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How To Use This Book

Welcome, and thanks for purchasing the QCard Controller™.  This manual provides instructions for
using your new embedded computer.  The QCard packs a programmable computer, up to 1 mega-
byte of memory, communications, analog and digital I/O, and an expansion I/O bus onto a tiny low-
cost board.  This 2” x 2.5” single board computer is perfect for space-constrained applications and
dramatically cuts the cost of data acquisition and control. It is ideal for machine automation, indus-
trial control, robotics, handheld data acquisition, and scientific instrumentation.

The I/O-rich QCard hosts a 16 MHz Motorola 68HC11F1 microprocessor, 512K Flash and 128K
RAM (expandable to 512K), and 320 bytes of EEPROM.   On-board I/O includes 8 digital I/O lines
with counter/timer capabilities, 8 analog inputs, a fast synchronous SPI serial interface, and dual
RS232/485 ports.  An optional real-time clock tracks the calendar and time of day and battery-backs
the 128K RAM.

The QCard is easily programmable in C, Forth or Assembly using any PC. Built-in programming
tools include an interactive debugger, a multitasking executive, and comprehensive device-driver
libraries.

Convenient connectors allow for simple mechanical integration. The QCard can directly host up to 4
I/O expansion modules called WildCards™ that you can mix and match depending on your applica-
tion. The easy-to-use WildCards stack onto the 24 pin WildCard connector on the QCard.  A con-
venient PowerDock™ module includes an efficient switching power regulator and expands the
WildCard bus to host up to 8 WildCards.

WildCards implement a wide variety of user interface, communications, data acquisition and control
capabilities.  Available WildCards include a Keypad/Display module, octal 12-bit D/A and 16-bit
A/D converters, a 24-bit resolution analog data acquisition subsystem, a Compact Flash card mass
memory interface, fast buffered RS232/485 dual UARTs, high voltage/high current isolated I/O, and
AC or DC solid state relays.  You can select the WildCards that meet your needs to configure a cost-
effective customized controller for your application.
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Prerequisite Knowledge

The QCard Controller is intended for use by experienced programmers or any technically minded
person up to the challenge of real-time programming.  We assume that if you’re designing a product
requiring an embedded computer, you have experience in the design of the hardware and software
needed to customize the QCard Controller to your product, and an understanding of the basics of
writing, compiling and debugging software programs.  You should be comfortable programming in
either the C or Forth programming languages; you can program the QCard Controller in either.  This
manual is geared to the C programmer.  If your would rather program in Forth, give us a call and
we’ll send you the Forth programmers manual.  We recommend the following references for novice
programmers:

◙ The C Programming Language, by Kernighan and Ritchie

◙ C: A Reference Manual, by Harbison and Steel

Motorola’s M68HC11 Reference Manual and MC68HC11F1 Technical Data Manual are included
with this documentation package as Adobe Acrobat Portable Document Format (*.pdf) files.

How to Use this Documentation

This manual is laid out in several parts, in an order we hope you find most useful.  We have invested
a lot of effort to make this documentation instructive and helpful.  The available software and hard-
ware functions are all described in detail, and many coded examples are presented.  For those who
are designing “turnkeyed” instruments, we have included a complete turnkeyed application program.
This well documented program illustrates how to use dozens of features, including the graphical
user interface, interrupts, floating point math, formatted display of calculated results, multitasking,
and automatic program startup.  The source code is included on your CD-ROM.  This sample pro-
gram can serve as a useful template for a wide variety of applications.  This manual contains the
following parts:

Part 1,Getting Started: A Quick Tour of the QCard Controller, will familiarize you with the
QCard Controller and PowerDock (Chapters 1 and 2) and its programming environment, and get
you writing your first program (Chapter 3).  These first two chapters guide you through the QCard
Controller’s hardware, explain how to establish communications with it, tell you how to install your
compiler, and show you how to compile and run your first program.

After working through the examples of Chapter 3 you will have exercised some of the key hardware
and software features of your controller.  You might then leaf through the categorized list at the
beginning of the C Function Glossary to get a feel for the wealth of precoded library functions avail-
able for you to use.

Part 2, Programming the QCard Controller, provides everything you need to know to master real-
time programming on the QCard Controller.

Part 3, Communications, Measurement and Control, focuses on the QCard’s hardware resources –
A/D, serial communications, timer-controlled I/O, real-time clock and others – and provides exam-
ples for using each.
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Part 4, Putting It All Together, introduces a real-time interactive application, and provides code
you can use as a template for your application.  It also discusses the nuts and bolts of product inte-
gration, mounting, noise considerations and power requirements.

Part 5, Reference Data, contains detailed specifications, pint outs, and schematics.

Conventions Used in This Book

The following conventions are use throughout this manual:

Abbreviations

A/D Analog to Digital Converter

CCFL Cold Cathode Fluorescent, a display backlight that uses a small fluorescent light bulb

COP Computer Operating Properly timer

D/A or DAC Digital to Analog Converter

EEPROM Electronically Erasable Programmable Read-Only Memory, nonvolatile

EL Electroluminescent Display

FLASH Flash Programmable Read-Only Memory, nonvolatile and on-the-fly reprogrammable

GUI Graphical User Interface, also called an MMI (Man Machine Interface)
or OI (Operator Interface)

I/O Inputs and Outputs

LCD Liquid Crystal Display

LED Light-Emitting Diode

PIA Peripheral Interface Adapter (a chip that provides 24 digital I/O signals)

PROM Programmable Read-Only Memory, nonvolatile one-time programmable

QED Quod Erat Demonstrandum, or Quick Easy Design, whichever you prefer

QED-Forth The name of the QCard Controller’s onboard operating system and interactive resident
language.

RAM Random Access Memory, volatile

RTC Real-Time Clock

RTOS Real Time Operating System

SPI Serial Peripheral Interface, a fast bidirectional synchronous serial interface

SRAM Static Random Access Memory, volatile

UART Universal Asynchronous Receiver Transmitter

Throughout this manual the names of code functions and extended code segments are distinguished
by their typeface.  The following font styles are used:

Typefaces

English Text Plain text uses a Times New Roman Font
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Typefaces
C function names appearing within text void InstallMultitasker(void)

Forth function names appearing within text BUILD.STANDARD.TASK

C code in listings #define FULL_SCALE_COUNTS  256

Forth code in listings 256 CONSTANT FULL_SCALE_COUNTS

Commands typed to the QCard Controller
through a terminal

CFA.FOR  main  PRIORITY.AUTOSTART

QCard Controller responses to a terminal
program

ok

Code function names and listings use a fixed space font.  C code uses a font with serifs, QED-Forth
code is sans serif.  Terminal commands are indented and followed by a back-arrow symbol repre-
senting the enter key on the keyboard, and the QCard Controller’s responses are underlined with a
dotted line.  Both are indented in the text.  Listings of more extensive code examples are set off by
indenting and captioning.

Integer numbers are not accompanied by a decimal point; the presence of a decimal point indicates
that the number is a floating-point format number.  Decimal base numbers are written in standard
form while binary numbers are written in hexadecimal (base sixteen, using 0-9 and A-F) and pre-
ceded with “0x”, for example, the 16-bit integer equivalents of decimal 0, 65,535 and 15,604 are
represented as 0x0000, 0xFFFF, and 0x3CF4 respectively.

Obtaining Code Examples and Example Applications

Please check our website periodically at www.mosaic-industries.com, where we’ll be posting code
examples and example applications, and providing software updates and enhancements.

For Technical Help (or just to chat) Contact Us

We have tested and verified the sample code in this user’s guide to the best of our ability, but you
may find that some features have changed, or even that we have made a mistake or two.  If you find
an error, please call us and we’ll fix it pronto.

If you are facing a challenging software hurdle, or a hardware problem in interfacing to our prod-
ucts, please don’t hesitate to email or call us.  We can often help you over the hurdle and save you a
lot of time.  So contact us by phone or email:

510-790-8222
support@mosaic-industries.com

We provide free technical help to all registered, licensed users.
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Chapter 1

Getting to Know Your QCard Controller

Congratulations on your choice of the QCard Controller™.  This Chapter introduces the vari-
ous software and hardware features of the QCard Controller: the RTOS, choice of program-
ming languages, processor, memory, serial communications, real-time clock, and I/O.

In this chapter you’ll learn:

All about the operating system and software features of the QCard Controller;

All of the hardware features of your controller; and,

How to configure various options on your controller.

Introducing the QCard Controller
To serve the needs of real-time control, modern embedded computers must have a set of comple-
mentary features including operating system software, device drivers, user interface, and expandable
I/O.  You’ll find the QCard Controller has a set of hardware and software that work together to
simplify your product development cycle while bringing new capability to your products.

The QCard  packs a programmable computer, up to 1 megabyte of memory, communications,
analog and digital I/O, and an expansion I/O bus onto a tiny low-cost board.  This 2” x 2.5” single
board computer is perfect for space-constrained applications and dramatically cuts the cost of data
acquisition and control.  It is ideal for machine automation, industrial control, robotics, handheld
data acquisition, and scientific instrumentation.

The I/O-rich QCard hosts a 16 MHz Motorola 68HC11F1 microprocessor, 512K Flash and 128K
RAM (expandable to 512K), and 320 bytes of EEPROM.   On-board I/O includes 8 digital I/O lines
with counter/timer capabilities, 8 analog inputs, a fast synchronous SPI serial interface, and dual
RS232/485 ports.  An optional real-time clock tracks the calendar and time of day and battery backs
the 128K RAM.

The QCard is easily programmable in C, Forth or Assembly using any PC.  Built-in programming
tools include an interactive debugger, a multitasking executive, and comprehensive device-driver
libraries.

Convenient connectors allow for simple mechanical integration.  The QCard can directly host up to
4 I/O expansion modules called WildCards that you can mix and match depending on your appli-
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cation. The easy to use WildCards stack onto the 24 pin WildCard connector on the QCard.  A con-
venient PowerDock module includes an efficient switching power regulator and expands the
WildCard bus to host up to 8 WildCards.

WildCards implement a wide variety of user interface, communications, data acquisition and control
capabilities.  Available WildCards include a Keypad/Display module, octal 12-bit D/A and 16-bit
A/D converters, a 24-bit resolution analog data acquisition subsystem, Compact Flash card mass
memory interface, fast buffered RS232/485 dual UART, high voltage/high current isolated I/O, and
AC or DC solid state relays.  You can select the WildCards that meet your needs to configure a cost-
effective customized controller for your application.

The following subsections discuss the interdependent hardware and software aspects of your con-
troller.

Real-Time Operating System and Built-In Function Library

You wouldn’t want to have to load an operating system into your desktop computer each time you
turn it on, and the same holds true for embedded computers.  Importantly, all of Mosaic’s controllers
incorporate a full-time, on-board operating system called QED-Forth.  QED-Forth is an interactive
programmable macro language encompassing a real-time operating system (RTOS), object oriented
graphical user interface (GUI) toolkit, debugging environment, and a comprehensive set of pre-
coded device drivers.

These built-in functions make it easy for you to get the most out of your board's computational and
I/O capabilities.  You can fully program the QCard Controller using only the QED-Forth program-
ming language, or you can program it using only the C language – all of the operating system’s
functions are accessible using either language.

This chapter describes how to program your QCard Controller using the Control-C programming
language, and how to use the built-in functions.  Another chapter is available if you
prefer to program in the QED-Forth programming language.  Function glossaries provide an in-
depth description of every routine.  The QCard Controller’s extensive embedded firmware reduces
your time time-to-market – we’ve precoded hundreds of useful routines so you won’t have to.

The RTOS in onboard Flash memory also manages all required hardware initializations and auto-
matically starts your application code.  It provides warning of power failures so you can implement
an orderly shutdown, and provides the run-time security feature of a watchdog (COP - computer
operating properly) timer.

Programming is a snap using the interactive debugger and multitasking executive.  The multitasker
allows conceptually different functions of your application to run independently in different tasks
while accomplishing their duties in a timely fashion.
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Choice of Programming Languages

You can program the QCard Controller using either the ANSI-standard C language or Mosaic’s
QED-Forth language.  In either language, you can supplement your high-level code with assembly
code.  Using either language, you have full access to all firmware functions.

The Control-C Programming Environment

Our Control-C™ cross-compiler was written by Fabius Software Systems and customized by
Mosaic Industries to facilitate programming the QCard Controller in C.  It is a full ANSI C compiler
and macro pre-processor; it supports floating point math, structures and unions, and allows you to
program in familiar C syntax.  Extensive pre-coded library functions provide easy command of the
controller’s digital I/O, A/D, serial ports, memory manager, multitasker, and much more.

Using the Windows™ environment on your PC, you can edit your C program in the supplied Mo-
saic IDE, and with a single mouse click you automatically compile, assemble and link your pro-
gram, and generate an ASCII hex file ready for downloading.  Clicking in the “Terminal” window
and sending the download file to the controller completes the process: you can then type main from
your terminal to execute your program.  The interactive development environment also lets you
examine and modify variables and array elements, and call individual functions in your program one
at a time with arguments of your own choosing.  This interactive environment greatly speeds the
debugging process!

QED-Forth High Level Language

For those who prefer to program in FORTH, no external compiler is needed.  You interact with the
QED-Forth operating system (an RTOS, interpreter and compiler, all rolled into one) using your PC
as a terminal.  When programming in Forth you can use the Mosaic IDE (or you can use any other
editor you prefer) to write your code and download the source code directly to the controller where
it is compiled as it downloads.  As we will see, even C programmers benefit greatly by the presence
of the QED-Forth operating system, as the built-in Forth language provides a quick and easy way to
interactively “talk to” your QED Board while debugging your C programs.

68HC11 Assembly Code

Both Control-C and QED-Forth include complete in-line assemblers that let you freely mix high
level and assembly code.  This is sometimes useful when creating specialized time-critical functions
such as interrupt handlers.

Hardware Functionality

The block diagram of Figure 1-1 provides a cogent summary of the hardware capabilities of the
QCard Controller.  Each of the hardware modules shown is described in the following sections.
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Optional Keypad/Display

• A Keypad/Display WildCard provides
a 4 line by 20 character display with
a 5 column by 4 row keypad, or,

• Use a QScreen Controller for a
complete GUI including a 240 x 128
pixel backlit graphic display and
digital touchscreen

Serial Communications
Serial 1: RS232 or RS485 to 19.2 KBaud
Serial 2: RS232 to 4800 Baud
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Operating

System
Application

Program
FLASH 64 Kbytes 448 Kbytes
RAM * 4 Kbytes 125 or 509 Kbytes
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On-Board Memory
Operating

System
Application

Program
FLASH 64 KBytes 448 KBytes
RAM * 4 KBytes 125 or 509 KBytes

EEPROM 192 Bytes 320 Bytes
* 128K RAM optionally battery-backed
Optional Battery-Backed RT Clock

Figure 1-1 The QCard Controller.  The QCard directly hosts up to four
WildCard I/O modules; mounted on a PowerDock it hosts up to
eight WildCards.

Power Requirements

The QCard requires a regulated +5 V supply and draws a maximum of 150 ma.  It directly hosts up
to four WildCards, each requiring a maximum of 100 ma.  Some WildCards require an additional
+8-26 V supply.

The QCard Controller optionally mounts on a PowerDock which provides a 1 amp 5 volt switching
power supply, dual DB-9 serial connectors, a power jack, a master power switch, plus an additional
WildCard header for hosting four additional WildCards.  The serial connectors, jack and switch are
designed for easy mounting to an instrument panel.

A 68HC11 Processor

The central block in Figure 1-1  represents the 68HC11F1 microcontroller.  This chip integrates a
central processing unit (CPU), communications, analog and digital I/O, timing capabilities, and
memory.  It provides the core capabilities of the QCard.  In this document we will refer to the
microcontroller chip as the 68HC11F1, the 68HC11, or simply the HC11.

The processor includes:

◙ An 8 bit timer-controlled digital I/O port called PORTA.  The timer functions include “input
captures” that facilitate accurate measurement of pulse widths, “output compares” that make it
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easy to generate pulse trains and pulse-width modulated waveforms, and a pulse accumulator.
These functions are backed up by interrupts that simplify real-time response to external events.

◙ An 8 channel input port (called PORTE) on the processor that can be configured to read either
analog or digital inputs.  Analog inputs are converted to an 8 bit digital number by a built-in
analog to digital (A/D) converter.

◙ A built-in serial communications interface (SCI).  The SCI is an asynchronous interface,
meaning that there is no clock transmitted with the data.  Using the SCI, the QCard Controller
can transmit and receive data at standard baud rates to 19200 baud, and at non-standard intra-
character rates as high as 250 Kbaud.

◙ A serial peripheral interface (SPI) capable of data transfer rates up to 2 megabits per second.
Many useful devices communicate via such a synchronous (clocked) serial interface.  Multiple
peripheral devices can communicate on this interface as long as each device has a unique chip
select signal.

◙ A watchdog timer that can be configured to reset the processor if the application program fails
to execute properly.

◙ A clock monitor available to reset the processor if the clock fails.

◙ External interrupt request pins and a variety of interrupt functions for quick response to real-
time events.

◙ 512 bytes of nonvolatile, electrically erasable PROM (EEPROM).  Of this, 192 bytes are used
by the operating system and 320 bytes are available for your application.  EEPROM provides a
convenient way to store calibration constants and other information that must be periodically
updated.

◙ A 16 bit address bus and an 8 bit data bus.  While the 68HC11’s native address space is 64
Kilobytes (equal to 65,536 bytes, and often written as 64K), the QCard Controller expands the
addressable memory space to 1 Megabyte by effectively adding 5 “page” bits to the address
bus.

Learning More about the 68HC11

The QCard Controller uses a new version of the 68HC11 microcontroller, called the 68HC11F1.
Motorola’s M68HC11 Reference Manual and MC68HC11F1 Technical Data Manual are included
with this documentation package as Adobe Acrobat Portable Document Format (*.pdf) files.

The M68HC11 Reference Manual thoroughly describes how to use microcontrollers of the 68HC11
variety, but it does not describe some of the enhanced features that appear in the F1 version.  The
MC68HC11F1 Technical Data Manual provides details of the operation of the F1.

Memory and Mass Memory

The QCard includes 512K Flash memory, 128K RAM (or 512K RAM with the expanded memory
option), 512 bytes of EEPROM and an additional1K RAM (on the processor).
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Of the 512K of Flash memory, 448K is available for your application program and data storage; the
remainder is used by the operating system.  Of the 129K (513K, with expanded memory option) of
RAM, 125K (509K) is available for application program use.

Like PROM, Flash memory is nonvolatile.  Thus it retains its contents even when power is removed,
and provides an excellent location for storing program code.  Simple write-cycles to the device do
not modify the memory contents, so the program code is safe even if the processor  “gets lost” and
overwrites memory.  But Flash memory is also re-programmable, and the Flash programming
functions are present right in the QCard’s onboard software library.

You can also add 64 MBytes or more of removable mass memory by plugging in a Compact Flash
WildCard module.

Measurement and Control

The QCard Controller provides a total of 17 I/O channels, distributed among digital, analog and
serial communications functions as shown in Table 1-1.

Table 1-1 I/O available on the QCard Controller

I/O Type

Digital 6 Timer-controlled inputs or outputs including 3 input-capture, 3 output-compare, and a pulse
accumulator.  (Two additional lines are available if the second serial port is not needed.)

Analog 8 8-bit 0-5 V analog inputs at up to 100kHz sampling rate

1 Serial 1: RS232/485 hardware UART at up to 19.2 KBaud

1 Serial 2: RS232 software UART at up to 4800 BaudSerial

1 Synchronous Serial Peripheral Interface at 2 MBaud

17 Total I/O channels

For each of these I/O lines, pre-coded I/O drivers make it easy to do data acquisition, pulse width
modulation, motor control, frequency measurement, data analysis, analog control, PID control, and
communications.  You may add any amount of additional I/O using WildCards.

Communications

Two serial ports and a fast synchronous serial peripheral interface (SPI) provide plenty of communi-
cations capability. A hardware UART with single character buffer drives RS232 or RS485 protocols
at up to 19.2 Kbaud (the default serial baud rate), and a software UART provides RS232 at up to
4800 baud.  Onboard serial interface chips generate the logic levels necessary to implement either
the RS232 or RS485 protocol.   Two serial ports allow you to program through one while your
instrument can still communicate with a third party through the other.

The RS485 communications port may be optionally terminated with a resistor or RC network.  Pads
are also included on the board for insertion of RS485 network bias resistors.
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If you need greater speed or more ports, UART Wildcards plug directly into the QCard’s Wildcard
module bus, each providing two more full-duplex RS232/422/485 buffered serial communication
ports at up to 56 Kbaud.

Real-Time Clock

A battery-backed real time clock (RTC) may be optionally included.  If so, the RTC’s battery also
backs-up the 128K RAM.  Note however that if the expanded memory option is chosen, providing
512K of RAM, then none of the RAM can be battery-backed, but the onboard battery still powers
the RTC.

Extensible I/O including Keypad/Display

Need even more I/O?  The QCard hosts Mosaic’s WildCards™, small I/O modules for sophisticated
and dedicated I/O.  Up to four WildCards can be stacked directly on the controller.  If the QCard is
mounted on a PowerDock, up to eight WildCards can be used simultaneously, four stacked on the
QCard and four in a companion stack on the PowerDock.  Available WildCards include:

◙ A Keypad/Display module with a 4 line by 20 character LCD display and a 20 button keypad;

◙ 16- or 24-bit resolution programmable gain A/D;

◙ 12-bit D/A;

◙ Compact flash mass memory;

◙ Optically isolated AC or DC solid state relays;

◙ Configurable general-purpose digital I/O;

◙ Fast, buffered RS232, RS422 or RS485 communications interfaces; or,

◙ High-voltage, high-current DC inputs and outputs.

Getting to Know Your Hardware
QCard Starter Kit

If you purchased a QCard Controller Starter Kit, you should have received the following:

1. A QCard Controller with 128K BBRAM and Real-Time Clock (Part No. QCC-RB);

2. A wide version of the PowerDock (Part No. PDW);

3. A 9-pin PC Serial Cable (Part No. PCC9-232);

4. An 8-26 volt Power Supply (Part No. PS-8V);

5. A CD-ROM containing:
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◙ The Mosaic IDE including a TextPad source code editor and the Mosaic Terminal pro-
gram;

◙ The Control-C Compiler, integrated within the Mosaic IDE;

◙ Program examples; and,

◙ Motorola M68HC11 Reference Manual and MC68HC11F1 Technical Data Manual (Part
No. MAN-HC11);

6. A User’s Guide on how to use the Kernel Extension Manager for additional Wildcard Drivers.

If you are missing any of these items, please contact us immediately.

