
 Mosaic Industries, Inc.

Digital I/O Wildcard 1

Digital I/O Wildcard Users Guide

Introduction

This document describes how to use the Digital I/O WildcardTM, providing an overview of the hardware and
software and a schematic. The Digital I/O Wildcard allows you to easily add up to 20 lines of digital I/O to
your system. It can be used to expand the I/O of any of Mosaic’s controller products. The following sections
guide you through the Digital I/O Wildcard’s hardware and software.

Table 1-1. Digital I/O Wildcard Specifications

Digital I/O Wildcard Specifications
Channels

Configurable Channels: 16, configurable as input or output in groups of 4
Fixed Input Channels: 4

Inputs
Input Voltage Range: 0 – 5 V (-0.5 to 5.5 absolute max)
Input Low Voltage: < 0.80 V
Input High Voltage: > 2.0 V
Input Leakage Current: ± 10 µA
Input Capacitance: 10 pF

Outputs
Output Voltage Range: 0 – 5 V (-0.5 to 5.5 absolute max)
Output Low Voltage: < 0.5 V at 24 mA (i.e., 12Ω typ., 21Ω worst case)
Output High Voltage: >3.5 V typ., 5.0 V pulled up, >2.4 V at -4.0 mA
Output Current: 24 mA sink, 4 mA source
Max Output Current: 100 mA on any pin
Max Internal Power: 250 mW all pins together

Pull up/down
Optional Pull-up/down : 10 KΩ, jumper selectable pull up/down

Hardware

Overview

The Digital I/O Wildcard expands the digital I/O capabilities of Mosaic embedded controllers. Each Digital
I/O Wildcard provides 16 channels configurable in groups of four as either inputs or outputs plus 4 additional
digital input channels. Each line is configurable for pull up, pull down, or tri-state operation. Outputs sink up
to 24 mA or source up to 4 mA continuously.

The next sections show you how to hook up the Digital I/O Wildcard to your controller, how to select the
Wildcard address, and how to configure each line for pull-up, pull-down, or tri-state operation.

Connecting To the Mosaic Controller

To connect the Digital I/O Wildcard to a Wildcard-ready Mosaic controller or to a Wildcard Carrier Board,
follow these simple steps:

 Mosaic Industries, Inc.

Digital I/O Wildcard 2

With the power off, connect the Wildcard Bus on the Digital I/O Wildcard to Wildcard Port 0 or Wildcard Port
1 on your controller or the Wildcard Carrier Board (These may also be called Module Port 0 or 1). If you are
using a Wildcard Carrier Board, connect it to the QED Board as outlined in the “Wildcard Carrier Board Users
Guide”. The corner mounting holes on the Wildcard should line up with the standoffs on your controller.

CAUTION: The Wildcard bus does not have keyed connectors. Be sure to insert the Wildcard so that all pins
are connected. The Mosaic controllers and the Digital I/O Wildcard can be permanently damaged if the
connection is done incorrectly.

Selecting the Wildcard Address

Once you have connected the Wildcard you must set the address of the module using jumper shunts across J20
and J21. These Wildcard Select Jumpers select a 2-bit code that sets a unique address on the Wildcard port of
the Mosaic controller. Each Wildcard port on the controller board accommodates up to 4 Wildcards. Wildcard
Port 0 on the Mosaic controller provides access to Wildcards addressed at locations 0-3 while Wildcard Port 1
provides access to Wildcards 4-7. Two Wildcards on the same port cannot have the same address (jumper
settings). Table 1-2 shows the possible jumper settings and the corresponding addresses.

Table 1-2: Jumper Settings and Associated Addresses

Wildcard Port Wildcard Address Installed Jumper Shunts
0 None
1 J20
2 J21

0

3 J20 and J21
4 None
5 J20
6 J21

1

7 J20 and J21

Configuring the Digital I/O Lines

You may configure each I/O line for pull-up, pull-down, or tri-state operation. This allows you to set the
appropriate level of each I/O line between power-up and software initialization.

There are twenty three-post jumpers on the Digital I/O Wildcard labeled J0-J19. The labels are located next to
each jumper post. The jumpers are used to configure the twenty digital I/O lines for pull-up, pull-down, or tri-
state operation. To configure a digital line for pull-up operation, simply install a jumper shunt across the two
jumper posts above the + sign located next to the jumper label. To configure a digital line for pull-down
operation, install the jumper shunt across the two pins above the – sign. By not installing a jumper shunt, the
line is configured for tri-state operation.

