> +ACCT.BALANCE

STRUCTURE.END \ end the structure definition

This creates a template for the data. If you try this example on your computer, you will notice that
while the structure is being compiled, items are temporarily placed on the data stack by the com-
piler. These stack items should not be altered; they are used to initialize the size of the structure and
the offset of the members.

The member defining word INT-> removes the next name from the input stream, +ACCOUNT#,
and creates a header in the name area of the dictionary. The action of +ACCOUNT# is to add an
offset to an extended address on the top of the stack. Because +ACCOUNT# is the first member in
the structure, it adds an offset of 0. (Actually, members with offsets of 0 are smart enough to do
nothing at run time, thereby saving execution time). Note that the member defining words end with
-> to suggest that they are defining the name that follows. Note also that we start each member
name with + to suggest that it adds an offset to the quantity on the stack. The defining word
STRING-> creates a header and action for CUSTOMER.NAME and, based on the quantity on the
stack, reserves space in the structure for the string. It reserves 1 byte more than the number on the
stack to allow for a count byte at the start of the string. In the example structure two more string
members are defined, then a double number field is reserved for the zip code, and a floating point
field is reserved for the customer’s account balance.

Executing CUSTOMER.INFO leaves the size of the entire structure (in bytes) on the stack; this
structure takes 138 bytes.

Here is a list of the available member defining words:

40 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

n RESERVED reserves unnamed space within a structure of n bytes in size

n MEMBER-> defines a member word with n bytes reserved

BYTE-> defines a single byte item

n BYTES-> defines an item of n bytes in size

INT-> defines a 2-byte (16-bit) integer

n INTS-> defines n 2-byte integer numbers

DOUBLE-> defines a 4-byte double number

n DOUBLES-> defines a collection of n 4-byte double numbers

REAL-> defines a 4-byte floating point number

n REALS-> defines a collection of n 4-byte floating point numbers

ADDR-> defines a 2-byte (16-bit) address

n ADDRS-> defines n 2-byte addresses

PAGE-> defines a 2-byte page, only the lower order byte is significant

XADDR-> defines a 4-byte extended address

n XADDRS-> defines a collection of n 4-byte extended address

XHNDL-> defines a 4-byte xaddr whose contents are a handle

n STRING-> defines a counted string n+1 bytes long, n <= 255

n STRUCT-> defines a member word with n bytes reserved

n1 n2 STRUCTS-> defines a collection of n1 structures each n2 bytes in size

Most of these words call the kernel word FIELD which creates a named offset that, when executed,
calls XU+ to add the offset to the extended address on the top of the stack.

Creating Instances of Structures

To create a structure instance in the variable area for a particular customer named
BURGER.WORLD, use V.INSTANCE: as

CUSTOMER.INFO V.INSTANCE: BURGER.WORLD

CUSTOMER.INFO leaves the size of the structure on the stack. V.INSTANCE: (where the “V”
indicates the variable area) reserves room in the variable area for the structure. It creates a defini-
tion for BURGER.WORLD that, when executed, leaves the extended address of the structure in-
stance on the stack.

Using Structures 41

To initialize the BURGER.WORLD’s account number to 1234, we can execute

1234 BURGER.WORLD +ACCOUNT# !

BURGER.WORLD leaves the extended address of the structure instance on the stack,
+ACCOUNT# adds its offset to yield the extended address of the member, and ! saves the value
1234 into the specified member. Similarly, CMOVE can be used to initialize the name, street, and
city strings, 2! can initialize the double number zip code, and F! can set the floating point account
balance.

If we want a structure to eventually reside in write-protected or PROM memory in the definitions
area instead of in the RAM variable area, we execute

CUSTOMER.INFO D.INSTANCE: MARTHA’S.PIES

where the “D” in D.INSTANCE means that space for the structure is reserved in the definitions
area.

Executing the word SIZE.OF followed by the name of a structure instance leaves the size of the
instance on the stack. For example

SIZE.OF BURGER.WORLD .� ok 138

which is the size of the CUSTOMER.INFO structure.

Note that structure instances are allowed to cross page boundaries, and executing V.INSTANCE: or
D.INSTANCE: may cause the variable pointer VP or the dictionary pointer DP, respectively, to be
advanced to a new page.