A Tour of the Headers and Jumpers

Figure 1-2 shows a photo of the top side of the 2” x 2.5” QCard, and diagrams the positions of the
headers and jumpers.
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H4: Communications
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Figure 1-2 Headers and Jumpers on the QCard Controller.

Configuring Jumpers on the QCard Controller

The actions of the configurable jumpers on the QCard Controller are summarized in Table 1-2.  The
jumpers are in order with J1 nearest the crystal and J4 nearest the reset switch.
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Table 1-2 QCard Controller Jumper Summary.

Jumper Label Description

J1 Clean Puts the QCard Controller into special cleanup mode on the next power-up or
reset.  To return the QCard Controller to its pristine, right-from-the-factory
condition, install this jumper, press the Reset Button, then remove the jumper.

J2 Term If installed with J3, provides RC termination for the RS-485 communications link on
Serial 1 by connecting a 100 Ohm resistor in series with a 0.1 micro-Farad cpacitor
across the RS485 line.

J3 485 If installed, enables RS485 communication via Serial 1.

J4 Prot If installed, write protects memory page 0x0C.  Useful for “bullet proofing” a kernel
extension to enable firmware upgrades.

Power Header

The QCard requires that a regulated +5VDC supply be connected either to the power header (H1),
the field header (H2), or the WildCard module header (H3).  If WildCards are mounted to the QCard
some of them may additionally require that a greater DC voltage of +8 to +26 VDC, designated
V+Raw, be applied to the power header.  The power header also hosts pins used for JTAG pro-
gramming of a CPLD on the board; but you will generally not need to use this facility.  The follow-
ing table provides the power header’s pinout:

H1: Power Header

Pin Signal
1 – V+RAW (+8 to +26 VDC)
2 – GND
3 – +5 VDC
4 – TDI for JTAG programming
5 – TMS for JTAG programming
6 – TCK for JTAG programming
7 – TDO for JTAG programming

Note: V+RAW is needed only if certain WildCards
are used.  Pins 4-7 are generally not used.

Communications Header Hosts Primary and Secondary Serial Ports

The primary serial port, designated Serial 1, can be configured for RS232 communication at stan-
dard rates up to 19,200 baud and nonstandard rates to 250,000 baud.  The secondary serial port,
Serial 2, which can be used for pe-ripheral devices such as a printer or a barcode reader, has a
maximum baud rate of 4800 baud.  Both serial ports bring out their transmit and receive pins to the
communications header.  The primary serial port can be jumper configured for RS485 operation; in
that case the XCVR± pins are used.  Pin 10 on the communications header provides access to the
real time clock’s backup battery, +VBAT.  If the QCard is mounted on a PowerDock the corre-
sponding communications header on the PowerDock provides +5V instead of +VBAT on pin 10.
Additionally, the PowerDock’s communications header does not contain the /MOD1.CS signal on
pin 4, replacing it with digital ground (DGND) instead.
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H4: Communications Header

Signal Pins Signal
/TxD1 – 1 2 – /RxD1

DGND – 3 4 – /MOD1.CS
RS485 XCVR- – 5 6 – RS485 XCVR+

/TxD2 – 7 8 – /RxD2
DGND – 9 10 – +VBAT

Note: This pinout differs from that of the PowerDock
pinout: on the PowerDock pin 4 is connected
to DGND and pin 10 is connected to +5V.

Field Header

The QCard’s field header provides access to all of its I/O and power signals, including its serial
communications, analog inputs, and timer-controlled digital I/O lines.  If convenient, you may
power the QCard through this header’s power pins.

H2: Field Header

Signal Pins Signal
GND – 1 2 – +5V

AGND – 3 4 – V+RAW
/TxD1 (/TxD2) – 5 6 – /RxD1 (/RxD2)

XCVR- (/TxD2) – 7 8 – XCVR+ (/RxD2)
PA7 – 9 10 – PA6
PA5 – 11 12 – PA4
PA3 – 13 14 – PA2
PA1 – 15 16 – PA0
PE7 – 17 18 – PE6
PE5 – 19 20 – PE4
PE3 – 21 22 – PE2
PE1 – 23 24 – PE0

Note: Signals in parentheses indicate options configured by
installing appropriate zero ohm shorts on the board.

Wildcard I/O Expansion Interface

The QCard’s WildCard Port Header (identified as Port 0) allows you to mount up to four WildCards
simultaneously on a single QCard at module addresses 0 through 3.  If the QCard is mounted on a
wide version of the PowerDock, the PowerDock provides an additional WildCard port (identified as
Port 1) to accommodate up to four more stacked WildCards at module addresses 4 through 7.  If a
Keypad/Display Wildcard is installed, it must be configured as module number 0 so that kernel-
resident software drivers can be used.  The 24-pin stackable go-through Wildcard headers provide
the following signals:
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H3: WildCard Port Header

Signal Pins Signal
GND – 1 2 – +5V
/IRQ – 3 4 – V+Raw

SEL1/XMIT- – 5 6 – SEL0/XMIT+
MOSI/XCV- – 7 8 – MISO/XCV+

/RESET – 9 10 – SCK
/MOD.CS – 11 12 – 16 MHz

E – 13 14 – R/W
/OE – 15 16 – /WE
AD7 – 17 18 – AD6
AD5 – 19 20 – AD4
AD3 – 21 22 – AD2
AD1 – 23 24– AD0
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Chapter 2

Using Your PowerDock

The PowerDock provides a mechanical and electronic platform for the QCard Controller and
additional WildCards.  It hosts a high-efficiency 1 amp 5 volt switching power supply, dual
DB-9 serial connectors, a power jack, and a master power switch.  The serial connectors, jack
and switch are designed for easy mounting to an instrument panel.  This chapter will familiar-
ize you with the PowerDock hardware and its functions.  In particular, you’ll learn:

The locations and pinouts of the PowerDock’s connectors and header; and,

How to connect your QCard Controller to your PowerDock.

A Tour of the Hardware
Figure 2-1 and Figure 2-2 show both sides of a wide version of the PowerDock.  All of the connec-
tors and headers are described in the following sections.  A narrow version is also available for
space constrained applications.  The narrow version is one half the size, and provides a single
WildCard module header instead of two.  Consequently, it can host a QCard and four WildCards.

The PowerDock’s Front Side

Looking at the front side of the wide version of the PowerDock board, you can see that it provides
two WildCard module headers, one on the half of the board with the power supply, and the other on
the predominantly empty half.  You can directly plug in a QCard Controller over the power supply
components.  Up to four WildCards can then stack on top of the QCard using the stacking go-
through connector.  Additionally, up to four WildCards can stack on the other half of the Power-
Dock, in any order.

The PowerDock’s Back Side

The PowerDock’s back side hosts serial connectors, a power switch and a power jack.  They are
mounted so that the board can mount directly to an instrument panel if desired using ½ inch stand-
offs.  The instrument panel requires cutouts for the serial connectors, and holes for the power switch
and power jack.
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Power

The PowerDock takes an unregulated 8 to 26 volts from the power jack shown in Figure 2-2 or
through the power header shown in Figure 2-1 and passes it though an EMI filter and surge protec-
tion circuitry to provide a clean V+Raw supply (for any WildCards that might need it).  The V+Raw
is then regulated using a very clean, high-efficiency switching regulator to create a 5 volt power
source.  The switching regulator using a following low pass LC filter to assure that switching ripple
is less than 5 mVp-p.  The power source can supply up to 1 amp; plenty for powering a QCard
Controller and 8 Wildcards.

Power Header

The following table provides the power header’s pinout:

Power Header

Pin Signal

1 – VIN (8 to 26 Volts)

2 – GND

3 – +5 VDC

4 – VBAT

If a battery is installed on your QCard (i.e. you ordered the Starter Kit or the QCard with the Real
time clock option), the VBAT signal allows you to monitor the state of the battery.  If a battery is not
installed, you can use this signal to externally battery backup your memory by supplying 3 to 5 volts
when your system is off.

Communications Connectors

The Qcard’s two serial ports are brought out to the two DB-9 connectors as shown in Figure 2-2
and the 10-pin right angle header as shown in Figure 2-1.

The primary serial port on the QCard can be jumper configured for RS232 or RS485 communica-
tion.  However, only the RS232 lines are brought out to the DB-9 Connector.  Surface mount resis-
tor pads on the PowerDock allow you to configure the signals going to the DB-9 connector for
RS485 operation.  Please see the schematic of the PowerDock in the appendix for more information
and contact Mosaic Industries for custom configurations.

The secondary serial port is implemented in software and can only be used for RS232 communica-
tion up to 4800 baud.  However, resistor pads on the PowerDock also allow you to use the signals
that implement the secondary serial port for RS232 hardware handshaking on the primary serial
port.
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Standard DB-9 Serial Connector Configurations

DB-9 Connector 1 DB-9 Connector 2

Signal Pins Signal Signal Pins Signal
DCD1/DSR1/DTR1 – 1 DCD2 – 1

6 – DSR1/DTR1/DCD1 6 – DSR2/DTR2/DCD2
/TXD1 – 2 /TXD2 – 2

7 – CTS1 7 – CTS2/RTS2
/RXD1 – 3 /RXD2 – 3

8 – RTS1 8 – RTS2/CTS2
DSR1/DTR1/DCD1 – 4 DSR2/DTR2/DCD2 – 4

9 – NC 9 – NC
DGND – 5 DGND – 5

Notes: Notes:
NC indicates no connection NC indicates no connection
Pins 1, 4 and 6 (DCD1/DSR1/DTR1) are con-
nected.

Pins 1, 4 and 6 (DCD2/DSR2/DTR2) are con-
nected.

Pins 7 and 8 (CTS1/RTS1) are connected. Pins 7 and 8 (CTS2/RTS2) are connected.

Communications Header

Both serial ports of the QCard are brought out to the communications header on the PowerDock.
The communications header on the QCard differs slightly from the communications header on the
QCard.  Pin 10 on the QCard communications header is the VBAT signal while pin 10 on the Power-
Dock’s header is +5V.  Additionally, the PowerDock’s communications header does not contain the
/MOD1.CS signal on pin 4, replacing it with digital ground (GND) instead.

PowerDock Communications Header

Signal Pins Signal
/TxD1 – 1 2 – /RxD1

GND – 3 4 – GND

RS485 XCVR- – 5 6 – RS485 XCVR+

/TxD2 – 7 8 – /RxD2

GND – 9 10 – +5V
Note: This pinout differs from that of the QCard pinout:

on the QCard pin 4 is connected to /MOD1.CS and
pin 10 is connected to VBAT.

Wildcard Headers

The QCard’s WildCard Port Header (identified as Port 0) allows you to mount up to four WildCards
simultaneously on a single QCard at module addresses 0 through 3.  The wide version of the Pow-
erDock provides an additional WildCard port (identified as Port 1) to accommodate up to four more
stacked WildCards at module addresses 4 through 7.

The 24-pin stackable go-through Wildcard connectors provide the following signals:
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Wildcard Port Header

Signal Pins Signal
GND – 1 2 – +5V

/IRQ – 3 4 – V+Raw

SEL1/XMIT- – 5 6 – SEL0/XMIT+

MOSI/XCV- – 7 8 – MISO/XCV+

/RESET – 9 10 – SCK

/MOD.CS – 11 12 – 16 MHz

E – 13 14 – R/W

/OE – 15 16 – /WE

AD7 – 17 18 – AD6

AD5 – 19 20 – AD4

AD3 – 21 22 – AD2

AD1 – 23 24 – AD0

How To Install Your QCard

If you ordered the QCard Starter Kit, the QCard and PowerDock should have been shipped to you
assembled together.  However, if you purchased them separately, it is a snap to put them together.
The QCard mounts on the PowerDock on Wildcard Port Header 0 over the Serial Header and Power
Header shown in Figure 2-1.

Be sure the power is OFF before installing a QCard onto a PowerDock and be sure
to align the four mounting holes on each corner; installing a QCard incorrectly or
with the power ON may damage the controller!
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Chapter 3

Your First Program

This Chapter will get you started using the Control-C language to program your QCard Con-
troller.  It will guide you through the installation of the Mosaic IDE, an integrated editor,
compiler, and terminal, and you’ll start up and talk with your controller.  You’ll also:

Compile and download your first program using an example multitasking program that
performs calculations using floating point math, stores data in arrays in the QCard
Controller's extended memory space, and prints the results to the terminal;

Selectively execute any program function using the QCard Controller’s on-board debug-
ging environment (called QED-Forth);

Use the QCard Controller’s built-in operating system to access extended memory;

Use the terminal to interact with a running multitasking application; and,

See how easy it is to set up a multitasking application.

Installing the Mosaic IDE and Control-C Compiler
The Mosaic IDE, which includes the Control-C Compiler, a full-featured editor and communications
terminal, is provided on an installation CD-ROM.  To install it onto your PC, first insert the Instal-
lation CD-ROM into your CD Drive.  If the installer does not launch automatically, browse to your
computer’s CD drive using the ‘My Computer’ icon and double click on ‘Setup.exe’ to manually
launch the installer.

We recommend that you use the default installation directory (“C:\Mosaic\”) and choose ‘Typical
Setup’ when asked.  If you wish to install into a different directory, you may type in any pathname
provided that it does not contain any spaces.  The ‘Custom’ setup option can be used if another
version of either TextPad (the editor used within the Mosaic IDE), the Mosaic Terminal (previously
called QED-Term), or an earlier version of the Mosaic IDE has already been installed.  However, the
Mosaic IDE requires all of its components to work properly.  Please call us at (510) 790-8222 if you
have any questions.

When the installation is complete, you will need to restart your computer unless you are installing
onto a Windows 2000 machine.  Be sure to choose ‘Yes’ when asked to restart – if you don’t, the
installation may not complete properly.  If you choose ‘No’ and restart later we recommend that to
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assure a full restart you fully shutdown your computer and then turn it back on; lesser restarts don’t
always restart fully.

You are now ready to talk with your QCard Controller!

Turning on Your QCard Controller
Familiarize yourself with the locations of the power and serial connectors as shown in Chapters 1
and 2.  After finding them follow these steps to turn on your system and establish communications
with it:

1. Connect the female end of the 9-Pin serial communications cable to your computer terminal’s
serial communications port and the male end to the primary serial port on the PowerDock.  If
you are not using a PowerDock, but instead directly connecting to the QCard Controller, you’ll
need a 10-pin to dual DB-9F cable (Mosaic Part No. QED-COM-CABLE-9).  You can use any
of your PC’s COM ports.  COM2 is usually available, but some PCs only have COM1 avail-
able.

2. Power up your PC computer or terminal.

3. You should check the configuration of your Windows communications drivers:

1. On your PC go to the device manager dialog box by double clicking “System” in the
“Control Panel”, clicking the “Hardware” tab, and clicking the “Device Manager” button.

2. In the list of devices open up the list of “Ports” and double click on “Communications
Port (COM2)”.  (If COM2 is tied up with another service, such as a fax/modem, you may
want to use COM1 instead.)

3. You’ll now have a dialog box called “Communications Port (COM2) Properties”.  Click
the general tab and make sure you have these settings:

Property Value

Baud Rate 19200

Data Bits 8

Parity None

Stop Bits 1

Flow Control Xon/Xoff

4. We recommend that you use Mosaic Terminal, the terminal program that comes with the Mo-
saic IDE.  You can start the terminal by double clicking the Mosaic IDE executable (the pri-
mary application of the Mosaic IDE) and choosing the terminal toolbar button which looks like
this:
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(The appearance of this and other toolbar icons may change in subsequent versions of the Mo-
saic IDE.)  You can also start the terminal by double clicking the application “MosaicTermi-
nal.exe”.

The terminal starts with using COM2 by default at a speed of 9600 baud (you’ll have to
change it to 19200 baud as described in the next step), no parity, and 1 stop bit.  Xon/Xoff flow
control is enabled, and the file transfer options are set so that the terminal waits for a linefeed
(^J) character before sending each line (this is very important).  You can use any other termi-
nal program, but it must be configured with these same settings.  If you use another terminal
program, you must specify that it use the linefeed character as its prompt character.  It might
be denoted as LF, ^J, ascii decimal 10, or ascii hex A.

If your PC is set up to use a COM port other than COM2 Mosaic Terminal will respond with a
warning box saying “Invalid port number”.  If so, just go to the Mosaic Terminal menu item
“Settings→Comm→Port” and choose the COM port you chose when configuring Windows in
step 3. above.

5. Change the baud rate of the Mosaic Terminal by going to “Settings→Comm→Baud Rate” and
choose 19200.  This is the baud rate used to communicate with the QScreen Controller.  If you
do not change the baud rate, garbled characters may appear in the terminal when you try to
communicate with the QScreen.

6. Plug the QCard Controller’s power supply into a 110 VAC outlet.  European users will need a
power transformer for changing European 220 VAC to 110 VAC.  Insert the power supply
output plug into the power jack on the PowerDock and turn the power switch ON by moving
the power switch towards the power jack.

1. You should now see the following response:
Coldstart QED-Forth V4.4x

2. If you hit the enter key while the cursor is in your terminal window you should see the
QCard Controller respond with,

ok

The serial communications response indicate that your QCard Controller is now working!

If Something Doesn’t Work

If no message appears on your terminal there’s something wrong, so:

1. Verify that power is being properly applied to the controller.

2. Verify that the serial cable is properly connected.

3. Check the terminal configurations of the Mosaic Terminal (using the menu item “Settings →
Comm”), and recheck the communications properties of the Windows communications port.

4. Perform a “special cleanup”.
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Doing a “Special Cleanup”
If you ever need to return your QCard Controller to its factory-new condition, just do a
Special Cleanup:  With the power on, install jumper J1, press the reset button, then re-
move the jumper.  This procedure will remove any application programs and reinitialize
all operating system parameters to their factory-new condition.

If you still are having trouble, email or give us a call.

Using the Mosaic IDE

Using the Editor and Compiler

The Mosaic IDE has two main components, the TextPad editor, which includes the Control-C com-
piler, and the Mosaic Terminal serial terminal program, both of which you’ll find in the default
directory “C:\Mosaic\”:

◙ TextPad is a fully featured and highly configurable text and program editor.  You’ll use it to
write and compile your code.  All of the functions of the C compiler tools are available through
the controls in TextPad.  You can launch TextPad from the ‘Mosaic IDE’ group in the ‘Pro-
grams’ section of your Windows ‘Start’ menu.  For convenience, you may want to place a
shortcut to it on your desktop or on your Windows Taskbar.

◙ Mosaic Terminal is a serial communications terminal that allows you to interactively control
your controller over its RS-232 interface.  You’ll also use it to download your compiled C pro-
grams into the memory of the QCard Controller.  Mosaic Terminal may be launched from the
‘Mosaic IDE’ group within ‘Start→Programs’, but it is also available from within TextPad,
either from the ‘Tools’ dropdown menu or by clicking the terminal icon on TextPad’s toolbar.

You can type characters directly into the terminal window, and they will be accepted by the
QCard Controller’s line editor and interpreter.  This mode of interaction is convenient when
debugging or typing short code fragments.  If you are sending source code to the QCard Con-
troller, it is best to create a file first.  The file can be saved to disk to provide a record of your
work, and the terminal program can be used to download the file to the QCard Controller.  You
can also use the terminal to record your debugging sessions and save them as a file on disk

The TextPad Tool Bar   

Along with the standard tools you expect in a text editor you’ll find some custom tools available in
the toolbar that you’ll use to compile and download your programs.  Each of these tools is also ac-
cessible in the ‘Tools’ dropdown menu of TextPad.  For C programmers the Debug icon calls the C
compiler and assembler only, the Single-Page Compile icon performs a standard build of your pro-
gram, and the Multi-Page Compile icon performs a multi-page memory model build of your pro-
gram.  Forth programmers won’t need to use these tools.  Both C and Forth programmers will find
the Terminal icon useful; it launches the Mosaic Terminal program.  Each of these tools is described
in more detail below.
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The ‘Debug  Tool’ Finds Syntax Errors in C Programs

The Debug Tool, designated by the “Magnifying Glass” icon, invokes the compiler and
assembler only – it does not produce downloadable code.  Use it to quickly check the syntax of

a program and find compilation errors without performing the full build which would be needed to
download the program into the microcontroller.

The ‘Single-Page Compile Tool’ Compiles and Makes a Downloadable Single-
Page C Program

The Single-Page Compile Tool, designated by the “Single-Page” icon, performs a standard,
single-page memory model build of your program.  If you are compiling a program whose

compiled size does not exceed 32 Kbytes of memory you should use this mode for fastest execution.
Although this program size is sufficient for many applications, you may need to use the multi-page
build if your application grows beyond 32 K.  If you see the following warning printed in the com-
piler output, then you must switch to the multi-page memory model build (using the Multi-Page
Make icon):

WARNING:  Input section “.doubleword” from ‘progname.o11’ is not used !

The ‘Multi-Page Compile Tool’ Compiles and Makes a Downloadable Long C
Program

The Multi-Page Compile Tool, designated by the “Multi-Page” icon, invokes the C compiler’s
multi-page build mode.  Programs compiled in this mode may be many pages in length limited

only by the amount of FLASH installed in the QCard Controller.  It is always a good programming
practice to break large projects into multiple smaller source code files for organization, and the
multi-page build also uses this organization for distributing the compiled program across multiple 32
Kbyte pages.  Thus, no source code file may contain more than 32 Kbytes worth of compiled source
code or the above warning will be issued and the program will not run.  A more detailed description
of this behavior is available in Chapter 4.

You may wonder why there are both “Single-Page” and “Multi-Page” compile modes. The reason is
that C function calls between pages take just a little longer to execute (calls to functions on a differ-
ent page take 49 microseconds while those on the same page or to common memory take only 11.5
or 13.75 microseconds, respectively).  Because most function calls are to functions on the same page
or to common memory, page changes are rare; the average execution speed of multi-page C appli-
cations is still quite fast.

‘Mosaic Terminal’ Communicates with Your Product

The Terminal icon launches the communications program, Mosaic Terminal.  When you
launch Mosaic Terminal for the first time, check the communications settings

(Settings→Comm) to verify that the serial port is set correctly for your computer.
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Your First C Program
Now that we’ve learned about the QCard Controller's hardware, established serial communications,
and installed the Mosaic IDE on the PC, it’s time to compile, download and execute a C program.
We’ll also explore the QCard Controller’s on-board operating system and use it to interactively
debug a program.