Once you have connected and configured all of the hardware, you can use the software drivers to read or set
the digital lines.

Current Capability of the Digital Output Lines

The inputs and outputs are all provided by a single device, a Xilinx CPLD, XC9536.

 Mosaic Industries, Inc.

Digital I/O Wildcard 3

The digital outputs provide TTL-compatible levels for driving logic devices. But you can also control devices,
such as relays and light emitting diodes, that require more current. You can either provide current from a
digital output high, or you can sink current into a digital output low. Generally speaking, the output low is
capable of sinking much more current than the output high can source, and using it results in lower power
dissipation. So if you need substantial current, you should turn on the external device by sinking current from
it using an output low.

As an output is loaded, its voltage level, VOL or VOH, rises or falls with the current. It is often useful to know
just how much to expect the VOL and VOH levels to degrade with current. For currents of less than 100 mA the
voltage change is approximately linear with current; that is, it can be modeled as a voltage source of either zero
volts (for an output low) or 3.3 volts (for an output high) and an equivalent series resistance. At greater output
currents the resistance becomes nonlinear, but you shouldn’t ever source or sink more than 100 mA.

The following figure shows the degradation of output voltage levels with increasing source or sink current for
a typical device.

An output high is typically 3.8 V, but rises to 5 V when the pull-up jumper is installed. As current is drawn by
an external device the voltage drops, appearing as a 3.3 volt source and a 30 Ω resistance. That is,

VOH = 3.3 V – 30 Ω * Isource

The output impedance for an output low is considerably less, allowing it to sink more current than an output
high can source. With no current, the output low is zero volts, and it increases with current as a 12 Ω
resistance (12 Ω typically, 21 Ω worst case), up to a limit of approximately 100 mA:

VOL = 12 Ω * Isink

 Mosaic Industries, Inc.

Digital I/O Wildcard 4

The above graph and equations can be used to choose component values for particular circuits. For example if
we wish to use an output low to drive a light-emitting diode we would place the LED in series with a resistor
and connect them between an output pin and a +5V supply. The resistor limits the current through the LED
and into the output low. From the LED data sheet we note that its forward voltage at a current of 10 mA is
specified to be 2.2 V. What should the resistor value be? We calculate it as,

R = (5V-2.2V - VOL) / 10 mA

Consulting the VOL vs I curve for the output pin we find that at 10 mA VOL = 0.12V. We therefore need a
resistance near 270 ohms.

Protecting the Input and Output Pins

These output pins are very useful because they can directly drive a wide range of devices. Nevertheless, any
circuitry connected to them should take care to:

◙ Prevent excessive voltage levels at the pin;
◙ Prevent excessive currents; and,
◙ Prevent excessive power in the Wildcard.

We’ll address each of these concerns in turn.

Preventing Excessive Voltages: Excessive voltages are prevented by ensuring that voltages of less than a
diode drop below ground (-0.5 V) or greater than a diode drop above 5V (5.5 V) are never applied to an output
pin. For some applications, particularly when driving inductive loads such as relays, you may need to provide
Schottkey diode clamps between the pin and +5V and between the pin and ground. If an output pin is directly
connected to a voltage source below ground or above 5V the Wildcard will be destroyed. Whenever possible,
it’s a good idea to drive external devices through a current limiting resistor (say 100 Ω).

Preventing Excessive Currents: The current into or out of any output pin on the Wildcard should also be
limited to prevent damage. These pins can withstand brief source or sink currents of up to 100 mA at room
temperature, but you should never allow currents greater than 100 mA. Load circuitry that requires significant
current to be sourced or sunk by the digital output should include external resistors to ensure that an absolute
maximum rating of 100 mA on a single output pin is never exceeded.

Preventing Excessive Power: Never cause more than 250 mW of I/O pin power to be dissipated on the
Wildcard. The total power allowed is the sum of the power dissipated by each pin. For output highs that
power is the product of the source current and the difference between +5V and VOH. For output lows that
power is the product of the sinked current and VOL. A limitation of the total power to 250 mW is actually quite
generous. Note that from the above figure, when 25 mA is sunk into an output low the power contributed is
only 7.5 mW (for a typical device, max of 12.5 mW for any device). Consequently, you can continuously sink
25 mA into all the output pins simultaneously.

