
Mosaic Industries, Inc.

QED-Flash Board

The QED-Flash Board

Hardware and Software Update Documentation

Version 1.1

 1

Table of Contents
Introduction ...2

Hardware Enhancements..2

Flash Memory ...2
Keypad and Display Changes ...3
New Location for the Real-Time Calendar Clock ...3
DIP Switch Settings...4
Jumper Settings ...5
Onboard High Current Drivers ..6
Unipolar and Bipolar 12 Bit A/D Conversions...6
Up to 256K Static RAM in S2..7
Power Fail Monitor...7
1.5 Volt Reference ...8

The QED-Flash Memory Map..9

Non-Flash Memory Map...10
Flash Memory Map...11

Software Development Using Flash Memory..12

Compilation Procedure for C Programmers ..12
Compilation Procedure for Forth Programmers ..14

Software Enhancements..16

Changes in A/D Conversion..16
Timing Considerations for the Software UART ..18
Accessing the Battery-backed Real Time Watch ...18
Stepper Motor Control Utilities ..20
Calling Kernel Functions from within Interrupt Routines in C ..21
Caution: _forth Functions Can Not Be Nested in C..21
Caution: RAM-Resident Variables & Arrays Must Be Initialized Within Functions ..22

Kernel Changes..22

Additions to the Kernel to Support Flash Memory and ATA Flash Cards..22
New C Macros...23
New C #include Files to Set and Clear the Priority Autostart ..23
Implementation Changes...23
Bug Fixes...24

Glossary of Additional Functions...24

Glossary Addendum: Custom Routines Added to the QED V4.0x Kernel ..28
Appendix A: QED-Flash Connector Pinouts ..30

Appendix B: QED-Flash Board Schematics..33

 2

Introduction

The QED-Flash Board is an enhanced version of the QED Board, a compact I/O-rich controller. This
document describes the new hardware and software features of the QED-Flash Board, and updates the
documentation provided in the QED Hardware and Software Manuals. Control C users should note
that the C software documentation is found in “Getting Started with the QED Board Using the Control
C Programming Language” book.

After describing the hardware features of the QED-Flash Board, this document details the QED-Flash
memory map, illustrates how to compile a program into flash, summarizes the new software features,
and itemizes the changes to the QED Kernel. A glossary of new software routines is included at the
end of this document, followed by Appendices that present the QED-Flash Board connector pinouts
and schematics.

Hardware Enhancements

The hardware enhancements and features found on the QED-Flash Board include:

• Flash memory for code and data storage
• Keypad and display changes
• New location for the real time calendar clock
• New DIP switch and jumper configuration
• Onboard high current MOSFET drivers
• Support for unipolar (0 to 5 V) and bipolar (-5 to +5 V) 12 bit A/D conversions
• Support for up to 256 Kilobytes static RAM in the center socket
• Power fail monitor

Each of these is described in detail below. Note that the latter four items are present on the QED-3
Board as well as the QED-Flash Board; the discussion of these feaures is presented here as a cogent
update to the QED Hardware Manual.

Flash Memory

Flash memory is nonvolatile, like PROM. Thus it retains its contents even when power is removed,
and provides an excellent location for storing program code. Simple write cycles to the device do not
modify the memory contents, so the program code is fairly safe even if the processor "gets lost". But
flash memory is also re-programmable, and the flash programming functions are present right in the
QED-Flash Board's onboard software library. These functions invoke a special memory access
sequence to program the flash memory contents "on the fly". This allows you to modify your
operating software (for example, to perform system upgrades). You can also store data in the flash
device. You can program from 1 byte up to 65,535 bytes with a single function call using the pre-
coded flash programming routine. Programming time is approximately 60 milliseconds per kilobyte.

The "developer version" of the QED-Flash Board (shipped with the Industrial Control System, Product
Design Kit, and Developer Package) is configured with 256 Kbytes of nonvolatile re-programmable
flash memory in socket S1, 128 Kbytes of battery-backed RAM in socket S2, and a battery-backed
real-time clock in socket S3. The SmarTouch Controller Starter Kit comes with 256K flash in S1 and
128K of battery-backed RAM in S2. At least 128K in S2 is required for compiling or field-upgrading
flash-resident code. Standard production versions of the QED-Flash Board are configured with 256K
flash in S1 and 32K RAM in S2. Production versions can be enhanced with additional memory,
battery-backup, and real-time clock options.

 3

The onboard 256K flash memory device in socket S1 reserves 128K for user programs and data. It
also contains a 128 Kbyte QED Kernel comprising a complete multitasking operating system,
debugger, interactive Forth compiler, assembler, and hundreds of pre-coded device driver functions.
Easy-to-use functions are available to move code into flash, and to transfer data into flash from
anywhere in the QED Board's memory space. Programming is easily accomplished from any PC using
ANSI C, Forth, or assembly language.

Keypad and Display Changes

The keypad and display interface has changed significantly as the product evolved from the QED-2 to
the QED-3 and finally to the QED-Flash Board. The QED-3 Board expanded upon the capabilities of
the QED-2 Board by adding a faster 8-bit memory mapped display interface, a direct read/write
interface to Hitachi 128x240 pixel graphics displays that can show up to 16 lines of text with 40
characters per line, and support for a 4x5 resistive touchscreen as well as the standard 4x5 keypad. The
QED-Flash Board adds the ability to directly connect a Toshiba 128x240 pixel graphics display .

Chapter 10 of the QED-Hardware Manual discusses the keypad and display interface of the QED-2
Board which did not have a full 8-bit display data bus or MOSFET high-current drivers; consequently,
the connector diagram in Figure 10.1 of the Hardware manual is outdated. The connector pinouts and
schematics in Appendix A and B of the QED-Hardware Manual are correct for the QED-3 Board.
Note that odd-numbered pins 19 through 33 on the keypad/display header implement four high-current
MOSFET drivers and their associated grounds and snub signals. The display bus is a fast 8-bit
memory-mapped read/write interface that supports character or graphics displays. The keypad and
display connector of the QED-Flash Board, shown on page A-2 of this document, has further evolved
to support Toshiba graphics displays by changing the signals associated with pins 30, 32, and 34 to
DGND, +5VDD, and VEE, respectively.

Direct Connection to Toshiba and Hitachi Graphics Displays

All models of the QED Board provide a direct connection to character displays up to 4 lines by 20
characters in size. The QED-Flash Board also provides a direct interface for graphics displays up to
128x240 pixels that use the popular Hitachi HD61830 and Toshiba T6963 driver chips. Simply
flipping a switch (DIP switch #1) on the QED-Flash Board selects the Hitachi or Toshiba display type,
and the correct display control signals are automatically generated. A jumper (J1, next to the
potentiometer) can be set so that the onboard potentiometer provides proper contrast adjustment for
graphics displays (the contrast adjustment range spans -15V to +5V for graphics displays, and 0 to +5V
for character displays). Thus the QED-Flash Board does not need an adapter board to interface to non-
backlit character or graphics displays. However, a Graphics Interface Board (GIB) is still required for
touchscreen users, or for those who want to take advantage of the power supply on the GIB to drive a
backlight.

More Versatile Keypad/Touchscreen Interface

The keypad interface now supports a resistive 4 row by 5 column touchscreen in addition to the
standard 4x5 keypad. The touchscreen can overlay a graphics display, enabling you to implement a
modern touch-sensitive menu-driven user interface. While a standard contact-type keypad exhibits
close to 0 Ohms resistance when a key is pressed, resistive touchscreens exhibit a "connection" of up to
30 kOhms when the screen is touched. The QED-Flash keypad scanning circuitry accommodates these
larger resistances, and capacitors have been added to increase the noise immunity of the circuitry. The
keypad pin assignments are identical to those of the QED-2 and QED-3 Boards.

New Location for the Real-Time Calendar Clock

 4

The standard location for the optional battery-backed Real-Time Clock (RTC, also known as the
"smartwatch") is in socket S2. The RTC is itself a socket made by Dallas Semiconductor that contains
a clock chip, crystal and battery. The smartwatch RTC socket also battery-backs a 32K RAM chip that
is plugged into it. QED-3 and QED-Flash Boards with the "non-flash" memory map accommodate the
RTC in the center S2 socket (for a detailed description of the QED-Flash memory map, see “The QED-
Flash Memory Map” section below). The only drawback to this scheme is that Dallas does not make
the components necessary for a 128 Kbyte memory integrated with a battery-backed RTC at the
required 100 nanosecond or faster access time.

This limitation is removed on flash-carrying QED-Flash Boards. A board that has flash memory in
socket S1 and has DIP switches 3 and 4 ON (indicating the flash memory map) accommodates a
smartwatch RTC in the S3 socket. No memory is installed in S3; up to 256K of flash and RAM can be
installed in S1 and S2, respectively. The built-in functions that set and read the watch automatically
access the watch at position S3 on flash-carrying QED-Flash Boards.

DIP Switch Settings

The QED-Flash Board has a 7-position DIP switch (compared to a 6-position switch on prior boards).
The switches are located on the memory side of the board next to the communications connector. The
following table summarizes the purpose of each switch:

Legend Effect of Switch in the ON State

1 TOSHIBA Configures the display interface for direct connection to a Toshiba graphics
display. (The OFF state is used for character displays and Hitachi graphics
displays, or with any graphics display via the Graphics Interface Board).

2 WEF Write Enables the entire Flash memory device in the S1 socket.

3 WPR Write Protects the entire RAM (pages 4, 5, 6, 7) in the S3 socket.

4 ROM Configures the S3 (RAM/ROM) socket to accommodate a PROM.
 (The OFF state configures S3 to hold a RAM).
 NOTE: If both switches 3 and 4 are ON, flash is assumed to be in S1 and the

flash memory map is used.

5 2COM Enables serial port 2 communications hardware for use as a second RS232 port.
 (The OFF state configures bit 3 of PORTA for use as general-purpose I/O.)