Compiling a Program

In this section we'll be running a simple program that does some computation and communicates its
results on the serial port.  The program is one of several examples for use with the Control-C IDE in
the “\Mosaic\Demos_and_Drivers\Misc\C Examples” directory.  Let’s compile, download, and run
it.

Start TextPad, and open the source-code file “getstart.c” from the C_Examples directory.  You
should see the source code in an open window – browse through it to get a feel for it.  You’ll see
that the final routine in the file is called main(); it’s the top-level, executable program.  The first
routine within main() that is called when the program starts is InitVars().  Note that in the run-
from-place applications of embedded systems it’s important to initialize all variables with a run-time
procedure when the program starts.  Variables that are initialized when the program is compiled are
not automatically initialized when the program runs; you should have a runtime routine in your code
that does that.

Clicking on the Single-Page Compile icon will compile and produce a downloadable form of the
program, named “getstart.dlf”.  A new window named ‘Command Results’ will appear so that you
can watch the compilation process.  When compilation has finished, you can scroll the Command
Results window up and look for warnings, which don’t prevent creating a valid download file, and
errors, which do.  You should see two warnings near the beginning:

GETSTART.C(126): Warning: Expression is always TRUE !

GETSTART.C(197): Warning: Symbol 'unused_variable' is never used in function 'main' !

We deliberately inserted into ‘main’ a variable named unused_variable that is never used in the
function.  If you double click on an error or warning line in the command results, TextPad will jump
to the corresponding line in the affected source file.  Despite the warnings, the program should have
compiled successfully; the command results will end with:

Qcc-> Creating QED Download File: getstart.dlf

Tool Completed Successfully

You can quickly switch between the Command Results window and your source code file either by
hitting Ctrl-Tab, or by clicking on the file tabs at the bottom of the TextPad window.

The file named “getstart.dlf” is ready to be downloaded to the microcontroller using the Mosaic
Terminal program.
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Downloading and Running the Program

If it is not already open, launch Mosaic Terminal either from the ‘Start’ menu or using the TextPad
toolbar or dropdown menu.  It’s most convenient to use the Terminal icon on the TextPad toolbar.
You should be able to hit enter at the Mosaic Terminal prompt and see the ‘ok’ response with the
microcontroller plugged in and turned on.  If this is not the case, check your communications set-
tings and cabling.

Now, select ‘File  Send File’ from the Mosaic Terminal menu and enter the
“\Mosaic\Demos_and_Drivers\Misc\C Examples” directory, or wherever you compiled the program.
Set the file type to “Download Files (*.dlf)” and select “getstart.dlf”.  You will see various
commands and hex data scrolling on the screen as the file is downloaded to the microcontroller.
When the download is complete, the text will turn from gray to green to indicate that it is finished.
Now, it’s time to run your program.

To execute the top level function of your code, simply type ‘main’ and press enter,
main

The ‘Enter’ key is represented by the ↵ symbol in the line above.

The getstart program will respond with:
Starting condition:

The radius is      0; the circular area is     0.

 ok

While on its face that doesn’t seem a very impressive response, you’re running your first program!
This particular example program uses multitasking.  The program runs a background task called
CalculationTask continuously, incrementing a radius variable and using it to compute a new
area.  The program is running in its own task, leaving the communications task free so you can con-
tinue to interact with the controller.

You will notice that you can hit enter, and use the interactive debugging capabilities even though the
program is still running.  For example, try executing the following function interactively from the
terminal:

Announce( )

Note that you must type the space after the ( character.  Each time you execute this function you’ll
notice that the output is different, as the radius is being continuously incremented by the background
task.  Now try executing,

Nap( )

which puts the background CalculationTask ASLEEP.  If you again execute
Announce( )

several times, you will notice that the radius and area are no longer being updated by the
CalculationTask.  To wake up the CalculationTask again, type

Wakeup( )

and notice that the calculation is again being performed by the task.
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You may want to stop the program; in particular you’ll need to stop it before attempting any new
downloads.  This can be done most easily by simply entering ‘warm’ at the microcontroller’s
prompt.  The warm restart causes a soft reset to occur, terminating any background tasks that may be
running.

After having run this program, you may want to play with the other example programs in the
“\Mosaic\Demos_and_Drivers\Misc\C Examples” directory.  We strongly recommend that you
compile these programs and work through the examples as suggested in the text of this manual.
This will provide you with a thorough “hands-on” introduction to the Control-C programming envi-
ronment.

Interactively Debugging Your Program

We have seen how to interactively call the main() function from the terminal to execute our entire
program; most C development environments let you do this.  But the QCard Controller’s operating
system makes it easy to interactively execute any designated function in your program.  By simply
preceding a function definition or prototype with the _Q keyword (we chose “_Q” as a unique key-
word that suggests QED), you can ensure that the function will be interactively callable from your
terminal.

An example: Announce( ) Displays an Area and Radius

For example, to display a summary of the current values of the radius and calculated circular area
variables, we would like to call the function Announce( ).

Using the editor, look near the top of the GETSTART.C file and you’ll see that its definition is:

_Q void Announce(void)
{ printf(“\nThe radius is %6u; the circular area is %5.4g.\n”,radius,area);
}

The void keywords indicate that the Announce( ) function does not return a value, and does not
expect any input parameters to be passed to it.

The _Q declarator instructs the compiler that we want to be able to interactively call this function
using the on-board QED-Forth interpreter.  The names and execution addresses of all functions
defined with the _Q designator are placed in the .DLF download file so that QED-Forth will recog-
nize them and will be able to interactively execute them.

The printf() function invoked in Announce( ) prints the specified string to the serial1 port.
The parameters of the printf() function are well defined by the ANSI standard, and are described
in many excellent texts.  Briefly, the \n is an escape sequence that instructs printf to insert a
newline at the designated places in the string.  The % characters are formatting symbols that tell the
compiler to substitute the listed arguments (in this case, the radius and area) for the % sequences at
runtime.  The %6u sequence tells the compiler to display the radius as an unsigned decimal number
with a minimum field width of 6.  The %5.4g sequence tells the compiler to display the area using
either decimal or exponential notation with a precision of 4 decimal places to the right of the deci-
mal point, and a minimum field width of 5.
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The printf() function in Control-C differs from the ANSI standard in one respect: the maximum
length of a printed string is limited to 80 characters instead of the standard 255 characters.  This
limitation also applies to the related functions named sprintf() (which writes a string to a buffer)
and scanf() (which inputs a string). Of course, you can handle strings longer than 80 characters by
using multiple calls to these functions.

Interactively Calling Announce( )

To interactively call this function, simply type at your terminal
Announce( )

followed by a carriage return (indicated by the arrow above).  Spaces are important to the QED-
Forth interpreter which processes this command; make sure that there is no space between the func-
tion name Announce and the opening parenthesis (, and there must be at least one space after the
opening parenthesis.  If QED-Forth does not recognize your command, it will repeat what you typed
followed by a “?” character and wait for another command, so you can try again.  The case of the
letters does not matter: you can use all uppercase, all lowercase, or any combination when typing
commands for the QED-Forth interpreter.

 After calling Announce( ), you should now see the message
The radius is      0; the circular area is      0.

on your screen, except that the printed values of the radius and area will correspond to the values
they had when you executed the “WARM” command to stop the calculations.  Then you will see an
additional line of text starting with “Rtn:” that summarizes the return value of the function in sev-
eral formats, followed by the “ok” prompt.  Because the Announce() function has no return value,
the return value summary is not relevant.  The “ok” prompt indicates that QED-Forth has success-
fully called the function and is now ready to execute another command.

If you make a mistake while typing a command, just type “backspace” or “delete” to erase as many
characters as necessary on the current line.  Once you’ve typed a carriage return, though, QED-Forth
executes your command.  You can’t edit a command that was entered on a previous line.  If you type
an incorrect command and then type a carriage return, you may receive the “?” error message which
means that QED-Forth does not understand the command you typed.  If this happens, you can usu-
ally just re-type the command line and continue.

Area Calculation

The next function defined in GETSTART.C is called IncrementRadius().  This simple function
increments the radius variable, and resets it to 0 when it exceeds the MAX_RADIUS constant.  As
described below, IncrementRadius() is called from the infinite loop in CalcForever(); this
results in the radius taking on all integer values between 0 and 1000.

The next function defined in the GETSTART.C file calculates the area of a circle; its definition is:

_Q float CalcArea(uint radius)
{  return PI * radius * radius;
}
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As described above, the _Q designator flags this function as one that can be called interactively.  The
“float” keyword declares that the function returns a floating point value, and the parameter list tells
us that the function expects a single unsigned integer (uint) as its input.  (Note: uint and other
useful type abbreviations and declarations are defined in the TYPES.H header file in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory.)

To interactively test this function with an input radius of 5, type at your terminal
CalcArea( int 5)

followed by a carriage return.  QED-Forth uses spaces as delimiters; consequently, you must type at
least one space after the ( character and after the “int” keyword.  You should see something like
the following response at your terminal:

Rtn: 17053 5242 =0x429D147A=fp: 78.54

This line summarizes the returned value in several formats, including decimal or hexadecimal 16-bit
values, 32-bit hexadecimal, and floating point.  Because the CalcArea() function returns a floating
point (fp) value, the final number on the line, labeled

=fp: 78.54

is the relevant return value.  Indeed, 78.54 is the area of a circle that has the specified radius of 5.
You can execute the function with any integer input as the radius, and verify that it returns the cor-
rect circular area.  This capability enables interactive testing of the function over its allowed range
of input values.  Such thorough function-by-function testing of a program facilitates rapid develop-
ment of reliable programs.

In the next chapter the interactive debugging process will be explored in more detail.  You will learn
how to examine the values of static variables and Forth arrays, pass parameters by value or by refer-
ence, generate hexadecimal and ascii dumps of memory contents, and modify the contents stored in
variables and Forth arrays.

Restrictions on the Use of _Q

Nearly every function in the many sample programs in the
\MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory is declared with the _Q keyword
to facilitate easy debugging.  There are, however, two restrictions associated with the use of the _Q
declarator.

First, a function defined using the _Q keyword cannot use

...

(ellipsis) in its parameter list; rather, the number of input parameters must be specified when the
function is defined. (If you try to define the _Q function with an ellipsis as an input parameter, the
compiler will issue a warning and remove the _Q specifier, so you will not be able to interactively
call the function during debugging.)

The second restriction is that the _Q function cannot be called via a function pointer if the function
accepts input parameters.  In other words, do not use the _Q declarator if:

a. You need to call the function using a function pointer; and,
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b. The function accepts input parameters.

This restriction does not affect many functions.  Any function declared using _Q can always be
called in the standard way (that is, by invoking the function name followed by parentheses that
contain any input parameters).  Moreover, any _Q function can be called indirectly via a function
pointer (by passing its name without any parentheses) if the function’s input parameter list is
“void”.

An Introduction to Extended Memory

The QCard Controller’s onboard operating system, called QED-Forth, provides numerous run-time
services, including providing a heap memory manager.  Using this memory manager we can access
the controller’s extended memory.

1 Megabyte Addressable Memory Space

The standard 68HC11 processor can address 64 kilobytes of memory using 16-bit addressing.  The
QCard Controller expands the address space to 1 Megabyte, addressing the lower 32 Kbytes of the
processor’s memory space by means of a 5-bit “Page Latch” that selects one of 32 pages.  The 32
pages times 32 Kbytes per page yields 1 Megabyte of addressable memory.  The upper 32 Kbytes of
the 68HC11’s address space is called the “common memory”.  This address space is always accessi-
ble, regardless of the contents of the Page Latch.

Available Common RAM

The ANSI C compiler supports the standard 16-bit addressing scheme via its small memory model.
It also supports a medium memory model that allows functions to be called on any specified page
using a 24-bit address (16-bit standard address plus an 8-bit page).  All C variables and C arrays,
however, must be accessible using a simple 16-bit address.  For practical purposes, this means that
variables and C arrays must reside in the QCard Controller’s available 8 kilobytes of available
common RAM located at addresses 0x8E00 to 0xADFF.   In multitasking applications, this RAM is
also used for task areas; each task requires 1 Kbyte of common RAM area.

You are of course free to use ANSI-standard C arrays located in the variable area in common RAM.
These arrays allow you to use standard C pointer arithmetic, and their use is explained in all of the C
textbooks.  However, if you need to store a lot of data, the available 8K of common RAM may not
be sufficient.  But don’t worry – you can still use all the memory.

Built-in Array Library Routines Manage Access to Paged Memory

The FORTH_ARRAY routines that reside in ROM on the QCard Controller provide an efficient means
of accessing the large paged address space for storage of data.  The pre-defined DIM() macro makes
it easy to dimension a 2-dimensional array to hold signed or unsigned characters, integers, longs, or
floating point values.  Other pre-defined library functions handle storing, fetching, and copying data
to and from the arrays.  These QED-Forth functions are callable from C, and provide access to a
large contiguous memory space that is very useful for real-time data storage and analysis.
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Each array is referred to using a named 16-bit pointer to a “parameter field” structure in common
RAM.  Once the array has been “dimensioned”, this structure holds the number of rows and col-
umns, data size, and a pointer to the QED-Forth heap where the array is allocated.  The ROM-
resident heap manager allocates and deletes the arrays in real time under the control of the C pro-
gram, thereby maximizing the effective use of available paged RAM.

This section introduces the use of the arrays, and as we’ll see in a later chapter, they are very useful
for storing data from the QCard Controller’s A/D convertors.  The header file named ARRAY.H in
the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory contains all of the function and macro defini-
tions that are used to access Forth arrays, including the DIM(), FARRAYFETCH() and
FARRAYSTORE() macros that are mentioned in this section.

Declaring and Dimensioning a FORTH ARRAY

Let’s look at the example code in the GETSTART.C file.  Approximately 1/3 of the way into the file,
you’ll find a section called “Array Dimensioning, Storing and Fetching”.  The first command in this
section is:

FORTH_ARRAY   circle_parameters;

which declares a new FORTH_ARRAY named circle_parameters and allocates storage for the structure
in the variable area in common RAM.  FORTH_ARRAY is a struct typedef (see the ARRAY.H
file) that specifies how the dimensioning information for the array is to be stored.  Whenever we
want to call a function to operate on this array, we will pass the pointer

&circle_parameters

as an argument to the function.

After using #define directives to define some dimensioning constants, we encounter the following
function definition:

_Q void DimAndInitFPArray(float value,int rows,int cols,FORTH_ARRAY* array_ptr)
{  int r,c;
   DIM(float, rows, cols, array_ptr);        // dimension; allocate in heap
   for(c = 0; c < cols; c++)                 // for each column
      for(r=0; r< rows; r++)                 // for each row
         FARRAYSTORE(value,r,c,array_ptr);   // store in array
}

The function dimensions a FORTH_ARRAY and initializes all elements of the array to have a specified
floating point value.  The inputs are the floating point value, the number of rows and columns, and a
pointer to the FORTH_ARRAY structure in common memory.  After declaring the automatic variables
r and c, the DIM() macro is invoked to emplace the dimensioning information in the
FORTH_ARRAY structure, and allocate memory for the array in the heap.

The first parameter expected by DIM() is a type specifier; type definitions and abbreviations are
defined in the TYPES.H file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory.  Valid type
arguments for DIM() include the following:

char  unsigned char  uchar
int   unsigned int   uint
long  unsigned long  ulong
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float xaddr

The next two input parameters expected by DIM() are the number of rows and columns, and the
final input parameter is a pointer to the FORTH_ARRAY structure.  The nested for() statements
cycle through each row and column element in the array, calling the macro FARRAYSTORE() to
store the specified value into the array element.  FARRAYSTORE() expects a floating point value,
row and column indices, and a pointer to the FORTH_ARRAY as its inputs.

 The starting “F” in the name FARRAYSTORE() means “floating point”; a parallel macro named
ARRAYSTORE() is used for arrays that contain signed or unsigned char, int, or long data.

The SaveCircleParameters() function in the GETSTART.C file calls the macro
FARRAYSTORE() to store the radius and area as floating point values in their respective columns of
the circle_parameters array.  Then it increments the row_index variable, handling overflow
by resetting the row_index to zero to implement a circular storage buffer.

The next function in GETSTART.C is called PrintFPArray() which prints an array of floating
point values to the terminal.  Its definition is as follows:

_Q void PrintFPArray(FORTH_ARRAY* array_ptr)
{  int r, c;
   putchar(‘\n’);
   for (r = 0; r < NUMROWS(array_ptr); r++)        // for each row
   {   for  (c = 0;c < NUMCOLUMNS(array_ptr);c++)  // for each col
         printf(“%9.4g  “,FARRAYFETCH(float,r,c,array_ptr));
         // min field width=9;precision=4;g=exp or decimal notation
      putchar(‘\n’);    // newline after each row is printed
      PauseOnKey();  // implement xon/xoff output flow control
   }
}

As usual, the _Q declarator allows this function to be called interactively from the terminal.
PrintFPArray() expects a pointer to a FORTH_ARRAY as its input parameter, and uses 2 nested
for() statements to print the contents of the array one row at a time.

The printf() statement invokes the Forth library macro FARRAYFETCH() to fetch the contents of
the array at the specified row and column.  FARRAYFETCH() returns the value stored in the array; it
expects a type specifier (used to cast the return value to the required type), row and column indices,
and a pointer to the FORTH_ARRAY as its inputs.

The %9.4g argument to printf() specifies that the number should be printed using either decimal
or exponential formatting (whichever displays better precision), with 4 digits to the right of the
decimal point and a minimum field width of 9 characters.  The putchar(‘\n’) statement inserts a
newline character after each row is printed.  The PauseOnKey() function is a handy library routine
that serves 2 purposes:

◙ It implements XON/XOFF output flow control to avoid “inundating” the terminal with char-
acters faster than the terminal can process them, and

◙ It allows the user to abort the printout by typing a carriage return from the terminal.

For further details, please consult the definition of PauseOnKey() in the Control-C Glossary.
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 To see how the DimAndInitFPArray() function is called, scroll down to the function named
CalcForever() in the GETSTART.C file.  The first statement in the function is:

DimAndInitFPArray(0.0,CIRCLE_ROWS,CIRCLE_COLUMNS,&circle_parameters);

where 0.0 is the floating point value to be stored in each element, the constants CIRCLE_ROWS and
CIRCLE_COLUMNS specify the number of rows and columns in the array, and
&circle_parameters is a pointer to the FORTH_ARRAY.

Interactively Dimension, Initialize and Print the Array

It is easy to interactively call the functions that we’ve examined.  The syntax that we’ll type at the
terminal looks similar to an ANSI C function prototype, with one of the following type declarators
being used before input parameters that are passed by value:

char     int      long     float
char*    int*     long*    float*

When passing the address of a variable or a structure, use only the name of the variable or structure,
without any additional declarators or & operators.  All of this is explained in detail in a later Chapter;
for now, the goal is see how easy it is to use the interactive function calling tools.

For example, to interactively dimension and initialize the circle_parameters array to have 10
rows, 2 columns, with each element initialized to a value of 34.56, type the following line at your
terminal:

DimAndInitFPArray( float 34.56,int 10,int 2,circle_parameters)

Remember to type at least one space after the ( character, and after the float and int keywords.
QED-Forth will respond to your command with a line of text that summarizes the return value of the
function, followed by the “ok” prompt.  We can ignore the return value summary, because this
function does not return a value.

Now to verify that the initialization was performed correctly, we can type at the terminal:
PrintFPArray( circle_parameters)

and, as always, we make sure that there is a space after the ( character.  Note that we do not use the
& (address-of) operator before the circle_parameters argument; it turns out that
circle_parameters has already been defined in QED-Forth as the base address of the
FORTH_ARRAY structure.

QED-Forth calls the function which prints the contents of the circle_parameters array, and then
summarizes the return information (which we can ignore in this case).  You can verify that the value
of each array element is the same one that you specified when you called the
DimAndInitFPArray() function.  (Slight differences in the values are due to rounding errors in
the floating point conversion and printing routines.)  Using this interactive method, you can test each
function with a variety of dimensioning and initialization information.
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An Introduction to Multitasking

Many instrumentation and automation applications can be logically conceived of in terms of a set of
distinct “tasks” that cooperate to solve the problem at hand.  For example, a program that manages a
hand-held sensing instrument might have one task that acquires sensory data, another that performs
calculations to process the data, and a third task that displays the results on a liquid crystal display.

Using the QCard Controller’s built-in multitasking executive confers significant advantages when
designing real-time systems.  Breaking up a complex program into easily understood modular tasks
speeds debugging, improves maintainability, and prevents source code modifications of one task
from adversely affecting the required real-time performance of another task.

The Task Activation Routine

In a multitasking environment, a “task” is an environment capable of running a program.  After
declaring (naming) a new task (which also allocates a 1 Kbyte task area), its environment is “built”
by initializing its required stacks, buffers and pointers in the 1 Kbyte task area.  Then the task is
“activated” by associating it with an “activation routine” that performs a specified set of actions.

A typical task activation routine is the CalcForever() function in the GETSTART.C file.  Its defi-
nition is straightforward:

_Q void CalcForever(void)
// this infinite loop function can be used as a task activation routine
{  DimAndInitFPArray(0.0,CIRCLE_ROWS,CIRCLE_COLUMNS,&circle_parameters);
   while(1)                      // infinite loop
   {  IncrementRadius();         // updates radius variable
      area = CalcArea(radius);   // updates area variable
      if(radius%10 == 0)         // on even multiples of 10...
      SaveCircleParameters();    // save data in FORTH_ARRAY
      Pause();                   // give other tasks a chance to run
   }
}

The first thing that this function does is to dimension and initialize the circle_parameters array.
Then it enters an infinite loop that increments the radius variable, calculates the corresponding cir-
cular area and stores it in the area variable, and saves the radius and area in the
circle_parameters array if the radius is an even multiple of 10.  The function calls Pause() on
every pass through the loop.  Pause() is a multitasking function that instructs the multitasking
executive to change to the next task (if any) in the round-robin task list.  This enables “cooperative
multitasking”, in which a task willingly lets other tasks run by executing Pause().  The other type
of multitasking, also supported by the QCard Controller, is “pre-emptive multitasking”, in which an
interrupt-driven timeslice clock forces a task switch on a periodic basis.