Heap Instances

It is sometimes useful to instantiate structures in the heap, and this involves a slightly different pro-
cedure. To create a named instance of the structure, execute

CUSTOMER.INFO H.INSTANCE: JOE’S.PIZZA

Like the previous commands, this creates a definition for JOE’S.PIZZA that, when executed, leaves
the base address of the instance on the stack. And SIZE.OF can be used to retrieve the size of the
heap instance. However, unlike the previous commands, no memory has yet been assigned. Instead,
a parameter field for JOE’S.PIZZA has been created in the variable area, and the size of the struc-
ture has been saved with the definition of JOE’S.PIZZA. To allocate memory in heap, we can exe-
cute

SIZE.OF JOE’S.PIZZA ‘ JOE’S.PIZZA ALLOCATED

The word SIZE.OF removes the next word from the input stream, examines its definition to recover
the size (which was put there by H.INSTANCE:) and leaves the size on the stack. ‘ JOE’S.PIZZA
leaves the extended parameter field address on the stack, and ALLOCATED converts the size to a

42 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

double number and calls FROM.HEAP to allocate memory for the structure. Note that we could
have replaced the command SIZE.OF JOE’S.PIZZA with CUSTOMER.INFO, as both leave the size
of the structure on the stack.

To de-allocate the heap instance, simply execute

‘ JOE’S.PIZZA DEALLOCATED

which returns the memory to the heap manager and clears the parameter field. The definition of the
structure remains intact for future use.

Nested Structure Definitions

Structures can be nested. For example, the following is a valid structure definition:

STRUCTURE.BEGIN: ADDRESS.LIST

BYTE-> +FLAG

STRUCTURE.BEGIN: SUB

20 STRING-> +NAME

20 STRING-> +ADDRESS

INT-> +ID#

STRUCTURE.END

2 SUB STRUCTS-> +NAME&ADDRESSES

STRUCTURE.END

Embedded within the definition of ADDRESS.LIST is another structure definition for SUB. The
member defining word STRUCTS expects on the stack the number of structures and the size of the
structures. It names a member with the appropriate offset, and reserves space for the sub-structures
in the main structures. Strict hierarchy must be maintained, with each STRUCTURE.END match-
ing its corresponding STRUCTURE.BEGIN command.

Note that SUB could also have been defined outside of ADDRESS.LIST. The following pair of
structures behave identically to those defined above:

STRUCTURE.BEGIN: SUB

20 STRING-> +NAME

20 STRING-> +ADDRESS

INT-> +ID#

STRUCTURE.END

Using Structures 43

STRUCTURE.BEGIN: ADDRESS.LIST

BYTE-> +FLAG

3 SUB STRUCTS-> +NAME&ADDRESSES

STRUCTURE.END

If the base xaddress of a particular instance of ADDRESS.LIST is on the stack and we wish to fetch
and print the ID# in the first SUB structure, we execute

(base.xaddr --) +NAME&ADDRESSES +ID# @ .

That is, +NAME&ADDRESSES adjusts the base address to point to the first SUB structure, and
+ID# further adjusts the base address to point to the identification number field within the SUB
structure.

Multiform Structures

Multiform structures (called “unions” in C and “variant records” in Pascal) are used to define struc-
tures whose members may hold different types of data at different times, or whose data may be
referred to in several equivalent forms.

For example, the following structure describes the first 6 bytes of the parameter field of a heap ob-
ject:

STRUCTURE.BEGIN: HEAP.STRUCTURE.PF

TYPE.OF:

XHNDL-> +xHANDLE \ xaddress of the handle to the heap block

\ containing the data

OR.TYPE.OF:

PAGE-> +HNDL.PAGE \ handle can be referred to as page...

ADDR-> +HNDL.ADDR \ ... and 16-bit address

OR.TYPE.OF:

PAGE-> +HEAP.PAGE \ page of handle is also page of heap

TYPE.END

ADDR-> +CURRENT.HEAP \ address of the heap used. Its page

\ is the same as the handle’s page.

STRUCTURE.END

44 Chapter 1: QED-Flash Board and Wildcard Carrier Board Memory Maps

The TYPE.OF: ... OR.TYPE.OF ... TYPE.END syntax is used to define the multiform structure
which in this case allows us to refer to a 32-bit quantity in one of three ways, depending on the
context of its use.

Example: Structure of a Matrix Parameter Field

The following structure defines the layout of a matrix parameter field:

STRUCTURE.BEGIN: MATRIX.PF

HEAP.STRUCTURE.PF

STRUCT-> +HEAP.STRUCTURE.PF \ xHandle and end.heap

INT-> +ELEMENT.SIZE \ #Bytes per element

INT-> +DIMENSIONS \ #dimensions

INT-> +#COLS \ #columns

INT-> +#ROWS \ #rows

STRUCTURE.END

Note that the HEAP.STRUCTURE.PF appears as a sub-structure. MATRIX.PF and its analog,
ARRAY.PF are kernel words that leave the size of their respective parameter fields on the stack.
They are useful when creating stack frames to hold the parameter fields of temporary matrices and
arrays. This is a key technique for writing re-entrant code as explained in the next chapter.

Using Structures 45