6 COLD Puts the QED Board into "special cleanup mode" upon the next power-up or
reset.

7 RST Resets the QED Board; return switch to OFF position to resume normal
operation.

Discussion of DIP Switch Settings

Caution is in order regarding Switch 1: connecting a character display, non-Toshiba graphics display,
or Graphics Interface Board (this includes the SmarTouch Controller) while DIP switch 1 is ON may
prevent proper operation of the QED Board. If this situation occurs, power down the QED Board and
remove the display and/or correct the switch position.

Switch 2 is useful for customers who are using the flash memory for code storage, and who do not
need to modify the contents of the flash memory during normal operation. The write-protect switch
"bullet-proofs" the code against modification. It also helps avoid "flash lockout". The flash device is

 5

set up to "lock out" all memory accesses for 10 milliseconds (msec) after an "errant" write to the flash
(that is, a write cycle that was not preceded by the required "unlocking sequence" that grants access to
write to the flash). Thus, if an application program inadvertently executes a write cycle while the flash
is being addressed, the QED Board will "crash" for at least 10 msec because the program code cannot
be read by the processor. This frequently results in "silent crashes" that do not return the "QED-Forth
V4.x" prompt. Setting Switch 2 OFF avoids this situation. Of course, all application programs should
be thoroughly debugged so that there are no "inadvertent writes" to the flash memory.

In general, switch 4 selects RAM versus PROM in socket S3, and switch 3 indicates whether the
device in S3 should be write-protected. The following table itemizes the effects of the 4 possible
settings of these 2 switches:

SW#4 SW#3 Result
OFF OFF RAM is in S3, RAM not write protected; uses non-flash memory map.
OFF ON RAM in S3, pages 4 - 7 of RAM write protected; uses non-flash memory map.
ON OFF PROM in S3; uses non-flash memory map.
ON ON Flash in S1; uses flash memory map. No memory allowed in S3.
 (Real-time clock may be placed in socket S3.)

If both switches 3 and 4 are ON, the QED Board assumes that a 128K or 256K flash memory is in
socket S1, and the "flash" memory map is used. You may notice that we have taken advantage of the
fact that a PROM does not need to be write-protected; we use this unneeded switch combination to
select the flash memory map.

The 2COM, COLD and RST switches perform the same functions as the like-named switches on the
QED-3 Board as explained in the "Getting Started with the QED Board" booklet.

Jumper Settings

The QED-Flash Board has four 3-post jumpers, labeled J1 through J4. As shown in the schematics at
the end of this document, each jumper configuration can be optionally implemented using surface-
mounted zero-ohm resistors to support volume OEMs who do not wish to allow moveable jumpers on
the board. The purpose of each jumper is explained in turn.

J1 is located beneath the flash socket S1 as shown in figure A.1. If a jumper shunt is placed across the
pin closest to the Keypad/Display Connector and the center pin (i.e., shorting pins 1 and 2), the
contrast potentiometer (pot) is configured for a character display. If a jumper shunt is placed across the
center pin and the pin closest to the crystal (i.e., shorting pins 2 and 3), the contrast pot is configured
for a graphics display.

The contrast adjustment on the SmarTouch Controller is controlled with a potentiometer on the
Graphics Interface Board. Thus, SmarTouch Controller or users need not worry about the J1 jumper;
the J1 jumper shunt may be in either position, or omitted entirely.

Jumpers J2-J4 are located beneath socket S3 as shown in figure A.1. The schematic on page B-3
depicts jumpers J2 and J4 with pin 1 on the right. Note that the physical location of pin 1 on the QED-
Flash Board is on the left when looking at the board in the orientation shown in Figure A.1.

Jumper J2 is located above jumper J4 and to the left of J3. If the jumper shunt is installed across the
pin closest to the crystal and the center pin (i.e., shorting pins 1 and 2), 32K or 128K RAM can be
installed in S2. If the jumper shunt is installed across pins 2 and 3, socket S2 can accommodate 128K
or 256K RAM.

 6

Jumper J4 is located between jumper J2 and the Address/Data Connector. If the jumper shunt is
installed across the pin closest to the crystal and the center pin (i.e., shorting pins 1 and 2), 64K or
128K ROM can be installed in S1. If the jumper shunt is installed across pins 2 and 3, socket S1 can
accommodate 128K or 256K flash.

Jumper J3 is located to the right of J2. It determines whether the RS-232 or RS-485 protocol is used
for the primary serial port. If the jumper shunt is installed across the pin closest to J2 and the center
pin (i.e., shorting pins 1 and 2), the primary serial port is configured for full-duplex RS-232
communications. If the jumper is installed across pins 2 and 3, the primary serial port is configured for
half-duplex RS-485 multi-drop communications.

Onboard High Current Drivers

Four MOSFET high current drivers are available at the keypad/display connector on the QED-Flash
Board (and the QED-3 Board), replacing the "No Connect" pins that were present on the QED-2 board.
Each driver can sink up to 150 mA continuously, or up to 1 amp on an intermittent basis at voltages as
high as 60 V. Onboard snubber diodes suppress inductive kickback, so the drivers can be used to
control solenoids, motors, and other inductive loads.

Figure 1 shows how to connect a DC load (a DC motor is shown) to the MOSFETs.

SNUB

HC2 M

DC MOTOR

DGND

SNUB

HC2 M

DC MOTOR

DGND

FIELD +V

FIELD GND

V+raw

 Connecting a load using onboard power. Connecting a load using external power.

Figure 1. How to Connect a DC Load to the High Current Drivers.

HC0 is controlled by a PAL signal and HC1 - HC3 are controlled by the PIA port bits PPB5 - PPB7
respectively. NOTE: Upon power-up and reset, the high current MOSFETs, HC1 - HC3, may
momentarily sink current until the QED-Forth startup software initializes them. The PAL-controlled
HC0 output does not exhibit this transient turn-on behavior at startup.

Users of the SmarTouch Controller should note that the Graphics Interface Board (GIB) uses high
current driver channels 0 and 1. HC0 controls the piezoelectric buzzer, and HC1 controls a relay that
turns the backlight on.

Unipolar and Bipolar 12 Bit A/D Conversions

Each QED-Flash Board comes standard with an 8 channel 12-bit A/D (analog-to-digital) converter and
an 8 channel 8-bit D/A (digital-to-analog) converter. Of course, the 68HC11’s 8 channel 8-bit A/D is
also supported. On the QED-3 and QED-Flash Boards, the 12 bit A/D converter supports bipolar
conversions and faster conversion times (because the chip select is generated using a PAL instead of
port bit PPB7 on the PIA).

 7

You can instruct the 12-bit A/D to interpret the input as a unipolar signal in the range of 0-5 volts, or a
bipolar signal in the range of –5 to +5 volts. Even without a negative external supply, voltages as low
as -4.0 or -4.5 can be converted. This is achieved by using the negative voltage generator on the
Maxim RS-232 chip. This negative voltage is connected to the V- supply input of the 12 bit A/D chip,
and is also accessible at pin 39 on the Analog I/O connector which is labeled "Analog Bus V-".
Drawing current out of the "Analog Bus V-" pin to power external circuitry is not recommended, as the
RS-232 chip cannot source much current, the output impedance is hundreds of ohms, and the voltage is
poorly regulated. Rather, to achieve clean rail-to-rail -5.0 V to +5.0 V conversions, connect an
external -5 V supply to "Analog Bus V-" at pin 39 on the Analog I/O connector.

The software drivers for the 12 bit A/D support the unipolar and bipolar conversion options. For Forth
users, the software routines are discussed in “Changes in A/D Conversion” in the Software
Enhancements section of this document. For Control C users, A/D Conversion is covered in Chapter 8
of “Getting Started with the QED Board Using Control C Programming Language”

Up to 256K Static RAM in S2

The center memory socket (S2) on the QED-Flash Board can accommodate a 32K, 128K, or 256Kbyte
static RAM. A three-post jumper located at J2 (at the bottom of the S3 socket, nearest to the crystal
and above J4 as shown in Figure A.1) configures the QED-Flash Board for either 32K/128K RAM or
256K RAM in S2. To configure the board for a 32K SRAM or 128K SRAM, connect the center
jumper pin to the leftmost jumper pin (the pin nearest to the crystal). To configure the board for a
128K or 256K SRAM, connect the center jumper pin to the right jumper pin.

R9

Figure 2. S2 memory configuration jumper.

Power Fail Monitor

The QED-Flash Board has a power fail monitoring circuit shown in Figure 3 that can be used to
warn the application program of an impending power failure. By installing an appropriate resistor,
you can select the supply voltage at which the power fail signal is asserted. The power fail warning
can be configured to generate an nonmaskable interrupt, /XIRQ. This allows the application
program to perform any required "cleanup" tasks (such as saving crucial status information in
battery-backed RAM) before power is lost.

The following 3 steps configure the power fail feature of the QED Board:

1. Connect PFI Input (pin 21 on the Digital I/O Connector) through an external resistor to the
external power source that you wish to monitor. Resistor value selection is discussed below.
Volume OEM users can install the resistor as a surface-mount device at position R30 on the
QED-Flash Board.

2. Install a zero-ohm resister at location R7, located just above the flash socket (S1) on the top
of the QED-Flash Board, to connect the power fail output to the processor's XIRQ input.

3. Enable the nonmaskable interrupt after every reset as explained in Chapter 8 of the QED
Hardware Manual.

 8

When the PFI Input (pin 21 on the Digital I/O Connector) falls to less than 1.25 V, the Power Fail
Output (/PFO) of the MAX708 chip in Figure 3 goes active low, triggering the /XIRQ interrupt if it is
enabled and if R7 is installed. The value of the user-supplied resistor between the PFI input and the
monitored voltage supply named V.supply is calculated using a simple voltage divider equation as,

 R = (V.supply / 1.25) - 1 (kΩ)

where R is expressed in units of kΩ. For example, to configure a power fail warning when V.supply
goes below 6V, choose R30 = 3.8kΩ. Typically, V.supply is the V+raw input to the QED Board, but
any power supply voltage can be monitored using this circuit.

Figure 3. The MAX708CSA Power Fail Input and Power Fail Output circuitry. Other circuitry

not related to the power-fail detection is not shown here; see the Reset Circuitry page
of the QED-Flash Schematics in Appendix B to view the complete reset control and
power monitor circuit.