In summary, the CalcForever() function is an infinite loop that manages the calculation and
storage of the radius and circular area.  This function can be the “activation routine” for a stand-
alone task running in a multitasking environment.

 Declare, Build and Activate a Task

The short section titled “Multitasking” in the GETSTART.C file demonstrates how easy it is to set up
a task using the pre-defined macros.  First we declare the new task as:
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TASK CalculationTask;

The TASK typedef allocates a 1 Kbyte task structure named CalculationTask in the common
RAM.

The function SetupTask() builds and activates the new task; its definition is:

void SetupTask()
{  NEXT_TASK = TASKBASE;                           // empty task loop before building
   BUILD_C_TASK(HEAP_START,HEAP_END,&CalculationTask);  // private heap
   ACTIVATE(CalcForever, &CalculationTask);        // define task’s activity
}

The first statement empties the round-robin task loop by setting the NEXT_TASK pointer in the task’s
user area to point to the task’s own TASKBASE.  The next statement invokes the BUILD_C_TASK()
macro which expects starting and ending addresses for the task’s heap, and the address at which the
task is located.  We have defined the constants HEAP_START and HEAP_END to specify a task-
private heap occupying 1 Kbyte on page 0.  The task base address is simply &CalculationTask.
BUILD_C_TASK() sets up all of the stacks, buffers and pointers required by the task.

The final statement in SetupTask() invokes the ACTIVATE() macro which expects a pointer to
the activation function (which is CalcForever) and the TASKBASE address (which is
&CalculationTask).

Multiple tasks can be declared, built and activated in the same way.

Putting a Task Asleep

A “sleeping” task remains in the round-robin task loop, but is not entered by the multitasking ex-
ecutive.  The status of a task can be changed from AWAKE to ASLEEP and back again by simply
storing the appropriate constant in the user_status variable in the task’s USER_AREA.  The
USER_AREA is a task-private structure initialized by BUILD_C_TASK() that contains the pointers
that a task needs to operate; it is defined in the USER.H file in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory.  The USER_AREA structure is the first element in
the TASK structure.

The Nap() function in GETSTART.C is a simple function that puts the CalculationTask asleep:

_Q void Nap(void)    // put calculation task asleep
{  CalculationTask.USER_AREA.user_status = ASLEEP;
}

This function simply stores the ASLEEP constant into the user_status variable in the
CalculationTask’s USER_AREA structure.  A similar function named Wakeup() stores the
AWAKE constant into user_status to wake up the task.  We’ll see how to use these functions in the
next section.

The main Function Gets Us Going

The main() function is the highest level routine in the program.  Its definition is:

void main(void)
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// Print starting area and radius, build and activate CalculationTask.
{  int unused_variable; // an example of how warnings are handled!
   InitVars();
   printf(“\nStarting condition:”);
   Announce();         // print starting values of radius and area
   SetupTask();        // build and activate the CalculationTask
}

As you recall, the declaration of the unused_variable was inserted to demonstrate how the Con-
trol-C IDE highlights the source code line associated with compiler errors and warnings.
InitVars() performs a runtime initialization of the variables used by the program; this is very
important, because compile-time initializations won’t ensure that variables are properly initialized
after the program has run once, or after the processor is restarted.

After initializing the variables, main() announces the starting values of radius and area and then
calls SetupTask() to build and activate the CalculationTask.  To execute the program, simply
type at your terminal:

main

You’ll see the following message:
Starting condition:

The radius is      0; the circular area is      0.

ok

The “ok” prompt lets you know that QED-Forth is ready to accept more commands.  We have set up
a two-task application: the default startup task (named the FORTH_TASK) is still running the QED-
Forth interpreter, and the CalculationTask that we built is running the CalcForever() activa-
tion routine.  At any time we can monitor the current values of radius and area by interactively call-
ing the function:

Announce(  )

Remember to type a space after the ( character, and you may have to type slowly so that the multi-
tasking program does not miss any of the incoming characters from the terminal.  To view the con-
tents of the circular buffer array named circle_parameters, type the command:

PrintFPArray( circle_parameters)

To suspend the operation of the CalculationTask, type:
Nap( )

Now notice that successive invocations of:
Announce(  )

all show the same values of the radius and area; this is because the CalculationTask is no longer
updating them.  To re-awaken the CalculationTask, simply type:

Wakeup(  )

To abort the multitasking program altogether and return to a single task running the QED-Forth
monitor, you can perform a “warm” restart by typing:

WARM

The QED-Forth startup message will be displayed.
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Of course, if you want to run the program again, you can type main or any of the interactively call-
able function names at any time.  Remember to type

WARM 

or
COLD

before trying to download another program file; the QCard Controller can’t run multiple tasks and
accept a download file at the same time.  (Both WARM and COLD re-initialize the system, but COLD
performs a more thorough initialization and causes QED-Forth to immediately “forget” the defini-
tions of the C functions that were sent over in the .DLF download file).

Autostarting Your Application

You can configure QED-Forth to automatically execute a specified application program after every
reset, restart, and ABORT.  This makes it easy to design a production instrument based on the
QCard; the instrument will automatically perform its required function when it is turned on or reset.

QED-Forth provides two functions named AUTOSTART and PRIORITY.AUTOSTART that allow
you to specify a startup routine.  Both write a pattern in memory that instructs QED-Forth to execute
a user-specified program.  AUTOSTART stores the pattern in EEPROM which is inside the
68HC11 processor chip, and PRIORITY.AUTOSTART stores the pattern near the top of page 4
which is typically in PROM in a final turnkeyed system.  The EEPROM-based AUTOSTART func-
tion is convenient during program development and debugging, or in the development of one-of-a-
kind systems.  But because the startup pattern is stored in EEPROM inside the 68HC11, it is cannot
be automatically transferred with the application program to a different board.

The PRIORITY.AUTOSTART routine should be used for PROM-based production systems.  It
installs the startup pattern in PROM, so simply reproducing the PROM and plugging it into any
QCard turns that board into a turnkeyed instrument controller.  In other words, the startup instruc-
tions are stored in the same PROM as the application program itself.

Let’s assume that you want to want to run the main routine every time you turn on, reset, or restart
the QCard Controller.  The following command:

CFA.FOR main AUTOSTART

leaves the extended code field address (cfa) of main on the stack.  AUTOSTART then writes a pat-
tern into EEPROM comprising a 16-bit flag (equal to 1357H) followed by the 32-bit extended cfa of
the specified startup program.  All subsequent resets and restarts will call the specified application
program after QED-Forth initializes the system.

To specify the startup vector so that it can eventually reside in PROM, we would execute a different
command:

CFA.FOR main PRIORITY.AUTOSTART

PRIORITY.AUTOSTART writes a pattern starting at 7FFAH on page 4 comprising a 16-bit flag
(equal to 1357H) followed by the 32-bit extended cfa of the specified startup program.  All subse-
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quent resets and restarts will call the specified application program after QED-Forth initializes the
system.

The priority autostart and autostart locations are checked each time QED-Forth executes ABORT,
which is called after every reset, COLD or WARM restart, or error.  ABORT first checks the prior-
ity autostart location at 7FFAH\4, and if 1357 is stored there it executes the program whose xcfa is
stored in the four bytes starting at 7FFCH\4.  If the priority autostart pattern is not present, or if the
specified priority startup program finishes executing and “returns”, ABORT then checks the
autostart pattern at AE00H in common memory.  If 1357 is stored there it executes the program
whose 32-bit xcfa is stored in the four bytes starting at AE02H.

To remove the autostart pattern or patterns, execute:

NO.AUTOSTART

This command clears the priority startup pattern at 7FFAH\4 and the startup pattern at AE00H.

Summary

Now you’ve worked through the GETSTART.C program in detail.  You know how to compile,
download and execute programs, perform simple floating point calculations, print formatted strings
and numbers to the terminal, dimension and access FORTH_ARRAYs in paged memory, define a
multitasking application with an interactive terminal interface, and autostart an application.  That’s
pretty good considering that this is your first C program on the QCard Controller!
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Part 2

Programming
the QCard Controller
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Chapter 4

The IDE: Writing, Compiling, Downloading and
Debugging Programs

In this Chapter we’ll explore the QCard Controller’s tools for writing, editing, downloading
and debugging your application program.  You’ll learn:

How to efficiently use the editor and compiler to write and compile both short and long
programs;

Coding and file-naming conventions;

How to access the QCard Controller’s onboard funcitons; and,

How to interactively debug your programs.

Writing Programs

Using the Editor/Compiler

In the prior Chapter we introduced the Mosaic IDE and the tools you can use to edit, compile, and
download your program. Briefly, the text pad toolbar provides the following buttons:

The Debug Tool invokes the compiler and assembler only – it does not produce downloadable
code.  Use it to quickly check the syntax of a program and find compile errors.

The Single-Page Compile Tool performs a standard, single-page memory model build of your
program for programs that do not exceed 32 Kbytes of memory.  If you see the following

warning printed in the compiler output, then you must switch to the multi-page memory model build
(Multi-Page Make icon):

WARNING:  Input section “.doubleword” from ‘progname.o11’ is not used !

The Multi-Page Compile Tool invokes the C compiler’s multi-page build mode for long
programs.  Still, each source code file should be less than 32 Kbytes worth of compiled source

code or the above warning will be issued and the program will not run.

The Terminal icon launches the communications program, Mosaic Terminal which is used to
download your compiled program to the QCard Controller.
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Sylistic Conventions

Code Comments

At the top of the GETSTART.C source code file are some comments that tell what the program does.
Single- or multi-line comments can be enclosed in the standard

/*    */

delimiters.  The double-slash

//

token means that the remainder of the line is a comment.  Note that the editor colors all comments
differently to make it easy to distinguish comments from source code.  C keywords are also colored
differently than user-defined routines.  You can change the default colors if you like.

Style Conventions

The example programs on your CD-ROM follow several stylistic conventions.  Here is a brief sum-
mary:

◙ Macros and constants are spelled with CAPITAL_LETTERS.

◙ Variable names are spelled with small_letters.

◙ Function names use both capital and small letters, with capital letters indicating the start of a
new subword within the function name.  For example:

void SaveCircleParameters(void)

To minimize the need to skip from one file to another, we have decided not to group all #define
statements in a header file that is separate from the program being compiled.  Rather, the #define
statements are defined close to where they are used in the program file that is being compiled.

File Naming Conventions

For backward compatibility with DOS and Windows 3.1, all filenames have 8 or fewer characters.
C source code files have the .C extension, and header files have the .H extension.  When you use the
Make Tool utility to compile a source code file with the filename,

NAME.C

several files with the extensions shown in Table 4-1 are created:

Table 4-1 Files Created by the C Compiler.

FILENAME.ext Description

NAME.C Source code text file created by you, the programmer

NAME.A11 Assembled output text file created by C11 compiler

NAME.O11 Object code binary file created by ASM11 assembler
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FILENAME.ext Description
NAME.LCF Linker command text file created by CC or CCM batch file

NAME.S S-record (raw download ascii file) created by linker

NAME.DLF Final download file created by CC or CCM batch file; includes S records and definitions
for QED-Forth

NAME.MAP Map file listing created by linker

NAME.MEM Symbols map file

NAME.USE Memory usage summary

NAME.BAK Backup file sometimes created by the editor

While this list may seem overwhelming, you won’t have to worry about most of these files.  You’ll
create your NAME.C and .H source code and header files in a directory of your choice, run the auto-
mated Make Tool by clicking on the Make icon, and send the resulting NAME.DLF download file to
the QCard Controller using the Terminal program.  In fact, unless you tell it otherwise, the editor’s
“File” menu will typically show you only files with the .C and .H extensions (“Source Files”); you
won’t have to wade through the files with the other extensions.  Similarly, the Mosaic Terminal
typically lists only files with the .DLF extension, so it will be easy to select the download file to
send to the QCard Controller.

Using Function Prototypes

This stylistic convention deserves its own section.  We strongly urge that you define or prototype
each function before it is called.  If the compiler generates a warning that a function has been called
without a prototype, we recommend that you check your source code and insert the required func-
tion prototype, or move the definition of the function so that it is defined before it is called.

A prototype is a declaration that specifies the function name and the types of its return value and
input parameters.  For example, the following is a valid function prototype:

_Q float CalcArea( unsigned int radius);

This declaration specifies that CalcArea() is a function that expects one unsigned integer input
and returns a floating point value.  As discussed below, the _Q tags the function as one that is inter-
actively callable during debugging. The CalcArea() function can then be defined later in the
source code file.  If a function is prototyped in one file and defined in another, add the extern
specifer before the prototype.

You can preface any function prototype with the _Q tag if you want to interactively call the function
from the terminal.  The QCard Controller’s onboard operating system maintains a list, called the
dictionary, of the names of functions tagged with the _Q so that it can recognize them when you
send a command line from your terminal.
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Prototype and Declare the Parameter Types of Every Function
Defining or prototyping a function before it is called allows the compiler to help find pa-
rameter passing errors, and it also prevents unnecessary promotion of parameters that can
render the code slower and defeat the QCard Controller’s interactive function-calling ca-
pability.  To avoid unwanted promotion and runtime errors, each and every parameter in
the function prototype or function definition must be preceded with a type specifier.  For
example, leaving out the unsigned int keywords in the prototype for CalcArea()
above would lead to promotion of the input parameter, possibly resulting in a runtime er-
ror message from the compiler or linker.
Using function prototypes and definitions that explicitly specify the type of each and
every input and output parameter results in more readable and reliable code.

Accessing the Standard (Kernel) Library Functions

The command

#include < \mosaic\allqed.h >

near the top of the GETSTART.C file is a preprocessor directive that includes all of the relevant
header files for the QCard Controller, and all of the standard C header files (such as stdio.h,
math.h, float.h, string.h, etc.)  We strongly recommend that this statement be placed at the
top of each C program file that you write.  It gives you access to all of the pre-coded library routines
that reside on the QCard Controller.  These routines let you control the A/D converters, digital I/O,
serial ports, real-time clock, and many other useful functions.  The ALLQED.H file also gives you
access to the QCard Controller’s multitasking and paged memory capabilities, as well as the stan-
dard ANSI C library functions including printing and string conversion routines such as printf()
and sprintf().  Including these files is very efficient; it generates almost no additional runtime
code while giving you access to very powerful capabilities.

You can call any of these functions from within your C code.  There is one limitation however:

Do not nest functions of the type _forth.

Many functions at are callable from C are actually of the _forth type.  This includes functions that
are in the kernel on the QCard Controller, or are part of software distributions such as the Graphical
User Interface (GUI) Toolkit.  A call to one of these _forth functions may not be made from within
the parameter list of a call to another _forth function.

There is always a straightforward way of avoiding such nesting of function calls: simply use a vari-
able to hold the required intermediate return value/parameter.  For example, if you need to use the
_forth function FetchChar() to fetch the first character from the extended address returned by
the _forth function DisplayBuffer() in paged memory, you could execute the following state-
ments:

static xaddr buffer_xaddress = DisplayBuffer( );
FetchChar( buffer_xaddress);
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This code is correct, while nesting the call to DisplayBuffer() inside the parameter list of
FetchChar() would be incorrect.

Initializing Variables

Caution:
RAM-Resident Variables & Arrays Must Be Initialized Within Functions

A common mistake made when creating application programs for embedded sys-
tems is the use of compile-time initialization for RAM-based quantities such as vari-
ables and arrays.  While this approach of initializing quantities outside of function
definitions may work during program development, it fails when the device goes
into production because the variables and arrays are not properly initialized when
power is cycled.
Only run-time initialization, i.e., initializations that are performed within functions
(which are in turn called by the autostart program), will occur reliably in an em-
bedded application.
Even users with battery-backed RAM in their systems should always perform ini-
tializations within functions.  This approach will avoid hard-to-diagnose field fail-
ures that result from corrupted data in a battery-backed RAM that is never re-
initialized to valid values.

Feel free to call Mosaic Industries for help with this or other programming issues.

Compiling Programs

Compiling Multiple Source Code Files

When writing large programs it is often useful to break up the program into multiple source code
files.  The Make Tool allows you to accomplish this in one of two ways.

1. First, you can designate one of your source code files as the primary file, and insert into this
file statements of the form,

#include “\path\filename”

to include the other source code functions, where \path is the standard DOS path specification
that allows the file to be located.  The primary file must have a .C extension.

2. Second, you can split your source code into several files that start with the same sequence of
characters, such as:

CODE.C    // this is the primary file that you compile
CODE1.C   // CODE1.C and CODE2.C are subsidiary files that are automatically
CODE2.C   // compiled and linked when CODE.C is compiled

All of these files must have the .C extension.  Then, when you compile CODE.C using the Make
Tool (by clicking on the Hammer icon), all of the files with a .C extension whose name starts with
CODE (namely, CODE.C, CODE1.C and CODE2.C) will be compiled and linked together.  Note that
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the Make Tool cannot handle filenames that start with a numeral or filenames that contain the dash
character; thus a source code file named 1CODE.C or MY-CODE.C cannot be compiled.

Finally, note that one and only one of the program files must include a function named main().

Using the Interactive Debugger
In the prior chapter, you gained experience using the debugging environment that lets you interac-
tively execute any designated function with input arguments of your own choosing.  Now we’ll look
more closely at the operation of the debugging environment, and explain how to use it to examine
and manipulate the values of static variables, Forth Array elements, and memory locations.

The interactive debugging environment conveys several advantages.  First, you can test each func-
tion of a program individually without changing the main() function and recompiling.  This saves
compilation and download time.  Second, the environment makes it easy to test each function with a
wide range of input parameters, allowing you to isolate bugs that might otherwise be missed until
later in the program development cycle.  Such thorough function-by-function testing of a program
facilitates more rapid development of reliable programs.

We’ll start by learning how to use the interactive environment to examine the values of static vari-
ables.  The explanation of how this works involves taking a brief high-level look at the interactive
QED-Forth language that is built into the QCard Controller.  Understanding how QED-Forth oper-
ates will empower you to take full advantage of the debugging capabilities of the QCard Controller.

Overview of the Forth Language and Programming Environment

The QED-Forth interactive environment makes it easy to examine the contents of static variables.  A
brief overview of how the Forth language works will help clarify the procedure.

The Forth Data Stack

Forth is a stack-oriented high level language that combines the interactive benefits of an interpreter
with the speed of a compiler.  Unlike C, FORTH is implemented as a two-stack language.  In addi-
tion to the return stack that most languages use to keep track of function calls and returns, FORTH
has a data stack that is used to pass parameters.  All arithmetic, logical, I/O, and decision operations
remove any required arguments from the data stack and leave the results on the data stack.  This
leads to postfix notation: the operation is stated after the data or operands are placed on the stack.
This is the same notation used by Hewlitt Packard’s RPN (reverse polish notation) calculators.

Unlike C, Forth uses spaces as delimiters to distinguish different keywords and tokens.  For exam-
ple, a C compiler can easily parse the addition expression:

5+4

as three distinct tokens: 5, +, and 4.  But because the above expression was typed without any
spaces, Forth would interpret the expression as a single token, assume it’s the name of a function,
and would try to find it in its dictionary.  In Forth the expression must be entered as:
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5  4  +

which includes the required spaces and uses postfix notation to add the numbers and leave the result
on the data stack.

To see how this works, we’ll talk to the interactive QED-Forth interpreter on the QCard Controller.
To start, enter the terminal now: if the terminal program is already active, click on its window or
hold down the “Alt” key and press “Tab” until the terminal announcement appears on your screen.
If you haven’t started the terminal program yet during this session, double-click on the Mosaic Ter-
minal icon to start it up.  Connect and power up your QCard Controller; pressing the Return key
should cause QED-Forth’s ok prompt to appear in the terminal window.

To start, we’ll ensure that the current number base is decimal by typing the command,
DECIMAL

from the terminal.  With each character you type QED-Forth echoes the character in you terminal
window.  The back arrow in the line above indicates that you pressed the Enter key which sends a
carriage return character; but you won’t see it as an echoed character on your screen.  QED-Forth
executes this command when the terminating carriage return is received.  Also recall that QED-
Forth case-insensitive, so you can freely mix upper and lower case letters.  Now we can put some
numbers on the QED-Forth data stack by typing :

5  7

followed by a carriage return.  QED-Forth responds:
ok   ( 2 ) \ 5 \ 7

We have underlined QED-Forth’s response for clarity.  QED-Forth is showing a picture of its data
stack.  The ( 2 ) means that there are two items on the stack.  Each of the items is listed, and items
are separated by a \ character, which can be read as under.  So we could describe the stack right
now as 5 under 7; the 7 is on top of the stack, and the 5 is under it.  If there are more than 5 items on
the stack, the stack print displays the number of stack items and the values of the top 5 items.

The stack print that shows what’s on the data stack is a feature of the debugging environment.  To
disable the stack print, you could execute (that is, type at your terminal) the DEBUG OFF command.
It is not recommended that you do this, though; it’s very helpful to keep track of the items on the
data stack while developing your program.

To multiply the numbers that are now on the stack, type the multiply operator which is a * charac-
ter:

*

and QED-Forth responds:
ok  ( 1 ) \ 35

The QED-Forth * operator removes the two operands 5 and 7 from the stack, multiplies them, and
puts the result of the multiplication on the stack.  To subtract 5 from the number on the stack, type:

5  - 

which produces the response:
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ok  ( 1 ) \ 30

The QED-Forth - (minus) operator takes the 35 and the 5 from the stack, subtracts, and puts the
result on the data stack.

To print the result to the terminal, we could simply type the printing word:
. 

(that’s right, the command is simply a dot, the period on your keyboard) which prints the response:
30   ok

The printing word . removes the 30 from the stack and prints it.  The stack is now empty, so QED-
Forth does not print a stack picture after the ok.

Notice that throughout this exercise QED-Forth has been interpreting and executing commands
immediately.  This is because the Forth language is interactive.  The results of executing commands
can be immediately determined.  If they are incorrect, the command can be changed to correct the
problem.  This leads to a rapid iterative debugging process that speeds program development.  This
interactive function execution has been harnessed to speed development of C programs for the
QCard Controller.