Connecting to the Field Header

All connections to the Wildcard should be made throught the Field Header, H2. This right-angle header
provides the 20 I/O lines as well as power and ground connections.

 Mosaic Industries, Inc.

Digital I/O Wildcard 5

Table 1-3: Digital I/O Field Header H2

 Signal Pins Signal
GND – 1 2 – +5V
GND – 3 4 – V+RAW (5.5-26V)

Input 19 – 5 6 – Input 18
Input 17 – 7 8 – Input 16

Input/Output 15 – 9 10 – Input/Output 14
Input/Output 13 – 11 12 – Input/Output 12
Input/Output 11 – 13 14 – Input/Output 10
Input/Output 9 – 15 16 – Input/Output 8
Input/Output 7 – 17 18 – Input/Output 6
Input/Output 5 – 19 20 – Input/Output 4
Input/Output 3 – 21 22 – Input/Output 2
Input/Output 1 – 23 24 – Input/Output 0

Software

This section describes the software that enables you to control the Digital I/O Wildcard. Briefly, the Wildcard
is addressed by addressing specific memory locations with a page address corresponding to the Wildcard’s
physical address, the direction (as inputs or outputs) of each nibble of the I/O is configured by writing to a
specific location, inputs are read by reading a memory location and outputs are written by writing to the same
location.

Setting the Direction of the I/O Lines

Several bytes of memory starting at C000H are used to communicate with the Digital I/O Wildcard. The page
used for the memory’s extended address corresponds to the Wildcard address. For example, to communicate
with Wildcard 1 on the Wildcard Carrier Board, use the 6 byte memory block starting at address C000H on
page 1.

The 20 digital I/O lines on the Digital I/O Wildcard are organized into five 4-channel groups or nibbles. The
five nibbles are accessed using addresses C000H to C004H. The four digital I/O lines (digital inputs 15-19) at
C004H are read-only inputs. I/O lines 0-15 are configured using a direction register at C005H. Each bit of the
least significant 4-bit nibble of the direction register controls the direction of four digital I/O lines. Table 2
summarizes the organization of the digital I/O lines.

Table 2: Organization of the Digital I/O Lines

Address Name Digital Lines Direction
C000 Nibble 0 0 - 3 Inputs/Outputs
C001 Nibble 1 4 - 7 Inputs/Outputs
C002 Nibble 2 8 - 11 Inputs/Outputs
C003 Nibble 3 12 - 15 Inputs/Outputs
C004 Nibble 4 16 - 19 Inputs
C005 Direction Register -- --

 Mosaic Industries, Inc.

Digital I/O Wildcard 6

In setting the direction, a one in a bit position in C005 causes the corresponding nibble of I/O to be an output
and a zero sets it as an input. The least significant bit of C005 controls the direction of the lowest four output
lines (those whose values are controlled by C000), the next bit of C005 controls lines 4-7 (whose values are set
by C001) and so on. The upper nibbles of C000 through C005 do nothing.

For example, for a Wildcard addressed at location 3, from the Forth terminal you could set the direction of
digital lines 0 through 7 to outputs and 8 through 15 as inputs by executing,

HEX
03 C005 03 C! \ Sets bits 0 and 1 to one
 \ and bits 2 and 3 to zero at address C005 on page 03

Setting bits 0 and 1 to one configures the lower two nibbles, that is, lines 0 through 7, as outputs. And setting
bits 2 and 3 to zero configures the next two nibbles, lines 8 through 15, as inputs.

The output lines would immediately assume the values provided by the contents of addresses C000 through
C001 (so you might want to initialize them first!). You could send alternate output highs and lows to lines 0
through 7 by executing,

0A C000 03 C!
0A C001 03 C!

At each of the nibble locations there are separate read and write registers – you can read only from the read
register and you can write only to the write register. For example, whatever the value you read from C000, the
values writtten to lines 0 through 3 when the direction is set to output will be the last nibble written to C000.
Also, whether the pins are configured as inputs or outputs, reading from C000 will always return the actual pin
values, and not necessarily what you last wrote to C000.

On power up, all of the digital I/O lines are initialized as inputs. Initializing the direction of the digital I/O
lines is similar to setting the direction of Port A or Port C. The following C and FORTH code presents an
example routine to set the direction of the I/O lines on the Digital I/O Wildcard.