1.5 Volt Reference

The QED Hardware Manual contains warnings in Chapter 6 regarding the stability of the 1.5 volt
reference. These warnings are outdated. The 1.5 volt reference may be used to provide a stable
reference voltage for all of the digital-to-analog converters on the QED Board, and can also provide a
reference voltage for external circuitry.

 9

The QED-Flash Memory Map

Common Memory
The "common memory" at locations 8000 - FFFF hex is the same for flash-carrying and non-flash
versions of the Board. A short summary is presented here; all addresses are hexadecimal.

The processor's registers are located at 8000 - 805F, onboard hardware occupies addresses through
80FF, and the operating system reserves memory through location 8DFF for user areas, buffers, and
stacks. For example, the default user area that runs the interactive Forth interpreter occupies 8400 -
84FF.

The 8 Kbytes at locations 8E00 - ADFF are available RAM for the user. The C compiler uses this area
for static variables, arrays, task areas, etc. Similarly, the Forth memory map routine USE.PAGE locates
the variable area starting at address 8E00 in common memory. (This is different from the QED-2
Board which located the variable area on page fifteen; Forth programmers should consult the glossary
entry for USE.PAGE.)

The HC11's on-chip EEPROM (Electrically Erasable Programmable Read Only Memory) is located at
AE00 - AFFF. Locations AE00 - AEBF are reserved by the operating system for use by the SAVE and
RESTORE utilities, and for interrupt vectors. EEPROM at AEC0 - AFFF is available to the user.

The HC11's 1 Kbyte of on-chip RAM is located at B000 - B3FF. Locations B3F0 - B3FF are reserved
for the real-time clock buffers. Locations B3D0-B3DF are reserved for support of Forth interrupt
service routines called from C-compiled programs. On flash-carrying boards, locations B200 - B3CF
are reserved for the flash programming routines. Locations B000 - B1FF are always available to the
programmer (this area is named ONCHIP_RAM in the C linker command file; C programmers can locate
data in this area using a #pragma directive).

Locations B400 - BFFF and C100 - FFFF contain kernel code. The "notch" at C000 - C0FF is not
decoded by any onboard devices, and provides a convenient place for the user to memory map I/O that
must be accessed quickly (that is, without requiring a page change). Of course, an almost limitless
amount of I/O can be mapped onto pages in the QED Board's 8 Megabyte address space.

Paged Memory
As described above, DIP switches 3 (WPR) and 4 (ROM) select the "flash" or "non-flash" memory
map. This selection affects the allocation of paged memory among the 3 sockets on the QED Board.
Pages 0 - F are decoded on the QED Board, and pages 10 - FF are available to the user.

Note that the optional Memory Interface Board (which supports a PCMCIA card plus flash and RAM)
is mapped on pages 10 - 3F (on-board flash, RAM, and bank control logic) and pages 80 - BF
(PCMCIA linear flash or RAM cards up to 32 Megabytes in size, or ATA flash cards of unlimited
size). Up to 4 Digital I/O Boards can be interfaced to the QED Board; the are mapped at pages DC
through DF. The PAL on the prototyping board and ICS backplane decodes pages E0 through FF for
customer use during prototyping.

The flash memory map allows up to 256 Kbytes of flash memory in socket S1, and up to 256 Kbytes
RAM in socket S2, with no memory allowed in socket S3. As explained below, a "page-swapping"
approach is used to allow code to be downloaded (compiled) into RAM, transferred to flash, and then
executed from flash.

The non-flash memory map accomodates up to 128 Kbytes PROM in S1, up to 256 Kbytes RAM in
S2, and up to 128 Kbytes RAM or PROM in socket S3.

 10

Non-Flash Memory Map

Figure 4 illustrates the non-flash memory map. As the caption explains, the top 32 Kbytes at hex
addresses 8000 - FFFF of the processor's native 64 Kbyte memory map is "common memory" which is
always accessible without a page change. Data stacks and variables are typically kept in "common
RAM". Frequently accessed kernel library routines are located in the "common ROM". The lower 32
Kbytes are addressed as one of 256 pages, yielding an 8 Megabyte address space. Page 0 and the
lowest 12 Kbytes on page fifteen contain kernel library routine and function names, respectively.
Pages 12 and 13 are reserved for kernel use. All other pages are available to accommodate memory
(for programs or data) or memory-mapped I/O. Up to 512 Kbytes of memory can be installed on the
QED Board itself.

Figure 4. Diagram of the QED Board non-flash memory map. The 32K of "common memory"
at addresses 0x8000 to 0xFFFF (the upper half of the processor's memory space) is
rapidly accessible without a page change. Up to 256 pages (32K per page) occupy the
"paged memory" at addresses 0000 to 0x7FFF. If 128K memories are installed in
sockets S2 and S3, the common memory as well as pages 0-7 and 15 are present on the
QED Board.

 11

The heap memory manager and array routines allow you to think of the paged memory as contiguous
memory for data storage. The operating system automatically handles function calls and returns
among the pages.

Using this non-flash memory map, users who do not need flash memory can use the QED-FLASH
board with RAM and/or PROM memory, and all programs and data will be handled properly with no
code changes. Existing source code must be recompiled for the QED-FLASH Board. The table in
Figure 5 presents another way to look at this non-flash memory map; for simplicity, only the user-
modifiable non-common memory is listed.

S1 PROM S2 RAM S3 RAM/PROM
Pages 1 – 3
Pages 8 – 11 Kernel (non-modifiable)
Page 15 at addresses 3000 - 7FFF hex

Pages 4 – 7

Figure 5. User-modifiable pages in the non-flash memory map assuming a 256K RAM in S2 and a

128K RAM or PROM in S3. Pages are listed in decimal. If a 32K RAM is installed in S2,
only page 15 (3000-7FFF) and common RAM are available in the S2 device. If a 128K
RAM is installed in S2, pages 1, 2, 3, 15 and common RAM are available in the S2 device.

Flash Memory Map

Because code cannot be downloaded or compiled directly into flash memory, the flash memory map
implements "page swapping" to provide a mechanism for getting the compiled code into the flash
memory. There are two page-swap modes: one is called the Standard Map and the other is called the
Download Map. As the names suggest, the Standard Map is used during run-time, and the Download
Map is used during downloading and compilation of Forth source code or C-compiler S records from
the PC to the QED Board. The two maps are very similar; the effect of changing from the Standard to
the Download map is to "swap" the locations of pages 4, 5 and 6 between the flash and the RAM. The
reason for this will become clear after we review the page assignments and the compilation procedure.

The table in Figure 6 summarizes the user-modifiable pages in the flash memory map.

 "Standard Map" "Download Map"

S1 Flash S2 RAM S1 Flash S2 RAM
Pages 4 – 6 Pages 1 – 3 Pages 1 – 3 Page 4 – 6
Page 7 Page 8 Page 7 Page 8
Page 13
(reserved for kernel)

Page 9 Page 13
(reserved for kernel)

Page 9

 Pages 10 – 11 Pages 10 – 11
 Page 15

at 3000 - 7FFF hex
 Page 15

at 3000 - 7FFF hex

Figure 6. User-modifiable pages in the flash memory map, assuming the standard 256K flash in S1
and the optional 256K RAM in S2. If a 32K RAM is installed in S2, only page 15 (3000-
7FFF) and common RAM are available in S2. If a 128K RAM is installed in S2, pages 1, 2,
3, 15 and common RAM are available in the standard map in the S2 device. Pages that can
be swapped are shown in bold. Pages are listed as decimal numbers.

Flash Programming Functions Reserve Half of On-chip RAM

 12

As mentioned above, the functions that program the flash memory use the 68HC11's on-chip RAM
starting at hex B200. The remaining on-chip RAM at B000 to B1FF remains available to the user.

Software Development Using Flash Memory

Compilation Procedure for C Programmers

If You Have a New Version of the C Compiler

If your C compiler was shipped after the third quarter of 1998, compiling a program proceeds exactly
as with the QED-3 Board as described in “Getting Started with the QED Board Using the Control C
Programming Language”. Automated commands contained in the download file will determine
whether flash is present on the QED-FLASH Board, and will automatically establish the download
map, load the code into RAM, transfer the code to flash, and re-establish the standard map. If you are
curious, you may want to review the following instructions for users of older compilers to see what is
going on "under the hood".

If You Have a Previous Version of the C Compiler

If your C compiler was shipped before the third quarter of 1998, contact Mosaic Industries to obtain
update files that automate compilation for the QED-Flash Board. If your compiled code is larger than
32 Kbytes, the compiler update files are required for proper operation.

Alternatively, if your application fits on one page, you can interactively type a few commands from the
TERMINAL program as described in the following steps so that even a non-updated compiler will
work with the QED-Flash Board. It is assumed that your board has the standard complement of
memory during program development, comprising 256K flash in S1, and 128K RAM in S2, and that
your application fits in 32 Kbytes so that you can use the "hammer" icon to compile your code.

1. Compile your program in the normal manner using the C compiler. Use the default
"hammer" icon which places code only on page 4 and results in the fastest execution time.

2. Before sending the .txt download file to the QED Board, enter the terminal window and

interactively type the command
 DOWNLOAD.MAP
 to establish the download memory map as shown in the last 2 columns of Figure 6.

3. Send your .txt download file (created during compilation) to the QED Board.

4. After successfully downloading your code, transfer the code and names to flash using the

PAGE.TO.FLASH routine. All of your code and names are located on page 4 and the debug
functions are on page 5; simply type at the terminal

 4 PAGE.TO.FLASH
 5 PAGE.TO.FLASH
 which transfers pages 4 and 5 in RAM to the parallel pages 1 and 2 in flash.

 The PAGE.TO.FLASH routine will print an error message if you pass it an illegal page, or if

the flash cannot be programmed (for example, if the flash is write protected because DIP
switch 2 is OFF). The page parameter passed to the routine must be the source page in RAM
where the code has been compiled. PAGE.TO.FLASH transfers all 32 Kbytes of the source
page to the "parallel" page in flash memory. At this point, two copies of your code and

 13

names exist in memory: one copy is in RAM, and the other resides in flash. But only the
RAM version can be executed properly, because it resides at the same pages at which it was
compiled. The next step will make the flash-resident copy of the code executable.