QED-Forth Numeric Printing Functions

There are a variety of QED-Forth printing functions, and some related functions that set the current
number base and clean up the data stack.  Here is a short list of useful functions that can be executed
interactively:

Function Description

. Prints a 16 bit signed integer in the current number base

U. Prints a 16 bit unsigned integer in the current number base

D. Prints a 32-bit signed long in the current number base

PrintFP Prints an ANSI-C floating point number

HEX Sets the number base to hexadecimal

DECIMAL Sets the number base to decimal

SP! Clears all items off the stack without printing anything

Each of the printing routines removes a number from the data stack and prints it to the terminal.
Because characters are promoted to unsigned int in Forth, the . (dot) function is also used to print
8-bit character data.  The PrintFP function was specifically written to display floating point nu-
meric output from C programs, as internally QED-Forth uses a non-ANSI floating point representa-
tion for its own floating point numbers.

The default QED-Forth number base after a COLD restart is DECIMAL.  The number base can be
changed to hexadecimal by executing HEX.  All non-floating-point numbers typed at the terminal or
printed by QED-Forth are converted using the current number base (corresponding to the most re-
cent execution of DECIMAL or HEX).  Floating point numbers are always converted using the decimal
number base.
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Displaying the Values of Static Variables

Now that we understand how the Forth data stack works, the procedure for examining variables will
make sense.  The examples presented here use code from the GETSTART.C program that we’ve
already discussed in detail.  If you have already downloaded the program, you are ready to go.  If
your board is presently running a multitasking application and you want to download a new file,
type

WARM

to stop the program so that a new download file can be accepted.

If you have not yet compiled the GETSTART.C program and you want to do the exercises here, first
compile it by opening \MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES\GETSTART.C in the
TextPad editor, click on the Make Tool, and after the compilation, enter the Mosaic Terminal and
use the “Send Text File” menu item to send GETSTART.DLF to the QCard Controller.  To run the
program, type

main

at your terminal – this initializes all the pointers and variables.  After typing main, let’s type
Nap( )

to put the calculation task asleep; remember to type at least one space after the (.  This stops the
variables from being updated in the background.

Let’s start by initializing the contents of the radius variable to 5 by interactively executing (typing)
from the terminal:

SetRadiusAndArea( int 5)

Remember to type at least one space after the ( character and after int.  This function is defined in
GETSTART.C as:

_Q SetRadiusAndArea( uint r)
{  radius = r;
area = CalcArea( r);
}

It assigns the specified input parameter to the unsigned integer radius variable, and assigns the
corresponding circular area to the floating point area variable.

Now we can check the value of radius.  The following interactive command places the contents of
the integer variable named radius on the Forth data stack:

int  radius

QED-Forth responds with:
ok  ( 1 ) \ 5

Because radius is defined as an unsigned integer, we use the unsigned integer printing routine
named U. (U-dot) to remove the value from the Forth data stack and print it.  Type

U.

to print the radius an unsigned integer.  QED-Forth responds with:
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5 ok

To speed things up, we can type the entire command sequence on one line so that QED-Forth im-
mediately prints the result.  Type:

int  radius  U.

and QED-Forth responds with:
5 ok

To interactively examine the contents of the floating point area variable, type the command se-
quence:

float  area  PrintFP

and QED-Forth responds:
78.54 ok

which is indeed the area of a circle whose radius equals 5.

Extracting the Value Referenced by a Pointer

Sometimes C programs add an additional layer of indirection, referencing a value by means of a
pointer.  An example of this technique appears in the GETSTART.C program in the form of the static
variables radius_ptr and area_ptr; they are defined as:

static uint*   radius_ptr;
static float*  area_ptr;

In the InitVars() function near the end of the program, these pointers are initialized as follows:

radius_ptr = &radius;
area_ptr = &area;

In other words, radius_ptr holds the address of a variable that represents the radius, and
area_ptr holds the address of a variable that represents the area.  Given the radius_ptr and
area_ptr, we want to be able to extract the value of radius and area.  The following keywords can
be executed interactively to accomplish this:

char*      int*      long*      float*

Note that there cannot be any spaces before the * in each keyword, and there must be at least one
space after the * and before any subsequent number or variable name.

For example, to print the radius you can type:
int*  radius_ptr  U.

The int* keyword fetches the 16-bit address from radius_ptr and from that location fetches the
integer contents.  U. then prints the answer to the terminal.  Similarly, to print the area you can type:

float*  area_ptr  PrintFP

The float* keyword fetches the 16-bit address from area_ptr and from the resulting location
fetches the floating point contents. PrintFP then prints the result.
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Signed versus Unsigned Numbers

Note that the type specifier used above does not specify signed versus unsigned numbers; rather, the
printing function determines whether the number is interpreted as signed or unsigned.  For example,
type the following two command lines from the terminal and see how QED-Forth responds:

65535   U.

65535   . 

In the first instance, QED-Forth prints 65535, while in the second instance, QED-Forth prints -1
(we’re assuming that you have not changed the number base to HEX).  The same binary pattern (in
this case, all 16 bits of the number are set) can represent either 65535 or -1 depending on how the
number is interpreted and printed.  Thus by choosing the printing function, you can control whether
a number is displayed as a signed or unsigned quantity.

Summary

In summary, to display the contents of a simple static variable, type a command of the form:

type  variable_name  print_function_name

where type is one of the following keywords:

char      int      long      float

To display the contents of a static variable that is pointed to by a pointer, type a command of the
form:

type      pointer_name      print_function_name

where type is one of the following keywords:

char*    int*     long*     float*

Use Type Keywords To Interactively Call C Functions

The same family of familiar C type-declaration keywords that we used to fetch the contents of vari-
ables is also used to facilitate interactive calling of C functions.  Recall that these keywords are:

char    int     long    float
char*   int*    long*   float*

We have seen that these keywords are used in two different contexts while debugging.  In the prior
chapter we used them to declare the type of an input parameter while interactively calling a function.
For example, we can interactively type from the terminal:

CalcArea( int 5)

where the int keyword is used with the same syntax as an ANSI-C function prototype to declare the
input arguments to the called function.

Second, we used the type keywords in this chapter to extract the value from a variable, as in the
interactive QED-Forth command

int  radius  U.
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which prints the contents of the radius variable as an unsigned integer.

These two contexts for the use of the int keyword are related.  For example, to calculate the area
corresponding to the current value of the radius variable, we can interactively execute:

CalcArea( int radius)

and QED-Forth prints the resulting floating point area in its summary of the return value.  The int
keyword serves two complementary purposes here: it tells QED-Forth that the input parameter is a
16-bit integer, and it extracts the value of the radius variable so the variable is passed by value.

When interactively calling a function, all parameters that are passed by value should be preceded by
the appropriate type keyword.  However, when passing the address of a variable or a structure, sim-
ply state the variable or structure name without any type specifiers or & (address-of) operators.

For example, the function prototype for the DimAndInitFPArray() function in GETSTART.C is:

Q void DimAndInitFPArray(float val,int rows,int cols,FORTH_ARRAY* array_ptr)

and the program includes the array declaration:

FORTH_ARRAY circle_parameters;

which declares circle_parameters as a FORTH_ARRAY structure in memory.  As we shall see,
executing (typing) the name circle_parameters in QED-Forth leaves the address of the array
structure on the stack, so there is no need for additional type declarators or & operators.  Thus to
interactively dimension the array to have 10 rows, 2 columns and a initialization value of 12.34, we
type from the terminal:

DimAndInitFPArray( float 12.34,int 10,int 2,circle_parameters)

To verify that this worked, you can execute:
PrintFPArray( circle_parameters)

which displays the contents of the newly initialized circle_parameters matrix.

Displaying the Values of FORTH_ARRAY Elements

The same type specifier keywords that let you examine static variables can also be used to examine
any specified element in a two-dimensional FORTH_ARRAY.  The syntax is parallel to what we have
already used; the difference is that we now append the row and column indices in square brackets
after the array name to specify which element should be fetched.

For example, recall that circle_parameters is a FORTH_ARRAY that is dimensioned to hold 10
rows and 2 columns of floating point data.  To print the contents of the first element in the array at
[row=0, col=0], we type:

float  circle_parameters[ 0, 0]  PrintFP

and QED-Forth prints the result.  While this array notation is not exactly like the standard C syntax,
it is straightforward.  To print the element whose row index is 5 and whose column index is 1, type:

float  circle_parameters[ 5, 1]  PrintFP
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As you might expect, there must not be a space before the [ character, and there must be at least
one space after the [ character.  This is because

circle_parameters[

is defined as a space-delimited QED-Forth function in the GETSTART.DLF file, as explained later in
this chapter.

All of the keywords that we learned about above can be used to fetch the contents of appropriately
dimensioned arrays.  Arrays that are dimensioned to hold character, integer, long, or float data are
accessed using the char, int, long and float keywords, respectively, in front of the array name.
If for some reason you use a FORTH_ARRAY to hold 16-bit pointers , the char*, int*, long* and
float* keywords can be used in a manner exactly analogous to the description in the earlier section
of this chapter.

Assigning Values to Static Variables and FORTH_ARRAY Elements

You can interactively change the contents of any static variable or FORTH_ARRAY element using
the following assignment keywords:

=char    =int    =long    =float

Each of these keywords expects to be preceded by the address of a variable or FORTH_ARRAY ele-
ment, and expects to be followed by a valid number, variable name, or FORTH_ARRAY element
specifier.  As expected, the value of the right hand side is assigned to the variable or array element
on the left hand side of the assignment expression.

For example, to change the current value of radius to 22, simply type:
radius  =int  22

This syntax was designed to be similar to a C statement that assigns the value 22 to the radius vari-
able.  As you might guess, =int is a single keyword defined in QED-Forth, so there cannot be any
spaces between = and int.  Similarly, the other tokens in the expression must be separated by
spaces; thus there is at least one space after radius and at least one space before 22.

To set the current value of the floating point area variable to 1520. type:
area =float 1520.

To assign the current value of the area variable to element [ 0, 1] in the FORTH_ARRAY
circle_parameters, you can execute:

circle_parameters[ 0,1] =float  area

To check that these operations actually worked, we can execute the following commands to examine
the contents of the affected variables and array elements:

int radius  U.

float  area  PrintFP

float  circle_parameters[ 0,1]  PrintFP
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Under the Hood of the QED-Forth Interactive Debugger

This section is for the curious among you; you need not read or understand this section to use the
QED-Forth interactive debugger.  However, it will give you additional insight into the debugging
environment.

Variable Declarations

In the example above, radius is defined in the GETSTART.DLF download file as a QED-Forth con-
stant whose value is the address of the radius variable.  To see for yourself, use you editor to open
the GETSTART.DLF file.  Select “Open” from the editor’s “file” menu, set the “List Files of Type”
option to either “Text Files” or “All Files”, and double click on GETSTART.DLF in the
\MOSAIC\DEMOS_AND_DRIVERS\MISC\C_EXAMPLES directory.  The top portion of the file is the
hexadecimal dump of the compiled C code in the Motorola S2 record format.  Near the bottom of
the file you’ll see some CONSTANT declarations.  Among them is the declaration:

008E03 CONSTANT radius

which defines radius as a QED-Forth constant that places the hexadecimal value 8E03 on the stack.
You can verify this by clicking on the Terminal window and typing:

HEX radius  U.

DECIMAL

from the terminal.  This command sequence instructs QED-Forth to print the hexadecimal address of
the radius variable, and then return to decimal base.  Note that if you want to pass the address of the
radius variable as a parameter to a function (also known as passing a pointer or passing by refer-
ence), you leave out the int keyword before radius in the parameter list.

The keyword int is actually a QED-Forth function that examines the next token in the input stream;
if it is already a number such as 5 or 3.2, int simply converts it to the nearest integer.  If the next
token is a variable address (such as radius),  int extracts the 16-bit contents stored at the address.
To see this behavior for yourself, try the following commands at your terminal:

int  5  U.

int  5.45  U.

int  radius  U.

These three statements all yield identical results if the value of radius is still 5.

Function Declarations

Returning to the GETSTART.DLF file that you opened in the editor, scroll to the area just above the
list of CONSTANT definitions and you will see a set of lines starting with the : (colon) character.  In
Forth, the : character marks the start of a new definition (function or subroutine), and the ; (semi-
colon) marks the end of the definition.  These are the function definitions that tell QED-Forth the
names and execution addresses of each function in GETSTART.C that was preceded by the _Q de-
clarator.  Among these functions you will find some familiar ones including:

SetRadiusAndArea(
CalcArea(
DimAndInitFPArray(
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PrintFPArray(

The body of each of these Forth definitions defines the compilation address and invokes the routine
CALL.CFN (meaning call-C-function). CALL.CFN accepts an optional list of comma-delimited pa-
rameters terminated by a closing ) and then sets up the stack frame and calls the function.

So when you type the interactive command
CalcArea( int radius)

with a terminal enter key, here’s what happens:

1. When QED-Forth accepts the carriage return, it starts interpreting the command line that has
been entered.  It looks for the first space-delimited token, and it finds the token:

CalcArea(

2. It looks in its dictionary, and sure enough, it finds that this token has been defined; the defini-
tion was compiled when the GETSTART.DLF download file was sent to the QCard Controller.

3. When QED-Forth executes the CalcArea( token, it executes the CALL.CFN routine which
starts looking for a terminating ) character, and processes any tokens that are present.

4. The next space-delimited token found is int, which looks for the next token (in this case,
radius).  Because radius is not a number, int assumes that it is a variable and extracts the
16-bit contents from the address that is left on the Forth data stack by radius.  The contents
are left on the Forth data stack.

5. The terminating ) is found, so the CALL.CFN routine pushes the items on the Forth data stack
onto the C stack in the proper order to make a legal C stack frame, and then executes the
CalcArea() function as defined in the C program at the specified execution address.

6. When the CalcArea() function returns, QED-Forth traps its return value from the 68HC11’s
registers and prints the value using integer and floating point formats.

FORTH_ARRAY Declarations

Near the bottom of the GETSTART.DLF file you can find the definition of circle_parameters[
that facilitates examining and modifying any element of this array.  The QED-Forth definition is:

: circle_parameters[
  circle_parameters  DO[]
;

As described above, the : character marks the start of a new definition, and the ; marks the end of
the definition.  The body of the definition is simple: the constant circle_parameters leaves the
base address of the FORTH_ARRAY structure on the stack, and DO[] does the rest of the work.  DO[] is
defined in the QED-Forth kernel; it searches for a row index followed by a comma, and a column
index followed by a terminating ] character.  Then it passes the specified row, column, and array
parameter field address to the Forth function named [] (brackets) which places the 32-bit extended
address of the array element on the stack.  This extended address can be used as the argument to the
familiar keywords that we have discussed such as char, int, long, float, =char, =int, =long,
=float, etc.  Thus all of the following are legal debugging commands:
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float circle_parameters[ 3,0]  PrintFP

circle_parameters[ 2,1] =float  area

circle_parameters[ 5,0] =float 345.

Some of you may have noticed that CalculationTask[ is also declared to QED-Forth as a potential
FORTH_ARRAY in the GETSTART.DLF download file; yet we know that CalculationTask is a
task identifier, not a FORTH_ARRAY.  The reason for this is that Make Tool always declares the last
variable allocated in the common RAM as a potential FORTH_ARRAY; it does this because there it
can’t determine the allocated size of the last variable.  The extra definition of CalculationTask[
does no harm (as long as we don’t try to use it improperly).

Summary

The Make Tool calls the QCC.EXE executable program to create the QED-Forth debugging declara-
tions that appear at the bottom of the .DLF download file.  This program has to decide whether each
compiler symbol in the .OUT file is a callable function, a variable, or a FORTH_ARRAY.  The Make
Tool identifies callable functions by detecting the _pascal? tag that the compiler places there in
response to the _Q specifier, and in response prints the functionname( definition into the .DLF
file.  The Make Tool identifies variables by detecting whether the corresponding address lies in the
common RAM area, and in response prints a QED-Forth CONSTANT declaration into the .DLF file.
Finally, it tentatively identifies FORTH_ARRAYs by checking the size of each variable; if there are
exactly 18 bytes allocated to one item in the common RAM, it decides that the associated name
should also be declared as a FORTH_ARRAY by printing the name[ definition in the .DLF download
file.  To be safe, the Make Tool always declares the last variable as a FORTH_ARRAY because it
cannot be sure of its allocated size.

Other Useful QED-Forth Functions

QED-Forth is a complete language that includes over a thousand pre-defined functions, all of which
reside in ROM on the QCard Controller.  Many of these functions are declared in the header files in
the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory, and so are callable from C.  The names and
descriptions of these functions are detailed in the Control C Glossary in the documentation package.
But there are also additional routines described there that are useful while debugging; these allow
you to:

◙ Modify the contents of EEPROM on the 68HC11 processor.

◙ Dump the contents of a specified region of memory in hex and ascii format using the DUMP
command.

◙ Specify a new baud rate for the serial port to speed downloads using the BAUD1.AT.STARTUP
command.

◙ Configure the QCard Controller to execute a specified program each time a reset or restart
occurs using the AUTOSTART or PRIORITY.AUTOSTART command.

◙ Dump out a replica of the board’s program memory space in Intel Hex or Motorola S2 record
format to archive your production code.
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In sum, the versatile QED-Forth language enhances the power of Control C by providing many
operating system functions as well as an interactive debugging environment that speeds program
development and testing.

The QCard Kernel vs. Prior Kernels
The QCard and QScreen products use a QED-Forth operating system kernel denoted as V4.4x,
where the ‘x’ may take on any numeric value.  There are several minor differences between V4.4x
and the V4.0x kernel used on the QED Board, Panel-Touch Controller, and QVGA Controller prod-
ucts. Briefly, five functions have been added to the V4.4x kernel, and 19 device functions have been
removed. The removed functions are device drivers associated with hardware that is not imple-
mented on the QCard/QScreen products.  In addition, the V4.4x kernel boots up at a default serial
baud rate of 19,200 baud, compared to 9600 baud on prior kernels.

Table 4-2   lists the new functions, and Table 4-3 lists the removed functions.  Descriptions of the
new functions are provided in the glossary below and in the function reference document that ac-
companies the QCard and QScreen products.

Table 4-2 Functions added to V4.4x kernel

C Name: Forth Name:

Buffer_To_SPI( ) BUFFER>SPI

Bytes_To_Display( ) BYTES>DISPLAY

Calc_Checksum( ) CALC.CHECKSUM

Clear_Boot_Vector( ) CLEAR.BOOT.VECTOR

Set_Boot_Vector( ) SET.BOOT.VECTOR

C programmers must include the files named v4_4update.c and V4_4update.h to gain access to the
five new functions.  These files are located in the

\Mosaic\Fabius\Include\Mosaic\v4_4Update
directory in the software distribution CD.  Simply #include both the v4_4update.h and v4_4update.c
files in one of your source files, and also #include v4_4update.h in any other source files that use
these new kernel routines.

Table 4-3 Summary of functions deleted from V4.4x.

C Name: Forth Name:

InitPIA( ) INIT.PIA

PIAStore( ) PIA.C!

PIAFetch( ) PIA.C@

PIAChangeBits( ) PIA.CHANGE.BITS

PIAClearBits( ) PIA.CLEAR.BITS

PIASetBits( ) PIA.SET.BITS
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C Name: Forth Name:
PIAToggleBits( ) PIA.TOGGLE.BITS

ClearHighCurrent( ) CLEAR.HIGH.CURRENT

SetHighCurrent( ) SET.HIGH.CURRENT

PPA_ADDRESS PPA

PPB_ADDRESS PPB

PPC_ADDRESS PPC

FastSetDAC( ) (>DAC)

FastAD12Multiple( ) (A/D12.MULTIPLE)

FastAD12Sample( ) (A/D12.SAMPLE)

SetDAC( ) >DAC

AD12Multiple( ) A/D12.MULTIPLE

AD12Sample( ) A/D12.SAMPLE

InitAD12andDAC( ) INIT.A/D12&DAC

Summary of Modified Memory Map Functions

The Kernel’s internal memory map functions have been modified to be aware of the QCard and
QScreen’s memory.  In the “standard map”, the QCard has flash at pages 4-7 that swaps with RAM
on parallel pages 1-3, plus flash at hex pages 10-17 that swaps with RAM on parallel hex pages 18-
1F.  In the “download map”, flash and RAM are swapped: flash is present on pages 1-3 and 18-1F,
and RAM is present on pages 4-6 and 10-17.  The C development environment transparently han-
dles the loading of program code into flash, so C programmers typically do not have to be concerned
with these issues.    



61

Chapter 5

Making Effective Use of Memory

The QCard Controller’s Memory Map
The QCard Controller in its standard configuration hosts 512K Flash and 128K RAM.

Expanded Memory Option

The total RAM on the standard configuration, or “128K”, QCard is actually 129K, comprising a
128K SRAM memory chip and 1K of onboard RAM on the 68HC11 processor.  An expanded
memory option is available that provides a 512K SRAM in place of the 128K SRAM.  The default
memory option’s 128K memory chip may be battery backed if the real time clock option is also
chosen.  If the expanded memory option is chosen, none of the memory can be battery backed.

Pages Expand the Processor’s Addressable Memory

The QCard uses a paged memory system to expand the processor’s native 64Kbyte address space to
1 Megabyte of addressable memory.  The top half (32 Kbytes) of the address space (at hexadecimal
addresses 0x8000 to 0xFFFF) addresses a common memory page that is always visible (i.e., accessi-
ble using standard 16-bit addresses) to any code running, no matter where it resides in the memory
space.  The bottom half  (32 Kbytes) of the address space (at addresses 0x0000 to 0x7FFF) is dupli-
cated many times and addressed through the processor’s 16-bit address bus augmented by an 5-bit
page address.  Together the address and page are held in a 32-bit data type, an xaddress.

A subroutine on any page can fetch or store to any address on the same page or in the common
memory, or transfer control to another routine there.  It “sees” a 64K address space comprising its
own page at addresses from 0x0000 to 0x7FFF and the common memory at addresses 0x8000 to
0xFFFF.  To address memory on another page, or to call a routine on another page, special memory
access routines are used to change the page.  The heap memory manager and array routines allow
you to think of the paged memory as contiguous memory for data storage.  The operating system
automatically handles function calls and returns among the pages.