// C Code to initialize the Digital I/O Wildcard

#include <allqed.h> // Include QED header files

#define DIRECTION_REGISTER 0xC005

#define NIBBLE_0 1 // Lines 0-3
#define NIBBLE_1 2 // Lines 4-7
#define NIBBLE_2 4 // Lines 8-11
#define NIBBLE_3 8 // Lines 12-15

#define OUTPUT 1
#define INPUT 0

void Init_IO_Direction (uchar module_number, uchar nibble, uchar direction)

 Mosaic Industries, Inc.

Digital I/O Wildcard 7

// Valid module numbers are 0-7. Valid nibbles are NIBBLE_0 to NIBBLE_3
// Valid directions are INPUT or OUTPUT.
// --
// The module number depends on the module select jumpers. See Table 1 for
// the jumper settings and associated addresses.
// --
// No error checking is done on the input parameters!
// --
// This routine initializes the direction of a nibble of I/O lines on the
// Digital I/O Wildcard.
{
 EXTENDED_ADDR module_addr;

 module_addr.sixteen_bit.page16 = module_number;
 module_addr.sixteen_bit.addr16 = DIRECTION_REGISTER;

 if(direction)
 {
 SetBits(nibble, module_addr.addr32); // set nibble as output
 }
 else
 {
 ClearBits(nibble, module_addr.addr32); // set nibble as input
 }
}

\ Forth Code to initialize the Digital I/O Wildcard

HEX

4 USE.PAGE \ Initialize the memory map.
15 WIDTH ! \ Avoid non-unique names.
ANEW DIO.CODE \ Forget marker for easy re-loading.

C005 CONSTANT DIRECTION_REGISTER

1 CONSTANT NIBBLE_0 \ Lines 0-3
2 CONSTANT NIBBLE_1 \ Lines 4-7
4 CONSTANT NIBBLE_2 \ Lines 8-11
8 CONSTANT NIBBLE_3 \ Lines 12-15

1 CONSTANT OUTPUT
0 CONSTANT INPUT

: Init_IO_Direction (byte1\u\byte2 --)
\ byte1 = module number, byte2 = nibble, byte3 = direction
\ Valid module numbers are 0-7. Valid nibbles are NIBBLE_0 to NIBBLE_3
\ Valid directions are INPUT or OUTPUT.
\ --
\ The module number depends on the module select jumpers. See Table 1 for
\ the jumper settings and associated addresses.
\ --
\ No error checking is done on the input parameters!
\ --
\ This routine initializes the direction of a nibble of I/O lines on the
\ Digital I/O Wildcard.

 Mosaic Industries, Inc.

Digital I/O Wildcard 8

locals{ &direction &nibble &module }

&direction
IF
 &nibble DIRECTION_REGISTER &module SET.BITS \ set nibble as output
ELSE
 &nibble DIRECTION_REGISTER &module CLEAR.BITS \ set nibble as input
ENDIF
;

Controlling the I/O Lines

Once you have set the direction of the I/O lines, you can read and set the I/O lines like the other digital I/O
ports on the Mosaic Controller.

// C Code to control the Digital I/O Wildcard

#define OUTPUT_HIGH 1
#define OUTPUT_LOW 0

#define NIBBLE_0_ADDR 0xC000 // Lines 0-3.
#define NIBBLE_1_ADDR 0xC001 // Lines 4-7.
#define NIBBLE_2_ADDR 0xC002 // Lines 8-11.
#define NIBBLE_3_ADDR 0xC003 // Lines 12-15.
#define NIBBLE_4_ADDR 0xC004 // Lines 16-19. Inputs only

#define LINE_0 1
#define LINE_1 2
#define LINE_2 4
#define LINE_3 8
#define LINE_4 1
#define LINE_5 2
#define LINE_6 4
#define LINE_7 8
#define LINE_8 1
#define LINE_9 2
#define LINE_10 4
#define LINE_11 8
#define LINE_12 1
#define LINE_13 2
#define LINE_14 4
#define LINE_15 8

void Control_DIO (uchar mod_num, uint nibble_addr, uchar line, uchar state)
// Sets I/O line of specified nibble to the appropriate state (high or low).
// Valid module (ie Wildcard) numbers are 0-7.
// Valid nibble addresses are NIBBLE_0_ADDR to NIBBLE_3_ADDR.
// Valid lines are LINE_0 to LINE_15
// Valid states are OUTPUT_HIGH or OUTPUT_LOW
{
 EXTENDED_ADDR module_addr;

 module_addr.sixteen_bit.page16 = mod_num;
 module_addr.sixteen_bit.addr16 = nibble_addr;

 Mosaic Industries, Inc.