5. Re-establish the standard memory map by typing at your terminal
 STANDARD.MAP
 This remaps pages 4, 5, and 6 so that they are addressed in the flash device, and maps pages

1, 2, and 3 to be addressable in the RAM. At this point, the flash-resident code on page 4
(which is now in flash) can be executed. The RAM in pages 1, 2, and 3 are available; they
can be written over or used by the application program.

6. Run the program by typing
 MAIN
 or any function name that was preceded with the _Q designator. (By the way, the _Q does

not compromise performance in any way; it simply makes it possible for the PC-resident
batch routines to send out the execution addresses of the designated functions to the QED
Board to simplify debugging). You can also execute an autostart command to cause a
specified function to be automatically called upon each restart. To place the autostart vector
in EEPROM inside the processor, execute the command:

 CFA.FOR MAIN AUTOSTART
 To place the autostart vector in flash in socket S1, execute the command:
 CFA.FOR MAIN PRIORITY.AUTOSTART
 For most applications, the PRIORITY.AUTOSTART option is preferable because it locates the

autostart vector with the code in the flash memory device.

C EXAMPLE SESSION

Here's how easy it is to compile a C program into flash:

First compile a source code file. For example, to run a "Hello World" program, your source code file
might be named HIWORLD.C with the following contents:

 #include <\mosaic\allqed.h> // this include statement should

// appear at the top of each source // code file.

 _Q void HelloWorld(void)
 { printf("\nHello Everyone!\n");
 }

 void main(void)
 { HelloWorld();
 }

Use the standard "hammer" icon to compile the file onto a single page (page 4). Those with C
compilers shipped in late 1998 can just send the HIWORLD.TXT file to the QED Board using the
Terminal program.

We recommend using the QEDTERM.EXE terminal program that is available on the Mosaic Industries
web site (www.mosaic-industries.com) or on the Demo and Driver Disk that accompanies each new
QED-Flash Board; it runs under Windows 95, 98, and NT. Customers running Windows 3.x can use
the Microsoft Windows TERMINAL.EXE program.

For those with older versions of the C compiler, type the following commands from the terminal to the
QED Board:

 14

 DOWNLOAD.MAP

 <use the terminal's Send Text File feature to send HIWORLD.TXT to the QED Board>

4 PAGE.TO.FLASH
 5 PAGE.TO.FLASH
 STANDARD.MAP
 MAIN // executes the program!

You've compiled your program, downloaded it into RAM, transferred it to flash, and executed it. If
you want to set up an autostart routine, follow the standard procedure as explained above, or consult
the final chapter of the "Getting Started with the QED Board Using the Control C Programming
Language" manual.

Compilation Procedure for Forth Programmers

This section lists the steps required to compile and execute a Forth program on a flash-carrying QED-
FLASH Board. It is assumed that your board has the standard complement of memory during program
development, comprising 256K flash in S1, and 128K RAM in S2.

1. Establish the download memory map as shown in the last 2 columns of Figure 6 by
executing:

 DOWNLOAD.MAP
 This command can be typed interactively from the terminal program, or can be the first

statement in your download file.

2. Establish memory locations for code and names on pages 4, 5, and 6. One valid way to do

this is by executing
 4 USE.PAGE
 which is equivalent to the following set of commands:
 HEX
 0000 4 DP X! \ code starts at address 0 on page 4;

\ 20 Kbytes available
 5000 4 NP X! \ names start at address 5000 on page 4;

\ 12 Kbytes available
 8E00 0 VP X! \ variables start at address 8E00 in

\ common RAM
 4A00 0F 7FFF 0F IS.HEAP \ 13.5 Kbyte heap at addresses 4A00-

\ 7FFF on page F
 Typically, the USE.PAGE command or other equivalent commands are the first commands in

the source code file. To customize the locations of these memory areas, you can include
edited versions of these commands in your source code file. Make sure these commands
come BEFORE the first ANEW statement in your code. For example, to locate up to 32
Kbytes of code on page 4, and up to 32 Kbytes of names on page 5, you can execute:

 HEX
 4 USE.PAGE \ set default use.page locations
 0 5 NP X! \ move names section to page 5,

\ leaving all of page 4 for code.
 or, equivalently,
 HEX
 0000 4 DP X! \ code starts at address 0 on page 4;

\ 32 Kbytes available
 0000 5 NP X! \ names start at address 0000 on page 5;

\ 32 Kbytes available
 8E00 0 VP X! \ variables start at address 8E00 in

\ common RAM

 15

 4A00 0F 7FFF 0F IS.HEAP \ 13.5 Kbyte heap at addresses 4A00-
\ 7FFF on page F

3. Send your code to the QED Board. Typically, the first statement of the code is an ANEW

command which serves as a "forget marker" to simplify re-downloading of code. For
example:

 ANEW MY.CODE \ choose any name you want here
 : HELLO.WORLD (--) CR ." Hi Everyone!" ;
 \ < all of your source code goes here >

4. After successfully compiling your code, transfer the code and names to flash using the

PAGE.TO.FLASH routine. For example, if all of your code and names are located on page 4,
simply execute:

 4 PAGE.TO.FLASH \ transfers page 4 RAM to page 1 in flash
 If your code is on page 4 and your names are on page 5, you would execute
 4 PAGE.TO.FLASH \ transfers page 4 RAM to page 1 in flash
 5 PAGE.TO.FLASH \ transfers page 5 RAM to page 2 in flash
 The routine PAGE.TO.FLASH will print an error message if you pass it an illegal page, or if

the flash cannot be programmed (for example, if the flash is write protected because DIP
switch 2 is OFF). The page parameter passed to the routine must be the source page in RAM
where the code has been compiled. PAGE.TO.FLASH transfers all 32 Kbytes of the source
page to the "parallel" page in flash memory. At this point 2 copies of your code and names
exist in memory: one copy is in RAM, and the other resides in flash. But only the RAM
version can be executed properly, because it resides at the same pages at which it was
compiled. The next step will make the flash-resident copy of the code executable.

5. Re-establish the standard memory map by executing
 STANDARD.MAP
 from your terminal. This remaps pages 4, 5, and 6 so that they are addressed in the flash

device, and maps pages 1, 2, and 3 to be addressable in the RAM. At this point, the flash-
resident code (typically on page 4, which is now in flash) can be executed. The RAM in
pages 1, 2, and 3 are available; they can be written over or used by the application program.

6. Run the program by executing any of the names that have been defined. You can also

execute an autostart command to cause a specified function to be automatically called upon
each restart. To place the autostart vector in EEPROM inside the processor, execute the
command:

 CFA.FOR <name> AUTOSTART
 where <name> is the name of the designated function. To place the autostart vector in flash

in socket S1, execute the command:
 CFA.FOR <name> PRIORITY.AUTOSTART
 For most applications, the PRIORITY.AUTOSTART option is preferable because it locates the

autostart vector with the code in the flash memory device.

7. (OPTIONAL) To download an additional source code file after the prior 6 steps have

been executed, you need to transfer the code back to RAM, establish the download map,
download the next source code file, re-program the flash, and re-establish the standard map.
Assuming you left off after step 6, execute the following:

 NO.AUTOSTART \ if you installed autostart, undo it
 4 PAGE.TO.RAM \ move code from page 4 in flash to page 1

\ in RAM
 5 PAGE.TO.RAM \ (only needed if page 5 used);

\ move page 5 flash to page 2 RAM
 DOWNLOAD.MAP \ get ready for download
 <send source code file here>

 16

 4 PAGE.TO.FLASH \ copy updated page 4 code to flash
 5 PAGE.TO.FLASH \ copy updated page 5 code to flash
 STANDARD.MAP \ code is now executable at pages 4 and 5

\ in flash
 CFA.FOR <name> PRIORITY.AUTOSTART \ optional

FORTH EXAMPLE SESSION

Here's how easy it is to compile a Forth program into flash:

 DOWNLOAD.MAP
 4 USE.PAGE
 ANEW MY.CODE
 : HELLO.WORLD (--) CR ." Hi Everyone!" ;
 4 PAGE.TO.FLASH
 STANDARD.MAP
 HELLO.WORLD \ executes the program!

You've compiled your program, downloaded it into RAM, transferred it to flash, and executed it. If
you want to set up an autostart routine, follow the procedure as explained above, or consult the final
chapter of the QED Software Manual.

Software Enhancements

The software enhancements and features found on the QED-Flash Board include:

• Changes in A/D conversion software
• Timing considerations for the software UART
• Accessing the battery-backed real time watch
• Stepper motor control utilities

Each of these is described in detail below. This section also presents an update describing how C
programmers can now call kernel functions from within interrupt service routines.

Note that all of these software features are present on the QED-3 Board as well as the QED-Flash
Board, so those who are familiar with the QED-3 Board may skip to the next section. The discussion
of these software feaures is presented here as a cogent update to the QED Software Manual. All
glossary entries for the relevant software routines are correct and updated in the Forth and C
Glossaries.

Changes in A/D Conversion

This subsection is targeted to Forth programmers. The A/D drivers on the QED-Flash Board are
unchanged from those on the QED-3 Board, and all glossary entries for these routines are correct in the
Forth and C Glossaries. If you are using Control C, A/D Conversion is covered in Chapter 8 of
“Getting Started with the QED Board Using the Control C Programming Language”.

The Forth stack pictures of the routines that control multiple conversions by the 8-bit and 12-bit A/D
converters have been changed. The new stack pictures include an unsigned parameter "u1" that
controls the interval between successive samples. The revised routines and their stack pictures are as
follows:

 (A/D8.MULTIPLE) (xaddr\u1\#samples\channel# --)
 A/D8.MULTIPLE (xaddr\u1\#samples\channel# --)

 17

 (A/D12.MULTIPLE) (xaddr\u1\#samples\flag\channel# --)
 A/D12.MULTIPLE (xaddr\u1\#samples\flag\channel# --)

The xaddr specifies the starting address where the multiple samples are to be stored. The #samples and
channel# parameters have obvious meanings (note that # is pronounced "number"). The "u1"
parameter sets the sampling interval; setting u=0 delivers the fastest sampling rate and u1 = 65,535
delivers the slowest sampling rate. The sampling rate equals the base sampling rate as specified below
plus 2.5 microseconds times "u1".