The operating system is designed so that there is very little speed penalty associated with changing
pages..
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C080–FFFF Kernel Flash
C000–C07F Memory mapped I/O
B400–BFFF Kernel Flash
B3F0–B3FF Real Time Clock Buffer
B3E0–B3EF Kernel RAM
B3D0–B3DF Kernel C/Forth ISR vectors
B200–B3CF Application RAM, Flash buffers
B000–B1FF Application ONCHIP_RAM
AEC0–AFFF Applicatoin EEPROM
AE00–AEBF Kernel EEPROM
8E00–ADFF 8K Application RAM
8500–8DFF Kernel buffers and stacks
8400–84FF Kernel Forth user area
8100–83FF Kernel buffers and stacks
8060–80FF Onboard hardware
8000–805F Processor Control Registers

Figure 5-1 The paged memory space of the QCard Controller.

Figure 5-1 illustrates the memory address structure of the QCard.  In the lower 32K of the proces-
sor’s address space, at addresses 0x0000 to 0x7FFF, the operating system creates 32 separate pages
of memory selected by a 5-bit on-chip port, with each page containing 32 Kbytes.  The first 9 pages
of the QCard Controller’s 20 pages of installed memory are shown in the figure.  The upper 32K of
the 68HC11's address space, at addresses 0x8000 to 0xFFFF, is always accessible without a page
change.  This is why we call it the common memory; it is visible from any routine running on any
other page, and may be fetched from, or stored to, without changing pages.

Kernel vs Application Memory Space

Of the QCard Controller’s 512K of Flash memory, 448K is available for your application program
and data storage.  The remainder is used by the QED Forth Kernel for its multitasking operating
system, debugger, interactive Forth compiler, assembler, and hundreds of pre-coded device driver
functions.  Of the 129K of RAM, 125K is available for application program use.  In the “standard
map”, the pages are distributed among Kernel and Application Flash and RAM as: Kernel Flash
(page 00 and parts of the common page, 0E and 0F); Kernel RAM (parts of the common page, 0E
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and 0F); Application Flash (pages 04 to 07, 0C to 0D, and 10 to 17); and Application RAM (pages
01 to 03 (and pages 08 to 0B and 18 to 1F with the expanded memory option).

Table 5-1 illustrates in detail the partitioning of the onboard memory between the operating system
(the Kernel) and your application functions.

Table 5-1 Partition of Flash and RAM among Kernel and Application Functions

Function Size Memory
Page

Memory
Address Physical Location

Kernel Flash (64K)
Kernel 32K 00 0000 – 7FFF QCard Flash Socket
Kernel 1K 0E various QCard Flash Socket
Kernel 19K common B400 – FFFF QCard Flash Socket
Kernel 12K 0F 0000 – 2FFF QCard Flash Socket

Kernel RAM (4K)
Kernel 3.5K common 8000 – 8DFF QCard RAM
Kernel 0.5K 0E various QCard RAM
RTC 48 bytes B3D0– B3FF 68HC11

Kernel EEPROM (192 bytes)
Kernel 192 bytes common AE00 – AEBF 68HC11

Application Flash (448K)
Application code 96K 04 – 06

(01– 03)
0000 – 7FFF QCard Flash Socket

Kernel Extensions 96K 07,0C,0D 0000 – 7FFF QCard Flash Socket
Application code and data 256K 10 – 17

(18 – 1F)
0000 – 7FFF QCard Flash Socket

Application RAM (125K to 509K)
C Variables 512 bytes common B000 – B1FF 68HC11
C Variables, available at runtime but used
during download as a Flash write buffer

464 bytes common B200 – B3CF 68HC11

C Variables and task area,
optionally battery-backed

8K common 8E00 – ADFF QCard RAM

Arrays and heap memory,
optionally battery-backed

20K 0F 3000 – 7FFF QCard RAM

Arrays and heap memory,
optionally battery-backed

96K 01 – 03
(04 – 06)

0000 – 7FFF QCard RAM

Arrays and heap memory,
available with extended memory option

128K 08-0B 0000 – 7FFF QCard RAM

Arrays and heap memory,
available with extended memory option

256K 18 – 1F
(10 – 17)

0000 – 7FFF QCard RAM

Application EEPROM
EEPROM Variables 320 bytes Common AEC0 – AFFF 68HC11

Notes:
1. Pages not enclosed in parentheses indicate the standard, or run-time memory map for swappable memory; pages

in parentheses indicate the addressing of the memory during program download, i.e., the download memory map.
2. The GUI Toolkit is located on pages 07 and 0D on the QScreen Controller; if the QCard is used without a graphic

display the GUI Toolkit is not loaded and pages 07 and 0D are available for application code.
3. The QCard’s 128K RAM is optionally battery-backed if the Real-Time Clock option is chosen.  None of the RAM

can be battery backed if the expanded memory option (512K RAM) is chosen.
4. Pages 00, 0E and a portion of 0F are reserved to the operating system (the Kernel).
5. Application code is free to reside on pages 04-06 and also 10-17 if the extended memory option is chosen.
6. Addresses from 8000 through FFFF comprise common memory that is visible to code on all pages.
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Most of the Flash memory is available as two blocks of contiguously addressable memory on pages
04-06 and 10-17.  RAM for your application program is also available in the paged memory in one
contiguously addressable chunk, filling pages 01-03.  There is also 20K available RAM on page 0F,
and approximately 9K in the common memory.  This 9K is particularly important because it is used
to hold C variables and task space for each separate task your application program sets up.

The Standard and the Download Memory Maps

The QCard has an alternate memory map called the “download map” that is used to facilitate the
loading of code.  To download code into the board the RAM and Flash addresses are swapped.
Code is then downloaded into RAM that is addressed where Flash usually resides.  Then the code is
copied into the Flash, and the RAM and Flash addresses swapped back to the standard map.

In the download map, hex pages 4-7 and 10-17 are RAM, while hex pages 1-3 and 18-1F are Flash.
In other words, the blocks of RAM at hex pages 1-3 and 18-1F in the standard map become Flash in
the download map, and the blocks of Flash at hex pages 4-6 and 10-17 in the standard map become
RAM in the download map.

C programmers never have to worry about the download map; the C development envi-
ronment transparently handles the downloading process and automatically loads the code
into flash memory for you.

Common Memory

The common memory is also partitioned between the operating system and application program.
Table 5-2 shows the common memory addresses used by the operating system, and in boldfaced
type those addresses available to the application program.

Table 5-2 Partition of the Common Memory

Address Size
(bytes)

Type Function

C100 – FFFF 16128 Flash Kernel – code
C000 – C0FF 256 I/O Memory mapped I/O
B400 – BFFF 3072 Flash Kernel – code
B3F0 – B3FF 16 RAM Kernel – Real Time Clock Buffer
B3E0 – B3EF 16 RAM Kernel
B3D0 – B3DF 16 RAM Kernel – C/Forth ISR vectors
B200 – B3CF 464 RAM Application – C Variables at runtime, Flash write buffer during

program download or TO.FLASH execution
B000 – B1FF 512 ONCHIP_RAM Application – C Variables
AEC0 – AFFF 320 EEPROM Application – Nonvolatile storage
AE00 – AEBF 192 EEPROM Kernel
8E00 – ADFF 8192 RAM Application – C Variables and multitasking task areas, optionally

battery-backed if the expanded memory option is not chosen
8500 – 8DFF 2304 RAM Kernel – Buffers and stacks
8400 – 84FF 256 RAM Kernel – Forth user area
8060 – 83FF 928 RAM Kernel – Buffers and stacks
8000 – 805F 96 RAM Kernel – Processor control registers

Shaded entries indicate memory available for application programs.
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Referring to Table 5-2, there are four unencumbered common memory areas your application can
use:

0x8E00 – 0xADFF:  These 8 Kbytes are available for your application.  The Control-C com-
piler uses this area for static variables, arrays, task areas, etc.     

0xAEC0 – 0xAFFF:  The processor’s on-chip EEPROM (Electrically Erasable Programmable
Read Only Memory) is located at 0xAE00 – 0xAFFF.  Locations 0xAE00 – 0xAEBF are re-
served by the operating system for use by the SAVE and RESTORE utilities, and for interrupt
vectors.  EEPROM at 0xAEC0 – 0xAFFF is available to your programs.

0xB000 – 0xB1FF:  The 68HC11’s 1 Kbyte of on-chip RAM is located at 0xB000 – 0xB3FF.

◙ Locations 0xB000 – 0xB1FF are totally unencumbered and always available for your use
(this area is named ONCHIP_RAM in the C linker command file; C programmers can lo-
cate data in this area using a #pragma directive).

◙ Locations 0xB200 – 0xB3CF are reserved for the flash programming routines.

◙ Locations 0xB3D0-0xB3DF are reserved for support of Forth interrupt service routines
called from C-compiled programs; and,

◙ Locations 0xB3F0 – 0xB3FF are reserved for the real-time clock buffers.

0xB200 – 0xB3CF:  These 464 bytes are also available for run-time variable storage, but are
used by the kernel during download as a Flash buffer, or anytime that TO.FLASH is used,
even at run time.

The remainder of the common memory area is used by either the processor or the kernel.  The proc-
essor’s registers are located at 0x8000 – 0x805F, onboard hardware occupies addresses through
0x80FF, and the operating system reserves memory through location 0x8DFF for user areas, buffers,
and stacks.  For example, the default user area that runs the interactive Forth interpreter occupies
0x8400 – 0x84FF.  Locations 0xB3D0-0xB3EF are reserved for support of Forth interrupt service
routines called from C-compiled programs, and locations 0xB3F0 – 0xB3FF are reserved for the
real-time clock buffers.  Locations 0xB400 – 0xBFFF and 0xC100 – 0xFFFF contain kernel code.
A notch at 0xC000 – 0xC0FF is not decoded by any onboard devices, but is used for addressing
WildCards.  The QCard does not bring out the processor’s address/data bus for do-it-yourself mem-
ory mapped peripherals; instead, a direct interface to WildCard modules at addresses 0xC000-C0FF
on pages 0-7 provides for versatile off-the-shelf I/O expansion.

Addressing Memory in C

Although 5-bits are sufficient to address the 32 possible pages, the page is padded out to a more
standard 16-bit date type so that the full address, lower 16 bits plus 16-bit page, occupies 32 bits.
We’ll refer to this full address as an xaddress (32-bit extended addresses).  Three macros are avail-
able in the \fabius\include\mosaic\types.h file to simplify the manipulation of xaddresses
and their constituent 16-bit addresses and pages.  These C macros are:

TO_XADDR
XADDR_TO_ADDR
XADDR_TO_PAGE
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Multi-page C programs rely on a “page change” routine in the common kernel memory to call func-
tions on other pages.  Unlike the Forth compiler, the C compiler is not “page smart”, and does not
know at compile time whether a page change is needed.  In fact, page changes are rarely needed,
because most functions call other functions that are located on the same page or in common mem-
ory.  Calls to functions on the same page or to common memory take only 11.5 or 13.75 microsec-
onds, respectively, while function calls to other pages require just under 49 microseconds.  Because
page changes are rare, the average execution speed of multi-page C applications is not significantly
impacted by the need for page changes.

Addressing Flash

Flash memory is nonvolatile, like PROM.  Thus it retains its contents even when power is removed,
and provides an excellent location for storing program code.  Simple write cycles to the device do
not modify the memory contents, so the program code is fairly safe even if the processor “gets lost”.
But flash memory is also re-programmable, and the flash programming functions are present right in
the QCard Controller's onboard software library.  These functions invoke a special memory access
sequence to program the flash memory contents “on the fly”.  This allows you to modify your oper-
ating software (for example, to perform system upgrades).  You can also store data in the flash de-
vice.  You can program from 1 byte up to 65,535 bytes with a single function call using the pre-
coded flash programming routine.  Programming time is approximately 60 milliseconds per kilo-
byte.

Six special functions facilitate access to Flash memory.  Their function names are:

DownloadMap()  PageToFlash()  PageToRam()
StandardMap()  ToFlash()      WhichMap()

The FLASH programming functions use a buffer in the 68HC11's on-chip RAM starting at hex
addresses B200-B3CF.  The remaining on-chip RAM at B000 to B1FF is available to you.  Also,
because FLASH programming is generally not done at run-time, you can still use the Flash buffer
for run-time variables.

Software Development Using Flash Memory
Because code cannot be downloaded or compiled directly into flash memory, the flash memory map
implements page swapping to provide a mechanism for getting the compiled code into the flash
memory.  There are two page-swap modes: one is called the Standard Map and the other is called
the Download Map.  As the names suggest, the Standard Map is used during run-time, and the
Download Map is used during downloading C-compiler S-records from the PC to the QCard.  The
two maps are very similar; the effect of changing from the Standard to the Download map is to swap
the locations of pages between the flash and the RAM.
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Table 5-3 Addressing the Flash and RAM in
Standard and Download Memory Maps

Flash Pages RAM Pages

Standard Address Map 04 – 06 10 – 17 01 – 03 18 – 1F

Download Address Map 01 – 03 18 – 1F 04 – 06 10 – 17

In normal operation the Flash memory is addressed on pages 04-06 and 10-17, and the RAM is
addressed on pages 01-03 and 18-1F.  During download their addresses are swapped, so that the
Flash is addressed at pages 01-03 and 18-1F and the RAM at pages 04-06 and 10-17.

To see how it works let’s consider a hypothetical download.  Suppose you have compiled code
intended to load into the Flash and run from it at addresses on page 4.  Automated commands con-
tained in the download file establish the download map, load the code into RAM, transfer the code
to flash, and re-establish the standard map.  In this case, the download file would:

1. Swap the addresses of the RAM and Flash (by executing the command DOWNLOAD.MAP) so that
the RAM is now addressed on page 04;

2. Download the code to its proper addresses on page 04;

3. Copy the code (using the command PAGE.TO.FLASH) from page 04 into the Flash addressed on
page 01; then,

4. Swap (by executing the command STANDAD.MAP) the RAM and Flash addresses back so that
the Flash is now addressed on page 04, and the RAM on page 01 is available for run-time use
by your program.

The Control-C download file does all this for you so you don’t need to worry about the details.  But
if you’re interested, just peruse the download file in the editor where you’ll see the commands it
uses to manage memory during the download process.

You can now run the program by typing
MAIN

or any function name that was preceded with the _Q designator.  (By the way, the _Q does not com-
promise performance in any way; it simply makes it possible for the PC-resident batch routines to
send out the execution addresses of the designated functions to the QCard Controller to simplify
debugging).

Locating Nonvolatile Data in EEPROM
The QCard Controller’s built-in EEPROM provides an ideal place to store calibration constants or
other data that must be changed from time to time, but that must be retained even when power is
removed.  The EEPROM (Electrically Erasable Programmable Read-Only Memory) can be modi-
fied up to 10,000 times before it loses its ability to retain data.  The ANALOGIO.C file presents an
example of how to locate a static “variable” in EEPROM.
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The EEPROM variable should be declared as an un-initialized static variable; these are located by
the linker in the “data” section, which normally points to system RAM where normal variables are
stored.  By following the syntax presented here, you can relocate the data section to point to
EEPROM while defining the EEPROM variables, and then restore the data section to its standard
RAM location.  To define an EEPROM variable, use the following code:

#pragma  option data=.eeprom  // put the following variables in eeprom
static uchar numsamples;
static int  nonvolatile_int;
static float calibration_value;
#pragma  option data=.data  // restore the data area to RAM

The #pragma statements are pre-processor directives that are interpreted by the linker.  In the code
fragment above, we located three nonvolatile variables in EEPROM; note that we did NOT include
initializers in the declaration statements.  Initializers don’t make any sense for EEPROM variables,
because special functions must be called to store values into EEPROM, so initialization can’t be
accomplished by placing initialization data in the download file.  These EEPROM variables must be
initialized programmatically at run-time.

To store data into the EEPROM variables, use the following functions which are declared in the
XMEM.H file in the \FABIUS\INCLUDE\MOSAIC directory:

void StoreEEChar(char value, char* addr)
void StoreEEInt(int value, int* addr)
void StoreEELong(long value, long* addr)
void StoreEEFloat(float value, float* addr)

To learn how to interactively modify the contents of EEPROM variables, read the glossary entries
for these functions in the Control-C Glossary.

These EEPROM storage functions are easy to use.  For example, to store the value 123 into the
character variable numsamples, you would place the following statement in your program:

StoreEEChar( 123, &numsamples);

To avoid wearing out the EEPROM by executing unneeded write cycles, these functions check
whether each EEPROM byte already holds its specified contents.  If so, the write is not performed.
Thus there is no penalty for redundant execution of commands that initialize particular locations in
EEPROM.

While EEPROM variables must initialized programmatically at run-time the first time they are used,
they don’t need to be re-initialized each time the processor starts up because the nonvolatile
EEPROM retains the data.  Even so, initializations can be performed every time the processor starts
up, with no adverse effects on the life span of the EEPROM.  For example, initialization code in an
autostart routine could execute ATTACH functions to ensure that all needed interrupt vectors are
properly initialized each time the processor restarts.  If the EEPROM cells have been corrupted for
some reason, the ATTACH command installs the correct contents, but if the specified interrupt
vector information is already in the EEPROM, the memory cells are not needlessly rewritten.
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Interrupts are disabled during writes to EEPROM
All of the EEPROM storage routines globally disable interrupts while each EEPROM
byte is being programmed, and it takes 20 milliseconds to program each byte.  Thus you
should avoid storing values in EEPROM while time-critical events are being serviced by
interrupts.
For experts and the curious: Interrupts are disabled during stores to EEPROM  because
QED-Forth vectors all interrupts via the EEPROM, and the 68HC11 hardware does not
allow any EEPROM cells to be read while a single EEPROM cell is being written to.
Thus if an interrupt occurs while one of the EEPROM storage functions is writing to
EEPROM, the interrupt will not be able to read the instruction code in the interrupt vec-
tor.  Disabling interrupts prevents this error, but the interrupt service is delayed until the
EEPROM write is finished.

Write-Protecting EEPROM

It is possible to write-protect locations within the EEPROM to ensure the integrity of calibration
constants or other vital information.  This is done using the EEPROM block protect register named
BPROT (MC68HC11F1 Technical Data Manual mc68hc11f1.rev3.pdf, p.4-13).  Four blocks of size
32, 64, 128, and 288 bytes may be individually protected by storing an appropriate configuration
value to BPROT.  The contents of the BPROT register may be changed using the C function
InstallRegisterInits; please consult its glossary entry for details.

To make a turnkeyed application maximally “bullet-proof” and fail-safe, consider using the BPROT
register to protect the first three blocks in the EEPROM totaling 224 bytes.  This protects the on-
board kernel’s configuration region (the first 32 bytes in EEPROM) plus the interrupt vectors (the
next 160 bytes in EEPROM) plus an additional 32 bytes available the programmer.  The remaining
288 bytes of EEPROM then remain available for modification by the application program.

Using C Arrays and Forth (Kernel) Arrays

Storing Data Acquisition Results in C Arrays and Forth Arrays

Programs written in Control-C use space in common memory to store variables.  You may store
simple variables or arrays of variables there using standard C syntax.  However, common memory is
a limited to approximately 9K.  It can get used quickly in multitasking systems because each task
requires a task area of about 1K.  Consequently, the programmer may require access to additional
RAM.  Access is provided through the use of Kernel Arrays, also called Forth Arrays.  Using Forth
Arrays you may dynamically dimension arrays of virtually any size in the extended address space –
and their memory allocation is automatically handled by the kernel’s heap memory manager.

The code presented in the sample program ANALOGIO.C uses a C array and a FORTH_ARRAY to
store the results of multiple A/D conversions.  This section uses that code as an example to discuss
some interesting features of both C Arrays and FORTH_ARRAYs.
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Declaring a C Array

The use of C arrays is discussed in detail in all standard C texts.  In this program, the one-
dimensional 16-element character array named results_8 is declared and allocated in RAM using
the statement:

uchar results_8[DEFAULT_NUMSAMPLES];

where DEFAULT_NUMSAMPLES is a constant equal to 16.  The arrays are easy to use.  For example,
the following C statement assigns the last element in the array to a static variable named
my_variable:

my_variable = results_8[15];

To see another simple example that demonstrates how C arrays are accessed, look at the
InitAnalog() function in the ANALOGIO.C file.  The results_8 array is zeroed by executing
the following statement:

for(i=0; i< DEFAULT_NUMSAMPLES; i++)
results_8[i] = 0;         // zero the array

Note that this array is dimensioned and allocated by the compiler and linker.  In contrast,
FORTH_ARRAYS are dimensioned and allocated dynamically by the run-time program itself.

Converting a 16 Bit Address to a 32 Bit xaddress

The AD8ToCArray() function that we just used provides an interesting example of type conversion.
The definition of the function is:

_Q void AD8ToCArray( int channel)
{  EXTENDED_ADDR buffer;
buffer.sixteen_bit.addr16 = results_8;
buffer.sixteen_bit.page16 = 0;
AD8Multiple(buffer.addr32,0,DEFAULT_NUMSAMPLES,channel);
}

The purpose of AD8ToCArray() is to properly call AD8Multiple() which is defined in the
ANALOG.H file.  AD8Multiple() is optimized to use a FORTH_ARRAY buffer, and so expects a 32
bit buffer xaddress instead of a simple 16 bit buffer address.  To convert the simple 16 bit address
returned by results_8 into a 32 bit extended address, we take advantage of the EXTENDED_ADDR
union defined in the TYPES.H file in the \FABIUS\INCLUDE\MOSAIC directory.  The union is
defined as:

typedef union{    xaddr addr32;
struct{ uint  page16;
char* addr16;
} sixteen_bit;
}  EXTENDED_ADDR;

To convert a 16 bit address into a 32 bit xaddress, we use the EXTENDED_ADDR typedef to declare an
instance of the union (named “buffer” in this example), store the 16 bit address into the
buffer.sixteen_bit.addr16 element, and store 0 (the default page) into the
buffer.sixteen_bit.page16 element.  Then we reference the corresponding 32 bit xaddress
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via the buffer.addr32 element of the union.  While it is rare that you will have to convert from
16 bit to 32 bit address types, this example provides a template for how to do it.

A Review of FORTH ARRAYs

FORTH_ARRAYs have two key advantages.  First, they are allocated in paged memory, so they allow
your program to access the large 1 Megabyte memory space of the QCard.  In contrast, C arrays
must reside in the available common RAM which is limited to approximately 9 kilobytes on the
QCard Controller.  Second, they can be dynamically dimensioned, re-dimensioned and de-allocated
(deleted) while your program is running; this boosts efficiency by maximizing the use of the avail-
able memory.