Digital I/O Wildcard 9

 if(state) // set line high
 {
 SetBits(line, module_addr.addr32);
 }
 else // set line low
 {
 ClearBits (line, module_addr.addr32);
 }
}

uchar Read_Nibble (uchar module_number, uint nibble_addr)
// Reads the current state of the Digital I/O nibble.
// Valid module numbers are 0-7.
// Valid nibble addresses are NIBBLE_0_ADDR to NIBBLE_4_ADDR.
// Returns an unsigned character whose least significant nibble represents
// the four I/O lines. For example, if nibble 1 is read and a 1 is returned
// (0001 in binary), then line 4 is high and lines 5-7 are low. If 12 is
// returned (1100 in binary) after reading nibble 3, then lines 12 and 13 are
// low and lines 14 and 15 are high. The four most significant bits of the
// returned byte do not matter.
{
 EXTENDED_ADDR module_addr;
 uchar nibble_status;

 module_addr.sixteen_bit.page16 = module_number;
 module_addr.sixteen_bit.addr16 = nibble_addr;

 nibble_status = FetchChar(module_addr.addr32);

 return(nibble_status);
}

\ Forth Code to control the Digital I/O Wildcard

HEX

1 CONSTANT OUTPUT_HIGH
0 CONSTANT OUTPUT_LOW

C000 CONSTANT NIBBLE_0_ADDR \ Lines 0-3.
C001 CONSTANT NIBBLE_1_ADDR \ Lines 4-7.
C002 CONSTANT NIBBLE_2_ADDR \ Lines 8-11.
C003 CONSTANT NIBBLE_3_ADDR \ Lines 12-15.
C004 CONSTANT NIBBLE_4_ADDR \ Lines 16-19. Inputs only.

1 CONSTANT LINE_0
2 CONSTANT LINE_1
4 CONSTANT LINE_2
8 CONSTANT LINE_3
1 CONSTANT LINE_4
2 CONSTANT LINE_5
4 CONSTANT LINE_6
8 CONSTANT LINE_7
1 CONSTANT LINE_8
2 CONSTANT LINE_9

 Mosaic Industries, Inc.

Digital I/O Wildcard 10

4 CONSTANT LINE_10
8 CONSTANT LINE_11
1 CONSTANT LINE_12
2 CONSTANT LINE_13
4 CONSTANT LINE_14
8 CONSTANT LINE_15

: Control_DIO (byte1\u\byte2\byte3 --)
\ Sets I/O line of specified nibble to the appropriate state (high or low).
\ byte1 = module number, u = nibble address, byte2 = line, byte3 = state.
\ Valid module numbers are 0-7.
\ Valid nibble addresses are NIBBLE_0_ADDR to NIBBLE_3_ADDR.
\ Valid lines are LINE_0 to LINE_15
\ Valid states are OUTPUT_HIGH or OUTPUT_LOW
locals{ &state &line &nibble_addr &module }

 &state
 IF \ set line high
 &line &nibble_addr &module SET.BITS
 ELSE \ set line low
 &line &nibble_addr &module CLEAR.BITS
 ENDIF
;

: Read_Nibble (byte1\u –- byte2 | byte1 = module number, u = nibble addr)
\ Reads the current state of the Digital I/O nibble.
\ Valid module numbers are 0-7.
\ Valid nibble addresses are NIBBLE_0_ADDR to NIBBLE_4_ADDR.
\ Returns an unsigned character whose least significant nibble represents
\ the four I/O lines. For example, if nibble 1 is read and a 1 is returned
\ (0001 in binary), then line 4 is high and lines 5-7 are low. If 12 is
\ returned (1100 in binary) after reading nibble 3, then lines 12 and 13 are
\ low and lines 14 and 15 are high. The four most significant bits of the
\ returned byte do not matter.
locals{ &nibble_addr &module }

 &nibble_addr &module C@
;

Conclusion

Now you are ready to start using your Digital I/O Wildcard. All of the software routines listed in this
document are also on the distribution diskette that accompanies each Wildcard.

 Mosaic Industries, Inc.

Digital I/O Wildcard 11

XC
95

36