Each routine has a latency (the time between calling the routine and taking the first sample) and a
sampling period (the time between successive samples). The times vary depending on whether the
storage xaddr is in common memory (above 8000 hex) or in paged memory. The following table
summarizes the relevant times in microseconds:

 Xaddr in Common Memory Xaddr in Paged Memory
 Latency Sampling Latency Sampling
Routine Name (µsec) Period (µsec) (µsec) Period (µsec)

(A/D8.MULTIPLE) 16 10 + 2.5*u 11 32.5 + 2.5*u1
A/D8.MULTIPLE 86 10 + 2.5*u 81 32.5 + 2.5*u1

(A/D12.MULTIPLE) 58 27.5 + 2.5*u 68 50 + 2.5*u1
A/D12.MULTIPLE 128 27.5 + 2.5*u 138 50 + 2.5*u1

Of course, the operation of interrupt routines including the timeslicer may increase the specified
sampling times. If the system can be structured so that no interrupts are active during sampling, these
routines offer very precise control over the sampling frequency of the A/D converters.

In addition, the "flag" in the stack picture of the routines

 A/D12.SAMPLE (flag\channel# -- result)
 (A/D12.SAMPLE) (flag\channel# -- result)
 A/D12.MULTIPLE (xaddr\u1\#samples\flag\channel# --)
 (A/D12.MULTIPLE) (xaddr\u1\#samples\flag\channel# --)

has been given a new meaning that is backwardly compatible with the previous software version while
adding support for the conversion of bipolar analog signals. In the prior V2.01 software, the "flag" was
true (= -1) for single-ended A/D conversions, and false (=0) for differential conversions. Moreover, all
conversions were "unipolar", meaning that the allowed input signal range did not include negative
voltages.

In QED kernel version 4.xx, the software supports both unipolar and bipolar conversions, and the
"flag" in the stack pictures of the routines above has the following meaning:

 Flag value Type of conversion
 -1 single ended, unipolar
 0 differential, unipolar
 1 single ended, bipolar
 2 differential, bipolar

The latter two flag values instruct the software to interpret the input voltage as a bipolar signal that can
swing above and below ground.

 18

Timing Considerations for the Software UART

The QED Board has two asynchronous serial ports. The primary serial port (serial1) is supported by
the 68HC11's on-chip hardware UART, and does not require interrupts to work properly. Serial1 is the
default serial port used by the QED-Forth operating system, and its support code has not been changed.

The QED Board's secondary serial port (serial2) is implemented using hardware pins PA3 (input) and
PA4 (output), and is controlled by the associated interrupts IC4/OC5 and OC4, respectively. The
kernel PROM on the QED Board contains a complete set of high level driver routines for the serial2
port, and these functions are summarized in the QED-Forth and Control C glossaries.

The maximum serial2 communications rate is 4800 baud. Because the software UART is interrupt
based, competing interrupts that prevent timely servicing of the serial2 interrupts can cause
communications errors on the secondary serial channel. For example, at 4800 baud (bits per second),
each bit lasts about 200 microseconds (µs), and if communications are full duplex (e.g., if the QED
Board echoes each incoming character), then there is a serial interrupt every 100 µs or so. In the
middle of a character, each interrupt service routine takes about 35 µs. At the end of a received
character, the service routine takes about 45 µs. At the start of a transmitted character, the service
routine takes about 65 µs. Thus, as a rough approximation, operating at 4800 baud full duplex requires
about 40 to 50% of the 6811's CPU time (that is, an average of approximately 40 to 50 µs service time
every 100 µs).

If you are running serial2 at 4800 baud, the rest of your application must be able to function properly
using the remaining portion of the CPU time. Moreover, if serial2 is running full duplex at 4800 baud,
any other interrupt service routine that takes longer than 100 µs is likely to cause a problem. If an
interrupt service routine takes longer than 200 µs, it is highly likely that an entire serial bit will be
missed, causing a communications error. Also, several non-serial interrupts can "stack up"; if they
have higher priority than the serial interrupts, they will be serviced before the serial2 interrupt routine,
and again a serial input or output bit may be lost.

Routines that temporarily disable interrupts for significant periods of time can also interfere with the
serial2 port. The Control C and QED-Forth Glossaries each contain a list of functions that temporarily
disable interrupts, and the glossary entries give further information regarding how long interrupts are
disabled. In most cases the times are less than 25 µs which does not pose a problem. However, note
that the READ.WATCH and SET.WATCH functions (ReadWatch() and SetWatch() in C) disable
interrupts for about a millisecond (ms), and the functions that write to EEPROM disable interrupts for
20 ms per programmed byte. Be sure to account for these effects when designing your application.

We have built sophisticated instruments based on the QED Board that operate very reliably using
multiple interrupts in addition to the software UART. If your application requires use of the secondary
serial port as well as other interrupt routines, the key is to keep the interrupt service routines short and
fast. You might also consider operating the secondary serial port at a lower baud rate to relax the
timing constraints.

Accessing the Battery-backed Real Time Watch

QED-Forth
In QED kernel version 4.xx, interrupts are now disabled during the entire operation of the functions
READ.WATCH and SET.WATCH, which access the battery-backed real time clock/calendar. This change
makes these two routines fully re-entrant in QED-Forth multitasking applications.

 19

With a 16 MHz crystal on the QED Board, READ.WATCH now disables interrupts for approximately 0.8
milliseconds (ms), and SET.WATCH disables interrupts for approximately 1.0 ms. These times are
about double the prior values. All of the input and output parameters of SET.WATCH and READ.WATCH
are passed on the Forth data stack. These routines are now fully re-entrant, which means that they can
be simultaneously called from multiple tasks in a single QED-Forth application without producing any
conflicts.

Control C
The Control C versions of these functions are named ReadWatch() and SetWatch(). In C, these
two routines access a fixed pre-allocated structure in the 68HC11's on-chip RAM using structure
macros defined in the WATCH.H header file. For example, the following code reads the watch and
stores the current minute (after the hour) in the variable named current_minute:

 static int current_minute;
 ReadWatch();
 current_minute = WATCH_MINUTE;

Because the structure that is written to by ReadWatch() is at a fixed location, this code is not re-
entrant. This is not a problem in single-task applications or applications where only one task uses the
watch. But it can cause problems if multiple tasks are executing ReadWatch(). For example, assume
that task #1 calls ReadWatch(), but before it can access the contents of the structure using the
assignment statement, the timeslice interrupt occurs and task#2 proceeds to call ReadWatch(), then
the contents of WATCH_MINUTE could be changed before task#1 is able to execute its assignment
statement. To avoid this situation, the multitasking application can be configured so that only one task
calls ReadWatch() and SetWatch() and shares the data with other tasks.

Another option is to define a resource variable to mediate access to the watch. The routines needed to
accomplish this are declared in the MTASKER.H file and described in detail in the Control C Glossary.
The following brief example illustrates how to design a re-entrant function that returns the current
WATCH_MINUTE:

RESOURCE watch_resource; // declare resource variable: controls
 // watch access

 _Q int CurrentMinute(void) // reads watch, returns current minute
 { int minute;
 GET(watch_resource); // get access to watch; Pause() if

 // another task has it
 ReadWatch(); // updates contents of watch structure
 minute = WATCH_MINUTE;
 // you can also transfer other contents

 // from the watch structure to
 // "task-private" variables here
 RELEASE(watch_resource); // release access to watch so other

 // tasks can use it
 return minute;
 }

The CurrentMinute() function can be simultaneously called from multiple tasks without causing
any conflicts. The GET() and RELEASE() macros automatically mediate access to the watch, ensuring
that only one task has access at a time.

Summary of Multitasking Considerations for Watch Access Routines

 20

In summary, while the QED-Forth versions of READ.WATCH and SET.WATCH are now fully re-entrant
in version 4.xx, additional care must still be taken for those who wish to call the watch routines from
multiple tasks that are coded in the Control C programming language.

Stepper Motor Control Utilities

Three functions have been added to the kernel to support stepper motor control. These QED-Forth
functions are named CREATE.RAMP, SPEED.TO.DUTY, and STEP.MANAGER. The Control C versions
of the functions are named CreateRamp(), SpeedToDuty(), and StepManager(). A high level
source code file (available in both Forth and C on the Demo and Driver Disk that accompanies each
QED-Flash starter system) and an accompanying applications note provide and document a variety of
motor control functions to manage ramping, speed and step control. The C version of the high level
source code file named STEPPERS.C is also present in the \FABIUS\QEDCODE directory of the C
compiler.

Overview of the Stepper Control Code

The stepper code is explained in more detail in the high level source code listing and its application
note. These documents are available from Mosaic Industries. A brief overview is presented here.

Conceptually, the stepper motor control code comprises the following elements:

1. Two arrays of structures that are accessed by both the low-level support functions and the
high level code. One array holds a status structure for each stepper motor, and the other array
defines a speed ramp for each stepper motor.

2. Three support functions in the QED kernel version 4.xx PROM (presented in the Glossary
section at the end of this document). The Control C versions of the functions are declared in
the header file STEPPER.H in the \FABIUS\INCLUDE\MOSAIC directory of the C compiler.

3. A high level source code file (available in Forth and C) that defines a set of useful motion
control functions.

Stepper Motor Data Structures

A 1-dimensional array of status structures is called STATUS.ARRAY in Forth, and status_array in
C. For each motor, the array specifies the extended address and bit mask of the port that controls the
motor, the state of the motor (disabled, stopped, in a ramp, at a final speed, etc.), a signed 32 bit step
counter, a direction flag, the bit masks that specify the step patterns, the default steady speed, jog/start
speed, acceleration and deceleration, additional parameters used by the utility routines, and a pointer to
the RAMP.ARRAY.