To define a new Forth Array, simply use the FORTH_ARRAY typedef followed by a name of your
choice.  For example, in the ANALOGIO.C file the following declaration appears:

FORTH_ARRAY  results_12;

Before the FORTH_ARRAY can be accessed at runtime, it must be dimensioned.  This is typically
accomplished by calling the DIM() macro defined in the ARRAY.H header file.  For example, to
dimension the results_12 array to have 10 rows and 1 column of integer data, we would execute:

DIM(int, 10, 1, results_12);

In the ANALOGIO.C file, the pre-defined macro named DIM_AD12_BUFFER() invokes the DIM()
routine for us (its definition is in the ANALOG.H file in the \FABIUS\INCLUDE\MOSAIC directory).

After the FORTH_ARRAY is dimensioned, it can be accessed by a family of macros and functions that
are defined in the ARRAY.H header file and are described in the Control-C Glossary.  These include
functions that fetch from, store to, and calculate the address of individual elements, swap and copy
entire arrays, fill an array with a specified character, and delete the array so that it no longer requires
memory in the heap. The PrintForthArray() and InitAnalog() functions in ANALOGIO.C
provide examples of how to call a few of these functions.

Printing the Contents of a FORTH ARRAY

The PrintForthArray() function presented in ANALOGIO.C is a more general version of the
PrintFPArray() function in GETSTART.C as discussed in an earlier chapter.  The function is
defined as follows:

_Q void PrintForthArray(int float_flag, FORTH_ARRAY* array_ptr)
// works for FORTH_ARRAYS dimensioned using the standard DIM() macro.
// float_flag is true if array holds float numbers, false otherwise.
{ int r, c;
putchar(‘\n’);
for (r = 0; r < NUMROWS(array_ptr); r++)         // for each row
{   for  (c = 0; c < NUMCOLUMNS(array_ptr); c++) // for each column
if(float_flag)
printf(“%9.4g  “,FARRAYFETCH(float,r,c,array_ptr));
else
printf(“%9ld  “,ARRAYFETCH(long,r,c,array_ptr));
putchar(‘\n’);       // newline after each row is printed
PauseOnKey();        // implement xon/xoff output flow control
}
}
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After calling putchar() to output a newline character, we enter nested for() statements that print
the contents of each element.  Because the compiler treats floating point numbers differently than
numbers stored in other formats, we use FARRAYFETCH() to access floating point arrays, and
ARRAYFETCH() to access char, int or long arrays.  The PauseOnKey() function is called once
per row to suspend the QCard Controller’s printed output if the terminal program has sent the XOFF
handshake character; the printout resumes when the terminal sends the XON character.
PauseOnKey() also gives the user the ability to terminate the printout by typing a carriage return
character from the terminal.

This function can be tailored to meet the detailed needs of your application.  You can change the
printf() formatting, or insert extra carriage returns to confine the printout to one screen width.
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Chapter 6

Real Time Programming

This chapter provides an introduction to real time programming.  You’ll learn:

About the timeslice clock and how to use it;

All about interrupts, and how to use them to respond to events.

The Timeslicer and Task Switching
The Built-In Elapsed Time Clock

The QCard Controller’s multitasking executive maintains an elapsed time clock whenever the
timeslicer is active.  Please consult the TIMEKEEP.C program in the
\MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory for examples of using the elapsed
time clock.

Your program can start the timeslice clock by calling the function:

StartTimeslicer()

The timeslicer increments the long variable named TIMESLICE_COUNT each timeslice period.  The
default timeslice period is 5 milliseconds (ms), and this can be modified by calling

ChangeTaskerPeriod()

as described in the Control-C Glossary.  The function

InitElapsedTime()

sets TIMESLICE_COUNT equal to zero.  The function

ReadElapsedSeconds()

returns a long result representing the number of elapsed seconds since InitElapsedTime() was
called.

To attain the full 5 millisecond resolution of the elapsed time counter, we can write a simple func-
tion that converts the TIMESLICE_COUNT into elapsed seconds as well as the number of millisec-
onds since the last integral second.  For example, let’s examine some code from the TIMEKEEP.C
file in the \MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory:
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#define DEFAULT_TIMESLICE_PERIOD    5   // {ms}; system default
#define MS_PER_SECOND  1000
static long start_time;                 // saves starting count of TIMESLICE_COUNT
_Q void MarkTime(void)
{   start_time = TIMESLICE_COUNT;
}
_Q void PrintElapsedTime(void)
{   long elapsed_ms =
DEFAULT_TIMESLICE_PERIOD*(TIMESLICE_COUNT - start_time);
long seconds = elapsed_ms / MS_PER_SECOND;
int ms_after_second = elapsed_ms % MS_PER_SECOND;
printf(“\nTime since mark is: %ld seconds and %d ms.\n”,
seconds, ms_after_second);
}

The MarkTime() function simply stores the TIMESLICE_COUNT in the start_time variable.  The
timeslicer is continually incrementing its counter, and when you later call PrintElapsedTime(),
start_time is subtracted from the latest TIMESLICE_COUNT and multiplied by the timeslice pe-
riod to calculate the elapsed number of milliseconds.  This is converted into the elapsed seconds by
dividing by 1000, and the remainder is the number of milliseconds since the last integral elapsed
second.

To try it out, use the Mosaic IDE’s editor to open the TIMEKEEP.C file in the
\MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory, click on the Make Tool to com-
pile the program, and use the terminal to send TIMEKEEP.DLF to the QCard.  At your terminal,
type:

main

to start the timeslicer and initialize the program.  Now at any time you can mark a starting time by
typing at the terminal:

MarkTime( )

and you can print the elapsed seconds and ms since the last mark by typing:
PrintElapsedTime( )

which will produce a response of the form:
Time since mark is: 3 seconds and 45 ms.

Using Interrupt Service Routines (ISRs)
The on-chip resources of the 68HC11 include an A/D converter, timer system, pulse accumulator,
watchdog timer, serial communications port, high speed serial peripheral interface, and general
purpose digital I/O.  The 68HC11’s 21 interrupts can enhance the performance of these facilities.
Interrupts allow rapid response to time-critical events that often occur in measurement and control
applications.  For example, you can use an interrupt to create a pulse-width modulated (PWM) out-
put signal.

Interrupt Recognition and Servicing

68HC11 interrupts fall into two main categories: nonmaskable and maskable.
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Maskable Interrupts

Maskable interrupts may be freely enabled and disabled by software. They may be generated as a
result of a variety of events, including signal level changes on a pin, completion of predetermined
time intervals, overflows of special counting registers, and communications handshaking.

Recognition and servicing of maskable interrupts are controlled by a global interrupt enable bit (the
I bit in the condition code register) and a set of local interrupt mask bits in the hardware control
registers.  If a local interrupt mask bit is not enabled, then the interrupt is “masked” and will not be
recognized.  If the relevant local mask bit is enabled and the interrupt event occurs, the interrupt is
recognized and its interrupt flag bit is set to indicate that the interrupt is pending.  It is serviced
when and if the global interrupt bit (the I bit) is enabled.  An interrupt that is not in one of these
states is inactive; it may be disabled, or enabled by waiting for a triggering event.

When an interrupt is both recognized and serviced, the processor pushes the programming registers
onto the stack to save the machine state, and automatically globally disables all maskable interrupts
by setting the I bit in the condition code register until the service routine is over.   Other maskable
interrupts can become pending during this time, but will not be serviced until interrupts are again
globally enabled when the service routine ends.  (The programmer can also explicitly re-enable
global interrupts inside an interrupt service routine to allow nesting of interrupts, but this is not
recommended in multitasking applications).  Non-maskable interrupts (reset, clock monitor failure,
COP failure, illegal opcode, software interrupt, and XIRQ) are serviced regardless of the state of the
I bit.

When an interrupt is serviced, execution of the main program is halted.  The programming registers
(CCR, ACCD, IX, IY, PC) are pushed onto the return stack.  This saves the state of execution of the
main program at the moment the interrupt became serviceable.  Next, the processor automatically
sets the I bit in the condition code register.  This disables interrupts to prevent the servicing of other
maskable interrupts.  The processor then fetches an address from the “interrupt vector” associated
with the recognized interrupt, and starts executing the code at the specified address.  It is the pro-
grammer’s responsibility to ensure that a valid interrupt service routine, or “interrupt handler” is
stored at the address pointed to by the interrupt vector.

The CPU then executes the appropriate interrupt handler routine.  It is the programmer’s responsi-
bility to ensure that a valid interrupt service routine is stored at the address pointed to by the inter-
rupt vector.  The interrupt vectors are near the top of memory in the onboard ROM.  The ROM
revectors the interrupts (using jump instructions) to point to specified locations in the EEPROM.
The ATTACH() routine installs a call to the interrupt service routine at the appropriate location in the
EEPROM so that the programmer’s specified service function is automatically executed when the
interrupt is serviced.  ATTACH() also supplies the required RTI (return from interrupt) instruction
that unstacks the programming registers and resumes execution of the previously executing pro-
gram.

An interrupt handler must reset the interrupt flag bit (not the mask bit) and perform any tasks neces-
sary to service the interrupt.  When the interrupt handler has finished, it executes the RTI (return
from interrupt) assembly code instruction.  RTI restores the CPU registers to their prior values based
on the contents saved on the return stack.  As explained below, this also re-enables interrupts by
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clearing the I bit in the CCR (condition code register).  Thus other interrupts can be serviced after
the current interrupt service routine has completed.

Nonmaskable Interrupts

Six of the 68HC11F1’s 21 interrupts are nonmaskable, meaning that they are serviced regardless of
the state of the global interrupt mask (the I bit in the CCR).  Events that cause nonmaskable inter-
rupts include resets, clock monitor failure (triggered when the E-clock frequency drops below 10
kHz), Computer-Operating-Properly (COP) failure (triggered when a programmer-specified timeout
condition has occurred), execution of illegal opcodes, execution of the SWI (software interrupt)
instruction, and an active low signal on the nonmaskable interrupt request pin named /XIRQ.

Three types of interrupts initiate a hardware reset of the 68HC11:

◙ Power-on or activation of the reset button

◙ Computer-Operating-Properly (COP) timeout

◙ Clock monitor failure

These are the highest priority interrupts, and are nonmaskable.  Serviced immediately, they initialize
the hardware registers and then execute a specified interrupt service routine.  QED-Forth sets the
interrupt vectors of these interrupts so that they execute the standard startup sequence.  The service
routines for all but the main reset interrupt may be changed by the programmer with the Attach()
utility.

If a nonmaskable interrupt is enabled, it is serviced immediately upon being recognized.  The im-
portance of these interrupts is reflected by the fact that most cause a hardware reset when serviced.
The following table gives the name of each nonmaskable interrupt and a description of its operation.
They are listed in order of priority from highest to lowest:

Table 6-1 Nonmaskable Interrupts.

Interrupt Name Description

Reset Recognized when the /RESET (active-low reset) pin is pulled low, this highest priority
nonmaskable interrupt resets the machine immediately upon recognition and
executes the standard QED-Forth restart sequence.

Clock Monitor Failure Enabled or disabled via the CME (clock monitor enable) bit in the OPTION register,
this interrupt is recognized if the E-clock frequency drops below 10 kHz.  It resets the
processor hardware and executes a user-defined service routine.  QED-Forth installs
a default service routine for this interrupt that performs the standard restart sequence.

COP Failure After enabling the computer operating properly (COP) subsystem, failure to update
COP registers within a predetermined timeout period triggers this interrupt which
resets the processor and executes a user-defined service routine.  QED-Forth installs
a default service routine for this interrupt that performs the standard restart sequence.

Illegal Opcode Trap This interrupt occurs when the processor encounters an unknown opcode.  QED-
Forth installs a default service routine for this interrupt that performs the standard
restart sequence.
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Interrupt Name Description
SWI Software interrupts are triggered by execution of the SWI opcode.  After being

recognized, an SWI interrupt is always the next interrupt serviced provided that no
reset, clock monitor, COP, or illegal opcode interrupt occurs.  SWI requires a user-
installed interrupt handler.

/XIRQ Enabled by clearing the X bit in the condition code register, an /XIRQ interrupt is
recognized when the /XIRQ (active-low nonmaskable interrupt) pin is pulled low.  This
interrupt is serviced immediately upon recognition.  It requires an appropriate user-
installed interrupt handler.

The service routine for the reset interrupt cannot be modified by the programmer.  The service rou-
tines for the clock monitor, COP failure, and illegal opcode trap interrupts are initialized to perform
the restart sequence, but this action may be changed by the programmer (see the Glossary entry for
InitVitalIRQsOnCold() for more details).  No default actions are installed for the SWI and
/XIRQ interrupts, so before invoking these interrupts the user should install an appropriate interrupt
service routine using the ATTACH() command.

Servicing Maskable Interrupts

Maskable interrupts are controlled by the I bit in the condition code register (M68HC11 Reference
Manual, mc68hc11rm.rev4.1.pdf, Sections.5.7 and 5.8).  When the I bit is set, interrupts are dis-
abled, and maskable interrupts cannot be serviced.  When clear, interrupts can be serviced, with the
highest priority pending interrupt being serviced first.  In sum, a locally enabled maskable interrupt
is serviced if:

it has been recognized, and

it has the highest priority, and

the I bit in the condition code register is clear.

If a maskable interrupt meets these criteria, the following steps are taken to service it.  First, the
programming registers are automatically saved on the return stack.  Note that the condition code
register, CCR, is one of the registers saved, and that the saved value of the I bit in the CCR is 0.
Next, the CPU automatically sets the I bit to 1 to temporarily prevent maskable interrupts from
being serviced.  Control is then passed to the interrupt handler code, which you must provide,
pointed to by the contents of the interrupt vector.  The interrupt handler clears the interrupt flag bit
set by the trigger event and performs any tasks necessary to service the interrupt.  It terminates with
an RTI instruction which restores the saved values to the programming registers.  Execution then
resumes where it left off.

Recall that when the interrupt service began, the processor’s first action was to store the program-
ming registers on the return stack.  At that time, the I bit in the CCR equaled 0 indicating that inter-
rupts were enabled, and the bit was stored as 0 on the return stack.  After stacking the machine state,
the processor set the I bit to disable interrupts during the service routine.  When the programming
registers are restored to their prior values by RTI, note that the I bit is restored to its prior cleared
state, indicating that interrupts are again enabled.  In this manner the processor automatically dis-
ables interrupts when entering a service routine, and re-enables interrupts when exiting a service
routine so that other pending interrupts can be serviced.
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Nested Interrupts

The programmer can explicitly clear the I bit inside an interrupt service routine to allow nesting of
interrupts.  Make sure that the return stack is large enough to accommodate the register contents
placed there by the nested interrupts.  The default size of the return stack is 768 bytes, and it can be
easily resized.

Interrupt Priority

Multiple pending interrupts are serviced in the order determined by their priority.  Interrupts have a
fixed priority, except that the programmer may elevate one interrupt to have the highest priority
using the HIPRIO register.  Nonmaskable interrupts always have the highest priority when they are
recognized, and are immediately serviced. The following table lists the fifteen available maskable
interrupts in order of highest to lowest priority:

Table 6-2 Maskable Interrupts, from Highest to Lowest Priority.

Interrupt Name Description

/IRQ /IRQ is an active-low external hardware interrupt which is recognized when the
signal on the /IRQ pin of the 68HC11 is pulled low (MC68HC11F1 Technical Data
Manual, p.2-5).

Real Time Interrupt The RTI provides a programmable periodic interrupt (MC68HC11F1 Technical
Data Manual, p.5-5).

Input Capture 1 An IC1 interrupt is recognized when a specified signal transition is sensed on port
A, pin 2 (MC68HC11F1 Technical Data Manual, p.9-1 ff.).

Input Capture 2 An IC2 interrupt is recognized when a specified signal transition is sensed on port
A, pin 1 (MC68HC11F1 Technical Data Manual, p.9-1 ff.).

Input Capture 3 An IC3 interrupt is recognized when a specified signal transition is sensed on port
A, pin 0 (MC68HC11F1 Technical Data Manual, p.9-1 ff.).

Output Compare 1 An OC1 interrupt is recognized when the main timer’s count becomes equal to
OC1’s timer compare register (MC68HC11F1 Technical Data Manual,p.9-6 ff.).

Output Compare 2 An OC2 interrupt is recognized when the main timer’s count becomes equal to
OC2’s timer compare register (MC68HC11F1 Technical Data Manual,p.9-6 ff.).

Output Compare 3 An OC3 interrupt is recognized when the main timer’s count becomes equal to
OC3’s timer compare register (MC68HC11F1 Technical Data Manual, p.9-6 ff.).

Output Compare 4 An OC4 interrupt is recognized when the main timer’s count becomes equal to
OC4’s timer compare register (MC68HC11F1 Technical Data Manual, p.9-6 ff.).

I4O5 Depending on its configuration, an I4O5 (input capture 4/output compare 5)
interrupt is recognized when a specified signal transition is sensed on port A, pin
3, or when I4O5’s timer compare register is equal to the main timer’s count
(MC68HC11F1 Technical Data Manual, p.9-1 ff.).

Timer Overflow A TOF interrupt occurs when the free-running count in the TCNT (timer count)
register overflows from FFFFH to 0000H (MC68HC11F1 Technical Data Manual,
p.9-1).

Pulse Accum Overflow A PAOVF interrupt occurs when the PACNT (pulse accumulator count) register
overflows from FFH to 00H (MC68HC11F1 Technical Data Manual, p.9-15 ff.).

Pulse Accum Edge A PEDGE interrupt occurs after a signal edge is detected on port A, pin 7
(MC68HC11F1 Technical Data Manual, p.9-15 ff.).
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Interrupt Name Description
SPI Event Interrupt An SPI (serial peripheral interface) interrupt occurs after a byte transfer is

completed, or a write collision or a mode fault is detected (MC68HC11F1
Technical Data Manual, p.8-1 ff.).

SCI Event Interrupt An SCI (serial communications interface) interrupt occurs when the transmit data
register is empty, or the transmission is complete, or the receive data register is
full, or an idle line is detected.  The handler must determine which of these four
events caused the interrupt (M68HC11 Reference Manual, Section 9.5.2).

Elevated Priority

After being recognized, a locally enabled maskable interrupt will be serviced when the I bit is clear,
and when it has the highest priority among the pending interrupts.  Note that interrupts are not nec-
essarily serviced in the order in which they are recognized, but in order of priority among those
pending.

You can elevate one maskable interrupt at a time to receive highest priority servicing.  This is ac-
complished by configuring four priority-selection bits named PSEL0, PSEL1, PSEL2, and PSEL3
located in the HPRIO (high priority) register (MC68HC11F1 Technical Data Manual, p.5-7).  The
default highest priority maskable interrupt is /IRQ.  A table in MC68HC11F1 Technical Data Man-
ual, p.5-8 lists the states of the priority selection bits needed to elevate an interrupt’s status to the
highest priority.

Interrupt Flag and Mask Bits

Each maskable interrupt is enabled and disabled by a local mask bit.  An interrupt is enabled when
its local mask bit is set.  When an interrupt’s trigger event occurs, the processor sets the interrupt’s
flag bit.

The local mask bit should be used to enable and disable individual interrupts.  In general, you should
avoid setting the global I bit in the condition code register (CCR) using DISABLE_INTERRUPTS()
unless you are sure that you want to disable all interrupts.  Time-critical interrupt service routines
such as the timesliced multitasker cannot perform their functions when interrupts are globally dis-
abled.

Some of the QCard Controller’s library functions globally disable interrupts for short periods to
facilitate multitasking and access to shared resources.  A list of these functions is presented in the
Control-C Glossary document.

Interrupt trigger events can occur whether or not the interrupt is enabled.  For this reason, it is com-
mon for flag bits to be set before an interrupt is ready to be used.  Unless an interrupt’s flag bit is
cleared before it is enabled, setting the local mask bit will force the system to recognize an interrupt
immediately.  Unfortunately, the event which set the interrupt’s flag bit occurred at an unknown
time before the interrupt was enabled.  Depending on the interrupt handler’s task, this can cause
erratic initial behavior, collection of an incorrect initial data point, or begin an improper sequence of
events (for example, cause a phase shift in an output waveform).  To avoid these problems, it is
recommended that you enable an interrupt by first clearing its flag bit and then immediately setting
its mask bit.
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!   An Interrupt Flag Bit Is Cleared By Writing a 1 to it   !
Although mask bits can be set and cleared by storing the desired value in them, flag
bits are unusual.  Since flag bits are set by trigger events, it is not possible to set
them via software.  In order to clear an interrupt flag bit, a logical one must be
stored into the flag bit’s location – that clears it to zero!

To clear a specified flag bit, write a pattern to the flag register with a 1 in the bit position of the flag
that must be cleared.  All of the other flag bits in the flag register then remain unchanged.  See
M68HC11 Reference Manual Section 10.4.4 for examples.

External Hardware Interrupts /IRQ and /XIRQ

Two external interrupts, /IRQ (active-low interrupt request) and /XIRQ (active-low nonmaskable
interrupt request) allow external hardware to interrupt the 68HC11F1 (M68HC11 Reference Man-
ual, Section 2.4.6).  The / prefix to each of these names indicates that the signals are active-low.
Pull-up resistors on the QCard Controller hold these signals high during normal operation, and an
interrupt is recognized when either signal is pulled low by an external source.  The /IRQ input is
maskable and is not serviced unless the I bit in the condition code register is clear.  If the CPU is
servicing an interrupt when the /IRQ line goes low, the external interrupt will not be recognized
until the interrupt being serviced has been handled.  Unlike all the other maskable interrupts, /IRQ
does not have a local interrupt mask.  The /XIRQ external interrupt is not available on the QCard.

The /IRQ pin is accessed and controlled via the Wildcard Port Header (for pin locations see Appen-
dix A).  It operates as an active-low input to the processor.  An external device can drive the line
LOW to signal an interrupt.  Alternatively, several open-collector devices can be wired together on
the same line, so that any one of them can interrupt the processor by pulling the request line low.
This is called “wired-or” operation.  In either case, the external device must pull the line low long
enough to be detected by the CPU.

Note that the PORTA input capture lines can also be configured to interrupt the processor when an
external event occurs.

Configuring /IRQ Interrupts

In its default state, after each reset or restart, the /IRQ pin is configured as an edge-triggered input.
In this mode, the 68HC11 latches the falling edge, causing an interrupt to be recognized.  This frees
peripheral devices from having to hold the /IRQ line low until the CPU senses the interrupt, and
prevents multiple servicing of a single external event.