The array that specifies the number of steps to be taken at each speed for each motor is called the
RAMP.ARRAY (ramp_array in C). Each row corresponds to one stepper motor, and each entry in a
row contains a two element structure that specifies a number of steps and a corresponding speed
(represented as a duty cycle as explained below).

Utility Functions

Two of the utility functions are used to write to the RAMP.ARRAY. SPEED.TO.DUTY (named
SpeedToDuty() in C) converts a specified speed in steps per second to a "duty cycle" measure used
internally by the motor control code. The CREATE.RAMP function (named CreateRamp() in C)
initializes the RAMP.ARRAY. It expects as input parameters the starting speed, ending speed, linear
acceleration, ticks per second of the 68HC11's time base, a starting ramp address, and the number of

 21

entries in the ramp. It uses a linear ramp algorithm to initialize the appropriate elements in
RAMP.ARRAY, and returns the total number of steps in the resulting ramp.

The third utility function is named STEP.MANAGER (StepManager() in C). This function should be
called from a periodic interrupt service routine; the default time base is once per millisecond.
STEP.MANAGER expects the base address of the STATUS.ARRAY in the Y register. For each enabled
motor, it writes the appropriate pattern at the appropriate duty cycle to the motor port to attain the
speed specified in the motor's RAMP.ARRAY. This assembly coded routine executes in approximately
120 µs per enabled stepper motor. Thus running four stepper motors at a maximum speed of 1000 full-
or half-steps per second requires approximately half of the 68HC11's available time (480 µs interrupt
service time every 1000 µs).

High Level Stepper Motor Control Code

The high level control code declares and allocates the STATUS.ARRAY and RAMP.ARRAY, sets up the
clock interrupt service routine using output compare 3 (this can be changed by the user), defines
routines that initialize the STATUS.ARRAY, and defines a versatile set of functions to facilitate motion
control. Sample function names are 1STEP, JOG.STEPS, STEPS.AT.SPEED, CHANGE.SPEED,
SOFT.STOP, and ESTOP (the corresponding names in Control C are similar). The well commented
high level source code file and the accompanying application note describe these functions in detail.

Glossary Entries for Stepper Motor Utilities

The glossary entries for the three new kernel functions are presented in the Glossary of Additional
Functions at the end of this document.

Calling Kernel Functions from within Interrupt Routines in C

The chapter titled "Timekeeping and Interrupts" in the "Getting Started with the QED Board Using the
Control C Programming Language" book contains a warning against calling _forth library functions
from interrupt service routines. Fortunately, this restriction can be overcome by simply including the
FORTHIRQ.C file with your source code, and following the simple example presented in the file.
FORTHIRQ.C is present in the \FABIUS\QEDCODE directory of the C compiler.

The method is very simple: just place a call to the function

 BeginForthInterrupt();

at the top of your interrupt service routine (or, at the minimum, before any _forth functions are called).
Before the final exit point of the interrupt service routine, place a call to the function

 EndForthInterrupt();

That's all there is to it. The ability to call _forth library functions from interrupt service routines makes
it easier to manage page-mapped I/O devices on an event-driven basis.

Caution: _forth Functions Can Not Be Nested in C

Many functions at are callable from C are actually of the _forth type. This includes functions that are
in the kernel on the QED Board, or are part of software distributions such as the Graphical User
Interface Toolkit or the ATA Flash Card Software Package. A call to one of these _forth functions
may not be made from within the parameter list of a call to another _forth function.

 22

There is always a straightforward way of avoiding such nesting of function calls: simply use a variable
to hold the required intermediate parameter. For example, if you need to use the _forth function
FetchChar() to fetch the first character from the extended address returned by the _forth function
DisplayBuffer() in paged memory, you could execute the following statements:

 static xaddr buffer_xaddress = DisplayBuffer();
 FetchChar(buffer_xaddress);

This code is correct, while nesting the call to DisplayBuffer() inside the parameter list of FetchChar()
would be incorrect.

Caution: RAM-Resident Variables & Arrays Must Be Initialized Within Functions

A common mistake made when creating application programs for embedded systems is the use of
"compile-time initialization" for RAM-based quantities such as variables and arrays. While this
approach of initializing quantities outside of function definitions may work during program
development, it often fails when the device goes into production because the variables and arrays are
not properly initialized when power is cycled. Only initializations that are performed within functions
(which are in turn called by the autostart program) will occur reliably in an embedded application.

Even users with battery-backed RAM in their systems should perform initializations within functions
wherever possible. This approach will avoid hard-to-diagnose field failures that result from corrupted
data in the battery-backed RAM that is never re-initialized to valid values.

Feel free to call Mosaic Industries for help with this or other programming issues.

Kernel Changes

Additions to the Kernel to Support Flash Memory and ATA Flash Cards

Six new functions have been added to facilitate access to the flash memory on the QED-Flash Board.
The C function names (shown without parentheses) are:

DownloadMap PageToFlash PageToRam
 StandardMap ToFlash WhichMap

Access to these library routines are present starting with C compilers shipped in the last half of 1998.
The corresponding Forth function names are:

 DOWNLOAD.MAP PAGE.TO.FLASH PAGE.TO.RAM
 STANDARD.MAP TO.FLASH WHICH.MAP

Four new keywords (function and variable names) have been added to Kernel V4.05 to facilitate access
to "ATA flash" PC Cards, also known as PCMCIA flash cards. These credit-card-sized devices
provide removable flash memory in sizes from 1 Megabyte to hundreds of Megabytes per card. The
QED Memory Interface Board (MIB) interfaces to the QED-Flash Board's address/data header, and
provides a read/write PC Card (PCC) socket, plus 128K RAM with optional battery backup, and 256K
on-board flash. The keywords present in the kernel to support the Memory Interface Board are:

 Link_File_IO pcc_bank PCC_Offset_To_Xaddr PCC_Present

In Kernel versions 4.05 and later, the names of these functions for C and Forth are identical. The
glossary entries for all of these functions are presented in the next section.

 23

A separate software distribution called the ATA Flash Card Software Package available from Mosaic
Industries enables C and Forth programs to manage a comprehensive file system using the MIB. The
software implements a DOS/Windows compatible FAT file system, plus a set of file I/O operations that
allows file creation, reading, writing, copying, renaming, deleting, and more. A powerful file
processing feature allows you to automatically process (interpret and execute) specified files when the
QED Board starts up. This facilitates automated software upgrades or data exchanges. Call us for
details.

Note that Kernel V4.01 contains some Forth keywords that were used to support the now-obsolete
"linear flash" style PCMCIA cards. These names are PCC.BANK, PCC.C@, PCC.@, PCC.2@,
PCC.CMOVE, PCC.OFFSET>XADDR, and PCC.PRESENT?. Those interested in accessing
PCMCIA cards via the Memory Interface Board should contact Mosaic Industries to obtain an upgrade
to kernel version 4.05.

New C Macros

Three new macros are now available in the \fabius\include\mosaic\types.h file to simplify the
manipulation of xaddresses (32-bit extended addresses) and their constituent 16-bit addresses and
pages. The new C macros are::

TO_XADDR XADDR_TO_ADDR XADDR_TO_PAGE

The glossary entries for these macros are presented in the next section.

New C #include Files to Set and Clear the Priority Autostart

Two new include-able files are now available in the \fabius\include\mosaic directory to simplify the
setting or clearing of the PRIORITY.AUTOSTART vector. Simply including the file named

SET_AUTO.H
in the application's C source code file causes MAIN to be automatically executed each time the QED
Board is powered up or restarted. This is equivalent to typing

CFA.FOR MAIN PRIORITY.AUTOSTART
from the terminal after the *.txt file has been sent to the QED Board, as explained in the documentation
(for example, in the Turnkey Application Program chapter of the Getting Started With C manual).

Similarly, including the file named

CLR_AUTO.H
in the application's C source code file erases the priority autostart vector at the top of page 4. As
before, the priority autostart may also be erased by typing

NO.AUTOSTART
from the terminal.

The names of these files are:

 \fabius\include\mosaic\set_auto.h
 \fabius\include\mosaic\clr_auto.h

These files are included in the latest versions of the GUI (Graphical User Interface) Toolkit and the
ATA Flash Card Software Package. Contact Mosaic Industries for more information.

Implementation Changes

Changes in Priority Autostart

 24

To the programmer, the functionality of priority autostart is the same as before. It allows a specified
function to be automatically executed each time the QED Board powers up or resets. In the QED-
FLASH Board, the C functions PriorityAutostart() and NoAutostart() and the corresponding
Forth functions PRIORITY.AUTOSTART and NO.AUTOSTART are now "flash-smart". These routines
check whether the DIP switches 3 and 4 are both asserted (which indicates that flash is in socket S1).
If so, they write or erase the autostart pattern at the top of page 4 in flash. Note that an autostart
routine should not include a call to PriorityAutostart() or PRIORITY.AUTOSTART. This would
cause the autostart pattern to be written to flash upon each startup or reset, which might eventually
exceed the 10,000 write/erase cycle limit of the flash chip.

DAC Access Is Slightly Slower

The previous Forth function (>DAC) and the equivalent C function FastSetDAC() executed in
approximately 40 microseconds, and the full multitasking versions SetDAC() and >DAC executed in
about 125 microseconds. The QED-FLASH Board maps the chip enable of the onboard D/A converter
to page 14, which adds about 6 extra microseconds to the execution time of DAC accesses compared to
the previous mapping in common memory.

Average Speed of Page Changes in C Is Much Faster

This modification affects only C programs compiled with the multi-page "bricks icon" required for C
applications over 32 Kbytes in size. C programs compiled with the standard "hammer" icon reside in a
single page, and so never have to use the page change routine. These programs run at maximum speed.

Multi-page C programs rely on a "page change" routine in the common kernel memory to call
functions on other pages. Unlike the Forth compiler, the C compiler is not "page smart", and does not
know at compile time whether a page change is needed. In fact, page changes are rarely needed,
because most functions call other functions that are located on the same page or in common memory.

The QED-Flash kernel includes a new version of the C page change routine that takes advantage of this
situation, performing a page change only if it is needed. In prior kernels, all function calls compiled
using the multi-page "bricks" icon required 43 microseconds per call. In the new kernel, calls to
functions on the same page or to common memory take only 11.5 or 13.75 microseconds, respectively,
while function calls to other pages require just under 49 microseconds. Because page changes are rare,
the average execution speed of multi-page C applications is significantly improved.

Bug Fixes

The Forth functions

 F2* F2/ FSCALE
have been modified to test whether the input is 0.0 before performing the specified operation. This
prevents a valid zero from being converted to an invalid floating point number. These routines are not
used by C programmers.

Glossary of Additional Functions

Each glossary entry lists the C name with its prototype declaration, and the equivalent Forth name with
its stack picture. The entries are alphabetized using the C names.

 25

int CreateRamp (int start_speed, int end_speed, int acceleration, int ticks_per_sec,
RAMP_ELEMENT* starting_ramp_addr, int speeds_per_ramp) (C)

CREATE.RAMP (start_speed\end_speed\accel\ticks_per_sec\starting_ramp_addr\
speeds_per_ramp -- steps_in_ramp) (Forth)

Writes speed_per_ramp +1 entries into the RAMP.ARRAY starting at the specified
starting_ramp_addr to attain the specified starting and ending speeds and
acceleration (or deceleration). Returns the number of steps in the created ramp.
start_speed, end_speed and acceleration are all interpreted as positive
numbers. Speeds are in units of steps per second if the motor is configured for full
stepping, or halfsteps per second if the motor is configured for half stepping. The
acceleration is in units of (half) steps per second per second. Speeds are clamped to the
attainable range (between 0 and ticks_per_second), and the acceleration is clamped
such that a maximum of 10 seconds is spent at any one transient speed in a ramp. Each
ramp entry comprises a step_limit which specifies the number of steps to be taken at
the speed, and a duty_cycle which specifies the speed (see the glossary entry for
SPEED.TO.DUTY). If the specified speeds_per_ramp = 0, this function simply
writes a "final" speed by setting the step_limit to 0. For non-zero
speeds_per_ramp, this routine writes the specified number of ramp entries, plus an
additional entry at the final speed with the step_limit set to 0 which tells the
STEP.MANAGER that this is the final speed in the ramp. Note that higher level calling
routines can write over the final speed, or concatenate two ramps to achieve a speed
profile that ramps up to a steady speed for a specified number of steps, and then
smoothly ramps down to a stopped state.

void DownloadMap (void) (C)
DOWNLOAD.MAP (--) (Forth)

Sets a flag in EEPROM and changes the state of a latch in the onboard PALs to put the
download memory map into effect on flash-equipped QED-Flash Boards. After
execution of this routine, and upon each subsequent reset or restart, pages 4, 5, and 6 are
addressed in the S2 RAM, and pages 1, 2, and 3 are addressed in the S1 flash memory.
This allows code (and Forth names) to be compiled into RAM on pages 4, 5 and 6 and
then transferred to flash using the PageToFlash() (PAGE.TO.FLASH in Forth)
function. To establish the standard memory map, see the glossary entry for
StandardMap() (STANDARD.MAP in Forth). Note that the standard map is active after a
"factory cleanup" operation.

void Link_File_IO(void) (C)
Link_File_IO (--) (Forth)

This function (present in kernel versions starting with V4.05) links in the Forth headers
of the ATA Flash Card Software Package into the linked list of Forth names. See the
MIB/ATA Flash Card Users Manual for information on how to use this function.

void PageToFlash (int source_page) (C)
PAGE.TO.FLASH (source_page --) (Forth)

Transfers the 32 Kbyte contents of the specified RAM source_page to the parallel page
in flash. If the current memory map is the "download map", then valid source pages are
4, 5, or 6: page 4 RAM is transferred to page 1 flash, page 5 RAM is transferred to page 2
flash, and page 6 RAM is transferred to page 3 flash. If the current memory map is the
"standard map", then valid source pages are 1, 2, or 3: page 1 RAM is transferred to page
4 flash, page 2 RAM is transferred to page 5 flash, and page 3 RAM is transferred to page
6 flash. An "invalid input parameter" error is issued if an invalid source_page is
specified. A "can't program flash" error is issued if the flash cannot be programmed;

 26

make sure that the "Write Enable Flash" DIP switch # 2 is ON and that DIP switches 3
and 4 are also ON. This function uses the 68HC11's on-chip RAM at hex B200 to B3CF
to manage the write to the flash (the real-time clock and C/Forth interrupt stack reserve
the bytes at B3D0 to B3FF). The remaining on-chip RAM at B000 to B1FF remains
available to the user.

void PageToRAM (int source_page) (C)
PAGE.TO.RAM (source_page --) (Forth)

Transfers the 32 Kbyte contents of the specified flash source_page to the parallel page
in RAM. If the current memory map is the "download map", then valid source pages are
1, 2, or 3: page 1 flash is transferred to page 4 RAM, page 2 flash is transferred to page 5
RAM, and page 3 flash is transferred to page 6 RAM. If the current memory map is the
"standard map", then valid source pages are 4, 5, or 6: page 4 flash is transferred to page
1 RAM, page 5 flash is transferred to page 2 RAM, and page 6 flash is transferred to page
3 RAM. An "invalid input parameter" error is issued if an invalid source_page is
specified.

static int pcc_bank (C)
PCC_Bank (-- xaddr) (Forth)

A system variable holding the current 5-bit pattern that determines which of 32 1-
Megabyte banks is accessible in the PC Card. The user typically does not need to use
this variable, and the high order PCMCIA address bits that it references are not even used
to access ATA flash cards (they are only needed for linear flash or RAM cards). The
contents of this variable and the corresponding pcc bank bits are zeroed by
Init_File_System and Init_File_IO as described in the MIB/ATA Flash Card Users
Manual; please consult that document for more information.
Implementation Details: To initialize the PCC bank bits, store the constant 0x01F0 into
the pcc_bank variable, and then call PCC_Offset_To_Xaddr specifying an offset
parameter of zero.

xaddr PccOffsetToXaddr (long offset) (C)
PCC.OFFSET>XADDR (d.offset -- xaddr) (Forth)

Returns the extended address in the QED Board's memory map corresponding to the
specified 32-bit offset address from the beginning of a linear PC card, and also sets the
pcc_bank bits appropriately to access the correct 1 Mbyte bank in the card. The user
typically does not need to call this low-level routine, and the high order PCMCIA address
bits that it references are not even used to access ATA flash cards (they are only needed
for linear flash or RAM cards). Please consult the MIB/ATA Flash Card Users Manual
for more information.
Implementation Details: Using a banked memory scheme, the QED Memory Interface
Board (MIB) maps any RAM, battery-backed RAM, or linear flash PC Card up to 32
Megabytes in size at pages hex 80 through BF in the QED Board's address space. To
accommodate slow memory timing, each byte in the PC Card is mapped onto 2 bytes of
the QED Board's memory map. This function translates the intuitively simple offset to
the hardware-dependent xaddress and pcc_bank bits (see pcc_bank).

int PccPresent (void) (C)
PCC.PRESENT? (-- flag) (Forth)

Returns a true (-1) flag if a PC Card (also called a PCMCIA Card) is installed in the
Memory Interface Board; otherwise returns a false (0) flag.
Implementation details: Reads the card status byte mapped at address 0x0000 on page
0x30. A true flag is returned if the active-low card detection bits 0 and 1 are low, and the

 27

battery voltage detection bits 4 and 5 are high, and the /WAIT signal at bit 7 is inactive
high.

int SpeedToDuty (int steps_per_second, int ticks_per_second) (C)
SPEED.TO.DUTY (steps_per_second \ ticks_per_second -- duty_cycle) (Forth)

Returns an integer representation of a duty cycle which specifies the step rate of the
stepper motor. The first input parameter is the number of steps per second if full
stepping, or the number of halfsteps per second if half stepping. The second input
parameter is the number of clock ticks per second; the default is 1000 ticks per second.
The output parameter can be interpreted as a fraction with the radix point to the left of the
most significant bit. A 100% duty cycle is represented by hex 0xFFFF, and this tells
the STEP.MANAGER to output a new step pattern on every tick of the interrupt clock
(e.g., once per millisecond, corresponding to 1000 (half) steps per second). A duty
cycle of hex 0x8000 means a new step pattern is written to the motor port every other
clock tick; a duty cycle of hex 0x0100 dictates one step every 256 clock ticks; and a
duty cycle of 0000 means corresponds to a stopped state with no step pattern updates.

void StandardMap (void) (C)
STANDARD.MAP (--) (Forth)

Sets a flag in EEPROM and changes the state of a latch in the onboard PALs to put the
standard memory map into effect on flash-equipped QED-FLASH Boards. After
execution of this routine, and upon each subsequent reset or restart, pages 1, 2, and 3 are
addressed in the S2 RAM, and pages 4, 5, and 6 are addressed in the S1 flash memory.
After code is downloaded to RAM and transferred to flash using the PageToFlash()
(PAGE.TO.FLASH in Forth) function, establishing the standard map allows code resident
on pages 4, 5 and 6 to be executed. To establish the download memory map, see the
glossary entry for DownloadMap() (DOWNLOAD.MAP in Forth). Note that the standard
map is active after a "factory cleanup" operation.

void StepManager (void) (C)
STEP.MANAGER (--) (Forth)

Expects the base address of the STATUS.ARRAY in the Y register. Based on the
information in the STATUS.ARRAY and the RAMP.ARRAY, for each enabled motor
STEP.MANAGER writes the appropriate step pattern at the specified duty cycle to the
motor port to attain the speed specified in the motor's RAMP.ARRAY. This function is
meant to be called from a periodic interrupt service routine typically associated with an
output compare (OC) interrupt; the default time base is once per millisecond generated
by the OC3 interrupt, with a resulting maximum speed of 1000 full- or half-steps per
second. This assembly coded routine executes in approximately 120 µs per enabled
stepper motor. Thus running four stepper motors at a maximum speed of 1000 full- or
half-steps per second requires approximately half of the 68HC11's available time (480
µs interrupt service time every 1000 µs).

int ToFlash (xaddr src_xaddr, xaddr dest_xaddr, uint num) (C)
TO.FLASH (src_xaddr \ dest_xaddr \ num -- success_flag) (Forth)

Transfers num bytes (0 <= num <= 65,535) starting at the specified source extended
address, to the specified destination extended address in flash. The source may be
anywhere in memory; it may even be in the flash which is being programmed. The
destination must be in flash. Returns a flag equal to -1 if the programming was
successful, or 0 if the programming failed. Reasons for failure include improper DIP
switch settings, or a destination that is not in a programmable page in flash memory.
Recall that DIP switches number 2, 3, and 4 must be ON to allow writes to the flash. (If

 28

any locations in the flash are programmed more than 10,000 times, the cell may wear out
causing a failure flag to be returned). Assuming that the standard 256 Kbyte flash is
present on the board, writable flash pages include pages 4, 5 and 6 for the standard map,
and pages 1, 2, and 3 for the download memory map. Page 7 is always in flash and
writable; it provides an excellent location for data storage. This function uses the
68HC11's on-chip RAM at hex B200 to B3CF to manage the write to the flash (the real-
time clock and C/Forth interrupt stack reserve the bytes at B3D0 to B3FF). The
remaining on-chip RAM at B000 to B1FF remains available to the user.

xaddr TO_XADDR(uint address, int page) (C)
This C macro combines the specified 16-bit address and page into a single 32-bit extended
address. It is present in \fabius\include\mosaic\types.h starting with V1.2 of the types.h file.

int WhichMap (void) (C)
WHICH.MAP (-- [0] or [1]) (Forth)

Returns a 0 if the current memory map is the "standard map", and returns a 1 if the
current map is the "download map" on flash-carrying boards. If the standard map is
active, pages 4, 5, and 6 are addressed in the S1 flash, and pages 1, 2, and 3 are addressed
in the S2 RAM. If the download map is active, pages 4, 5, and 6 are addressed in the S2
RAM, and pages 1, 2, and 3 are addressed in the S1 flash memory. This routine allows a
user or program to verify which map is currently being used. After a "factory cleanup"
operation, the standard map is active.

uint XADDR_TO_ADDR (xaddr xaddress) (C)
This C macro converts the specified 32-bit extended address into its constituent 16-bit
address. It is present in \fabius\include\mosaic\types.h starting with V1.2 of the types.h
file.

uint XADDR_TO_PAGE (xaddr xaddress) (C)
This C macro converts the specified 32-bit extended address into its constituent page. It
is present in \fabius\include\mosaic\types.h starting with V1.2 of the types.h file.

Glossary Addendum: Custom Routines Added to the QED V4.0x Kernel

BUFFER>SPI (xaddr\+n --) (Forth)

This routine is headerless; its xcfa is stored at address 7FF8 on page C.
Writes to the SPI the contents of the buffer specified by xaddr and +n, where xaddr is the
starting address, and +n is the number of bytes (0 <= +n <= 32,768). The buffer must not
cross a page boundary. This routine does not GET or RELEASE the SPI.RESOURCE, nor
does it modify the configuration of the SPI or activate any chip selects. If required, these
additional functions must be performed by the calling program. This routine is optimized
for speed, and executes at 9 microseconds per byte. To access this routine from C,
contact Mosaic Industries. To access this routine from Forth, add the following
definition to your Forth source code:

 HEX : BUFFER>SPI 7FF8 C X@ EXECUTE ;

CALC.CHECKSUM (xaddr\+n -- checksum | n MUST be even) (Forth)

This routine is headerless; its xcfa is stored at address 7FFC on page C.
Calculates a 16-bit checksum for the buffer specified by xaddr and +n, where xaddr is the
starting address, and +n is the number of bytes (0 <= +n <= 32,768). The buffer must not
cross a page boundary, and n must be an even number of bytes. The checksum is

 29

calculated by initializing a 16-bit accumulator to zero, then adding in turn each 2-byte
number in the buffer to the accumulator; the checksum is the final value of the
accumulator. Using this routine provides a method of checking whether the contents of
an area of memory have changed since a prior checksum was calculated. This routine is
optimized for speed, and executes at less than 3 microseconds per byte. To access this
routine from C, contact Mosaic Industries. To access this routine from Forth, add the
following definition to your Forth source code:

 HEX : CALC.CHECKSUM 7FFC C X@ EXECUTE ;

 30

Appendix A: QED-Flash Connector Pinouts

The pinouts of all of the connectors on the QED-Flash Board are presented below. To locate the
connectors on the board, consult Figure A.1 and the white silkscreened labels on the "memory side" of
the QED-Flash Board. On the "processor side" of the board, the legend indicates the location of pin 1
and the highest numbered pin on each connector.

Note that some signals have compound names to suggest multiple functions. For example,
PPB5/Display.RS on the keypad/display connector is a signal that can be configured as a general
purpose digital I/O line named PPB5, or as a signal that controls the reset line of the display.

Figure A.1 Diagram of the memory side of the QED-Flash Board with each of the key
components and connectors labeled.

 QED Communications Connector QED Power Connector

 TxD1 - 1 2 - RxD1 /Shutdown - 1
 DGND - 3 4 - DGND AGND - 2
 XCVR- - 5 6 - XCVR+ +5VAN - 3
 TxD2 - 7 8 - RxD2 DGND - 4
 DGND - 9 10 - DGND +5V - 5
 6-12VDC Raw Vin - 6

Keypad/Display Connector Analog I/O Connector

Digital I/O Connector

Dip Switches

Communications
Connector

Power
Connector

Character/Graphics
Display Jumper

Display Contrast
Adjustment Potentiometer

S2 Memory Jumper

S1 Memory Jumper

Serial Port 1 RS232/RS485 Jumper

Address/Data Connector

 31

 Address/Data Connector
 PG7 - 1 2 - PG6
 PG5 - 3 4 - PG4
 PG3 - 5 6 - PG2
 PG1 - 7 8 - PG0
 A15 - 9 10 - A14
 A13 - 11 12 - A12
 A11 - 13 14 - A10
 A9 - 15 16 - A8
 A7 - 17 18 - A6
 A5 - 19 20 - A4
 A3 - 21 22 - A2
 A1 - 23 24 - A0
 D7 - 25 26 - D6
 D5 - 27 28 - D4
 D3 - 29 30 - D2
 D1 - 31 32 - D0
 /RESET - 33 34 - R//W
 /OE - 35 36 - /WE
 E - 37 38 - V+Raw
 DGND - 39 40 - +5V

 Keypad/Display Connector
 PPB4/KPR4 - 1 2 - GND
 PPB3/KPR3 - 3 4 - +5V
 PPC3/KPC3 - 5 6 - Vcontrast
 PPC0/KPC0 - 7 8 - A1
 PPB2/KPR2 - 9 10 - R//W
 PPC1/KPC1 - 11 12 - Display.E
 PPC2/KPC2 - 13 14 - D0
 PPB1/KPR1 - 15 16 - D1
 PPB0/KPR0 - 17 18 - D2
 DGND - 19 20 - D3
 HC0* - 21 22 - D4
 HC1* - 23 24 - D5
 HC2* - 25 26 - D6
 HC3* - 27 28 - D7
 DGND - 29 30 - DGND
 SNUB - 31 32 - +5VDD
 V+RAW - 33 34 - VEE

* HC0 is generated by PAL, HC1-HC3 are generated using PB5-PB7 respectively

 32

 Digital I/O Connector
 GND - 1 2 - +5V
 PA7 - 3 4 - PA6
 PA5 - 5 6 - PA4
 PA3 - 7 8 - PA2
 PA1 - 9 10 - PA0
 PD5//SS - 11 12 - PD4/SCK
 PD3/MOSI - 13 14 - PD2/MISO
 E - 15 16 - R//W
 /OE - 17 18 - /WE
 /XIRQ - 19 20 - /IRQ
 PFI Input - 21 22 - 4xOut
 /Reset - 23 24 - /Shutdown
 PPC7 - 25 26 - PPC6
 PPC5 - 27 28 - PPC4/RS485.XMIT
 PPA7 - 29 30 - PPA6
 PPA5 - 31 32 - PPA4
 PPA3 - 33 34 - PPA2
 PPA1 - 35 36 - PPA0
 AGND - 37 38 - +5VAN
 DGND - 39 40 - V+Raw

 Analog I/O Connector
 Vrl - 1 2 - Vrh
 PE7/AN7 - 3 4 - PE6/AN6
 PE5/AN5 - 5 6 - PE4/AN4
 PE3/AN3 - 7 8 - PE2/AN2
 PE1/AN1 - 9 10 - PE0/AN0
 12AN7 - 11 12 - 12AN6
 12AN5 - 13 14 - 12AN4
 12AN3 - 15 16 - 12AN2
 12AN1 - 17 18 - 12AN0
 AGND - 19 20 - +5VAN
 Vin1 - 21 22 - Vout1
 Vin2 - 23 24 - Vout2
 Vin3 - 25 26 - Vout3
 Vin4 - 27 28 - Vout4
 Vin5 - 29 30 - Vout5
 Vin6 - 31 32 - Vout6
 Vin7 - 33 34 - Vout7
 Vin8 - 35 36 - Vout8
 1.5Vref - 37 38 - +5V
 Analog Bus V- - 39 40 - V+Raw

Mosaic Industries, Inc.

QED-Flash Board 33

Appendix B: QED-Flash Board Schematics
Microprocessor

Mosaic Industries, Inc.

QED-Flash Board 34

Memory

Mosaic Industries, Inc.

QED-Flash Board 35

PIA

Mosaic Industries, Inc.

QED-Flash Board 36

Hardware Control Logic

Mosaic Industries, Inc.

QED-Flash Board 37

Communications

Mosaic Industries, Inc.

QED-Flash Board 38

Reset Circuitry

Mosaic Industries, Inc.

QED-Flash Board 39

Mosaic Industries, Inc.

QED-Flash Board 40

Power Circuitry

Mosaic Industries, Inc.

QED-Flash Board 41

DAC & 12 Bit A/D

Mosaic Industries, Inc.

QED-Flash Board 42

External Connectors