The disadvantage of this configuration is that multiple edge-triggered interrupts cannot be reliably
detected when used with wired-OR interrupt sources.  If you are using multiple wire-or /IRQ inputs,
you can specify level-sensitive interrupt recognition by clearing a bit named IRQE (IRQ edge-
sensitive) in the OPTION register (M68HC11 Reference Manual, Section 5.8.1).  IRQE is a “pro-
tected bit” in OPTION that must be written within the first 64 E cycles after a reset.  The QED-Forth
word InstallRegisterInits() (described in the glossary) may be used to specify a value that is
automatically stored into OPTION upon each reset.
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Using /IRQ

To use the /IRQ external interrupt, define an interrupt handler and install it using the pre-defined
identifier IRQ.ID and the interrupt Attach utility, as described in the Glossary entry for Attach.

If interrupts have not yet been enabled globally, then execute:
ENABLE_INTERRUPTS

Whenever /IRQ is pulled low, your interrupt handler will be executed.  Note that there is no local
interrupt mask for the /IRQ interrupt, so your interrupt handler routine need not clear an interrupt
request flag.

Routines that Temporarily Disable Interrupts

Certain kernel routines temporarily disable interrupts by setting the I bit in the condition code regis-
ter.  These routines are summarized in the “Library Functions that Disable Interrupts” chapter of the
Control-C Glossary.  A review of that list will assist you in planning the time-critical aspects of your
application.

Interrupt Latency

The time required between the processor’s initiation of interrupt servicing and the execution of the
first byte of the specified service routine is called the interrupt latency.  Most of the 68HC11’s inter-
rupts have an inherent latency of 12 machine cycles during which the registers are saved on the
return stack and the interrupt vector is fetched.  This corresponds to 3 microseconds (µs).  QED-
Forth’s interrupt latency is longer because the interrupts are re-vectored via the EEPROM to allow
the programmer to modify the vectors, and because the page must be changed.  The latency of serv-
ice routines installed with ATTACH() is 34 machine cycles, or 8.5 µs.  That is, the first opcode of the
user’s service routine is executed 8.5 µs after interrupt service begins.  After the service routine’s
concluding RTS executes, an additional 20 cycles (5 µs) lapses before the originally interrupted
program resumes execution.  12 of these cycles are accounted for by the RTI instruction, and the
other 8 cycles are required to restore the original page.

Interrupt Latency
Time to Enter an Interrupt Service Routine: 8.5 µsec

Time to Leave an Interrupt Service Routine: 5.0 µsec

Writing Interrupt Service Routines

Maskable interrupts have a local mask bit which enables and disables the interrupt, and a flag bit
which is set when a trigger event occurs.  For maskable interrupts, an interrupt triggering event is
recognized when the flag and mask bits are both set.  In order to avoid premature recognition of a
maskable interrupt, it should be enabled by first clearing its flag bit and then setting its mask bit.
Once an interrupt has been recognized, it will be serviced if it is not masked by the I bit in the CCR.
Multiple pending interrupts are serviced in the order determined by their priority.  Interrupts have a
fixed priority, except that the programmer may elevate one interrupt to have the highest priority.
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Nonmaskable interrupts always have the highest priority when they are recognized, and are immedi-
ately serviced.

When an interrupt is serviced, the machine state (specified by the programming registers) is saved
and the I bit in the CCR register is set.  This prevents other pending interrupts from being serviced.
The CPU then executes the appropriate interrupt handler routine.  The interrupt handler is responsi-
ble for clearing the interrupt flag bit.  For most interrupts this is accomplished by writing a one to
the flag bit.  After completing its tasks, the interrupt handler executes an RTI instruction to restore
the machine state, subsequently clearing the I bit in the CCR.  The CPU is now ready to service the
next, highest priority, pending interrupt.  If there is none, processing of the main program continues.

To use interrupts you need to create and post an interrupt service routine using the ATTACH()
macro.  We’ll look at this process in detail, then discuss how interrupts are implemented on the
68HC11.

To use an interrupt to respond to events, follow these four steps:

1. Use #define to name all required bit masks related to servicing the interrupt, and look in the
Motorola 68HC11F1 documentation and the QEDREGS.H file (in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory) to find the names of all registers that relate
to the interrupt.  These bit mask and register names will simplify the creation of a readable
service routine.

2. Use C or assembly code to define an interrupt service routine which will be executed every
time the interrupt occurs.  The function must have a void stack picture; it cannot return a
value or expect input parameters.  This function must reset the interrupt request flag (by writ-
ing a 1 to it!) and perform any necessary actions to service the interrupt event.  Note that the
service routine is a standard function; it is not defined using the _interrupt keyword.

3. Write a function that installs the interrupt service routine using the ATTACH() command.
ATTACH() initializes the interrupt vector in EEPROM to call the specified service routine, and
ATTACH() also supplies the RTI (return from interrupt) instruction that correctly terminates
the service routine.

4. Write functions to enable and disable the interrupt.  Enabling the interrupt is accomplished by
clearing the interrupt’s flag bit and then setting its mask bit.  It may also be necessary to clear
the I bit in the CCR to globally enable interrupts.  This can be accomplished by executing
ENABLE_INTERRUPTS().

ATTACH() Makes It Simple

It is easy to define an interrupt service routine and ATTACH it to a specified interrupt.  You define
your service routine in either assembly code or in high level C.  Thus the service routine can be
debugged just like any other C function.  You then call ATTACH() to bind the service routine to the
interrupt.

The following constants have been defined as identifiers for the 68HC11 interrupts in the
INTERUPT.H file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory:
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Table 6-3 68HC11 Interrupts.

Identifier Interrupt description

SCI_ID Serial communications interface

SPI_ID Serial peripheral interface

PULSE_EDGE_ID Pulse accumulator edge detection

PULSE_OVERFLOW_ID Pulse accumulator overflow

TIMER_OVERFLOW_ID Timer overflow

IC4_OC5_ID Timer input capture 4/output compare 5

OC4_ID Timer output compare 4

OC3_ID Timer output compare 3

OC2_ID Timer output compare 2

OC1_ID Timer output compare 1

IC3_ID Timer input capture 3

IC2_ID Timer input capture 2

IC1_ID Timer input capture 1

RTI_ID Real-time interrupt

IRQ_ID IRQ external pin

XIRQ_ID IRQ external pin (pseudo-nonmaskable)

SWI_ID Software interrupt

ILLEGAL_OPCODE_ID Illegal opcode trap

COP_ID COP failure (reset)

CLOCK_MONITOR_ID Clock monitor failure (reset)

The ATTACH() macro expects as inputs a function pointer to your service routine, and an interrupt
identifier.  It sets up the interrupt vector in EEPROM so that subsequent interrupts will execute the
specified service routine.  The code installed by ATTACH includes the RTI instruction that terminates
the interrupt service sequence.  The StartFunctionTimer() routine presented earlier shows how
ATTACH() is called.

Implementation Details

The interrupt vectors near the top of memory are in ROM; locations that cannot be modified by the
programmer.  The contents of these locations point to a series of locations in the EEPROM (at
AE20-AEBFH) which can be modified and, if desired, write-protected using the BPROT register.
ATTACH() writes some code at the EEPROM locations corresponding to the specified interrupt.
This code loads the code field address of the user’s service function into registers and jumps to a
routine that saves the current page, changes the page to that of the user’s service function, and calls
the service function as a subroutine.  When the user-defined service function returns, the code in-
stalled by ATTACH() restores the original page and executes RTI (return from interrupt) to complete
the interrupt service process.  This calling scheme ensures that the interrupt service will be properly
called no matter which page the processor is operating in when the interrupt occurs.  And because
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the interrupt calling routine which is installed by ATTACH() ends with an RTI, your service routine
can end with a standard RTS, return or } which makes debugging much easier.

The following sections explain how to define and install interrupt service routines that enhance the
usefulness of many of the 68HC11’s hardware features.

The following example illustrates how to write and use an interrupt service routine.

An Example: Periodically Calling a Specified Function

Many times a program needs to execute a specified action every X milliseconds, where X is a speci-
fied time increment.  We can use an output compare interrupt to accomplish this.  We’ll set up an
interrupt service routine that executes once per millisecond (ms), and maintains a ms_counter
variable that is incremented every millisecond.  The variable time_period specifies the time in-
crement, in ms, between calls to the specified function which is named TheFunction().  For this
simple example, TheFunction() inverts the contents of the static variable named
action_variable.

Listing 6-1 TIMEKEEP.C, An Example of an Interrupt Service Routine
#define OC3_MASK  0x20          // used to set/clear OC3 interrupt flag and mask
#define ONE_MS  500             // 500 counts of 2us TCNT = 1 ms
#define DEFAULT_TIME_PERIOD  1000   // Execute once per second

static int ms_counter;          // runs from 0 to 65535 before rolling over
static uint time_period;        // specifies time in ms between function calls
static int next_execution_time; // next scheduled value of ms_counter
static int action_variable;     // state is toggled by TheFunction()

_Q void TheFunction(void)       // the function simply complements
{   action_variable = !action_variable;  // a variable
}

_Q void FunctionTimer(void)
// This interrupt service routine is called by an OC3-based clock interrupt and
// simply calls TheFunction periodically.
{  ms_counter++;
   if(ms_counter == next_execution_time)
   {  TheFunction();
      next_execution_time = next_execution_time + time_period;
   }
   TOC3 += ONE_MS;        // set OC3 count for next interrupt in 1 ms
   TFLG1 = OC3_MASK;      // reset the oc3 interrupt flag by writing a 1
}

_Q void StopFunctionTimer(void)
{   TMSK1 &= ~OC3_MASK;   // clear OC3I to locally disable OC3
}

_Q void StartFunctionTimer(void)
// inits variables and locally enables OC3 interrupt;
// does not globally enable interrupts!
{  StopFunctionTimer();        // locally disable OC3 while we set it up
   ATTACH(FunctionTimer, OC3_ID);  // post the interrupt service routine
   ms_counter = 0;
   time_period = next_execution_time = DEFAULT_TIME_PERIOD;   // 1/second
   action_variable = 0;        // state is toggled by TheFunction()
   TOC3 = TCNT + ONE_MS;       // start after a 1 ms delay
   TFLG1 = OC3_MASK;           // clear interrupt flag OC3F
   TMSK1 |= OC3_MASK;          // set OC3I to locally enable OC3
}
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In this program, we define a bit mask named OC3_MASK which has bit 5 set and all other bits clear.
From inspection of the register summary in the Motorola 68HC11F1 booklet, we see that this mask
isolates the Output Compare 3 (OC3) mask bit in the TMSK1 register, and isolates the OC3 interrupt
flag bit in the TFLG1 register.  The other relevant registers are the 16 bit free-running counter regis-
ter named TCNT which increments every 2 microseconds, and the Timer Output Compare 3 register
named TOC3.  If the OC3 interrupt is enabled by setting its mask bit = 1 in TMSK1 and by globally
enabling interrupts using ENABLE_INTERRUPTS() or the assembly instruction CLI, then an inter-
rupt occurs when the count in TCNT matches the count in TOC3.  Thus we can control when the next
interrupt occurs by writing a specified count to TOC3.

TheFunction() is our prototypical function that simply toggles the action_variable between
the values 0 and 1.  The goal of our interrupt service routine is to call TheFunction() exactly once
per second.

FunctionTimer() is the OC3 interrupt service routine.  It increments the ms_counter variable,
and checks if ms_counter equals next_execution_time.  If so, it calls TheFunction() and
updates next_execution_time by adding time_period to it.  Then FunctionTimer() incre-
ments the contents of the TOC3 register to set up the next interrupt in 1 ms, and clears the interrupt
request flag by writing a 1 to the OC3 flag bit in the TFLG1 register.  Note that FunctionTimer()
does not have any input parameters or a return value.  Moreover, it is not defined using the
_interrupt keyword which would insert an RTI (return from interrupt) instruction at the end of
the function.  Rather, ATTACH() will supply the RTI instruction for us.  Because
FunctionTimer() does not end with an RTI, we can easily test the FunctionTimer() service
routine using our standard interactive debugging techniques.

StopFunctionTimer() simply clears the local OC3 interrupt mask bit in the TMSK1 register to
disable the OC3 interrupt.

StartFunctionTimer() first locally disables OC3 to prevent an interrupt while the service rou-
tine is being posted.  Then it calls:

ATTACH(FunctionTimer, OC3_ID);

to ensure that FunctionTimer() is called every time the OC3 interrupt occurs; ATTACH() also
installs a return sequence that supplies the required RTI (return from interrupt) opcode.  ATTACH()
is described in detail later in this chapter.  Note that its input parameters are a pointer to the interrupt
service routine FunctionTimer, and a pre-defined constant named OC3_ID that identifies the
interrupt.  All of the interrupt identifier constants are summarized in Table 6-3.

After calling ATTACH(), StartFunctionTimer() initializes the timing variables, and initializes
TOC3 so that the first interrupt will occur in 1 ms.  It then clears the interrupt flag by writing a 1 to
the OC3F flag bit in the TFLG1 register using the statement:

TFLG1 = OC3_MASK;

Clearing the interrupt flag bit before enabling the interrupt is a highly recommended procedure that
ensures that all prior pending OC3 interrupts are cleared before the interrupt occurs.  Finally,
StartFunctionTimer() locally enables the OC3 interrupt by setting the mask bit in TMSK1 with
the statement:
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TMSK1 |= OC3_MASK;

To start the interrupt, main() simply calls StartFunctionTimer() followed by
ENABLE_INTERRUPTS().  After you compile and download the TIMEKEEP.C program and type:

main

from your terminal, the OC3 interrupt is running in the background.  To monitor the state of the
action_variable, interactively type at your terminal:

See( )

and you will see the variable’s value change from 0 to 1 exactly once per second.  Type any key to
terminate the See( ) function.

This short program provides a template that shows how a function can be periodically called with a
period specified by the variable time_period.  Of course, in your application the called function
would perform a more useful action than does TheFunction() in this simple example.   You could
make other enhancements; for example, a foreground task could manipulate the contents of
time_period to change the frequency at which TheFunction() is called, and you could use
ms_counter to measure elapsed time with 1 ms resolution.

Note that, to maintain timing accuracy, the interrupt service routine should have a worst-case exe-
cution time of under 2 ms; otherwise the FunctionTimer() will miss the interrupt when TCNT
matches TOC3, and an extra delay of 131 ms will occur while the TCNT timer rolls over.  In general,
interrupt service routines should be short and simple.  Complex calculations should be done by
foreground tasks, and the interrupt routines should perform the minimum actions necessary to serv-
ice the time-critical events.  An example of this approach is presented in the Turnkeyed Application
Program.

Cautions and Restrictions

Note that the OC2 interrupt is used as the multitasker’s timeslice clock.  Before using this interrupt
for another purpose, make sure that you don’t need the services provided by the timeslicer which
supports the multitasking executive and the elapsed time clock.

The main restriction on interrupt service routines is that they must not call _forth library functions;
the Glossary document and the header files in the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory
specify which functions are of the _forth type.  (For the curious: The reason is that _forth func-
tions assume that the Y register has been pre-initialized to point to common RAM that is usable as a
data stack.  Because C functions use the Y register for other purposes, it is difficult to ensure that the
Y register is properly initialized for _forth functions upon entry into an interrupt routine.)

Summary

Using interrupts requires:

coding an interrupt service routine;

using ATTACH() to bind it to the appropriate interrupt; and,
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enabling its local interrupt mask.

Calling Kernel Functions From Within ISRs

There is a special consideration when calling _forth library functions from interrupt service rou-
tines.  Fortunately, this restriction can be overcome by simply including the FORTHIRQ.C file with
your source code, and following the simple example presented in the file.  FORTHIRQ.C is present
in the \MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory.

The method is very simple: just place a call to the function

BeginForthInterrupt();

at the top of your interrupt service routine (or, at the minimum, before any _forth functions are
called).  Before the final exit point of the interrupt service routine, place a call to the function

EndForthInterrupt();

That's all there is to it.  The ability to call _forth library functions from interrupt service routines
makes it easier to manage page-mapped I/O devices on an event-driven basis.
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Chapter 7

Failure and Run-Time Error Recovery

This chapter describes a variety of useful hardware features of the 68HC11F1:

The processor’s external hardware interrupt /IRQ, may be used by external devices to
request immediate service.

Three nonmaskable interrupts cause a hardware reset: the external reset, the COP, and
the clock monitor.  The main reset is activated on power-up or when the /RESET pin is
pulled low for more than 4 machine cycle.  Enabling the computer operating properly
circuit, COP, sets up a watchdog timer that resets the processor unless a special register
is periodically updated.  This provides a means of recovering from crashes in an embed-
ded application.  Use of the COP feature requires installation of an autostart routine
which services the COP.  The clock monitor backs up the COP by resetting the machine if
the system clock fails.

STOP and WAI instructions are available to put the CPU in low power modes with dif-
ferent degrees of power savings

Finally, an on-board jumper allows selection of the standard operating mode or the spe-
cial cleanup mode.

Getting Started and Getting Stopped – Restarts and
Resets

External Hardware Resets

The main reset interrupt of the 68HC11 processor is activated upon power-up or when the active-
low /RESET signal is pulled low.  The processor does not distinguish between a power-on reset and
a reset caused by a low level on the /RESET input pin; both result in the same hardware initializa-
tion and software restart sequence.

The /RESET line is normally held high by a pull-up resistor.  You can pull the /RESET line low by
pushing on the reset switch.  Moreover, any peripheral device can reset the processor by driving the
/RESET signal low for at least 2 microseconds using an open-collector output.

The active-low /RESET signal is controlled by the power monitor circuitry.  On power-up, the
monitor asserts the reset signal until the positive supply has stabilized above 4.5 Volts.
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Internal Resets

The 68HC11 resets itself when a failure condition is detected by either the computer-operating-
properly (COP) or the clock monitor circuit.  When either of these failure conditions occur, the
processor drives the /RESET line low for less than 4 machine cycles to reset itself and any peripher-
als that are connected to the /RESET line.  The processor then determines which failure (COP or
clock monitor) caused the reset, and branches to the associated service routine.  QED-Forth initial-
izes the interrupt vectors for the COP and clock monitor to perform the standard restart sequence,
and the programmer may change the vectors if desired.  The operation of the COP and clock moni-
tor are described in the following sections.

Crashes

A computer “crashes” when it executes a set of instructions that it is not supposed to.  This can
cause the processor to write over memory locations that are not write-protected.  The processor may
get into an infinite loop of legal instructions (in which case it will not respond to your commands),
or it may eventually execute an “illegal opcode”.  Illegal instructions are detected by the processor’s
illegal opcode trap and result in a restart (in which case you will see the QED-Forth startup message
on your terminal).

The best response to a crash is to push the reset button.  This initializes all of the registers and per-
forms a restart.  In most cases a “warm restart” will be performed, which should allow you to con-
tinue programming with access to all of the words that you have defined.  In other cases, the state of
the user area or the dictionary may be corrupted.  If QED-Forth detects the corruption, it will auto-
matically execute a “cold restart”; otherwise you may execute COLD which performs the restart.
The cold restart re-initializes all of the user variables that control QED-Forth’s operation.

Resets versus Restarts

To clarify the discussion of crashes, some terms must be defined.  A “reset” is an initialization proc-
ess invoked by the hardware of the 68HC11, while a “restart” is an initialization process controlled
by software.

A reset can be caused by any of four events:

◙ power is applied to the processor

◙ the reset button is pushed

◙ the clock monitor detects a clock failure

◙ the computer operating properly (COP) circuit detects a failure

The hardware of the 68HC11 is configured by a set of registers that reside at locations 8000H
through 805FH.  (These hardware registers should not be confused with the programming registers
D, X, Y, etc.)  The reset initializes essentially all of the registers, and then initiates an interrupt re-
sponse sequence.  The interrupt calls a specified response program whose address is stored in an
interrupt vector near the top of memory.  The power-on and reset-button resets share the same inter-
rupt vector at FFFE.  The clock monitor and COP resets are re-vectored to addresses in EEPROM
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where the programmer can install customized service routines, if desired.  All of these service rou-
tines are initialized to perform the default restart routine.

A “restart” is an initialization process performed by software.  After a (hardware-invoked) reset, the
68HC11 calls a restart routine which re-initializes some of the registers to accommodate QED-
Forth, and initializes other memory locations including all or part of the user area.  A restart can also
be invoked solely via software, by executing the kernel words COLD or WARM.  When the illegal
opcode trap detects an illegal instruction, it calls a restart routine, but does not perform a hardware
reset.  Note that a reset always results in a restart, but that a restart can be performed without a reset.

COLD is the most comprehensive software-invoked initialization command.  Executing COLD after
a crash usually puts the machine into a well-known state by completely initializing the user area
which controls QED-Forth’s operation.  But COLD does not initialize all of the registers.  There-
fore, in crashes where the contents of key hardware registers are corrupted, it may be necessary to
perform a hardware reset by pushing the reset button or powering the machine off and on again.

Cold versus Warm Restarts

There are two types of restart: cold and warm.  A cold restart initializes all of the parameters used by
the QED-Forth system.  These parameters are stored in the “user area”, which is a 256-byte block of
memory in the common RAM.  All of the memory management pointers, format variables to control
numeric conversion, quantities that enable the compilation of local variables, and many other system
values are stored in the user area.  COLD initializes these to default values.  COLD also initializes
several vital interrupt vectors so that they will perform the startup sequence if they are invoked.
These vital interrupts --clock monitor, computer operating properly, and illegal opcode trap-- were
discussed in the last chapter.

A warm restart, on the other hand, assumes that most of the user variables have already been prop-
erly initialized.  A warm restart initializes only a few of these parameters, including stack pointers
(it clears the stacks) and some multitasking variables (it makes sure that a single task is running and
that it has control of the serial port).

A warm restart preserves the prior number base (whatever you had set it to before the restart oc-
curred) while a cold restart always sets the base to decimal.  A warm restart preserves the user’s
memory map and QED-Forth’s ability to find user defined words, while a cold restart sets a default
memory map and forgets all words except those in the original kernel.

The default restart program decides whether to perform a cold or a warm restart by checking a loca-
tion in the user area to see if a specified pattern (1357H) is stored there.  If the correct pattern is
present, the restart program assumes that the user area is already properly initialized, so it performs
a warm restart.  If the location does not contain the proper value, the restart program assumes that
some event (perhaps a crash) has corrupted the user area, so a cold restart is executed to force the
system to a known state.

Because the QCard’s common RAM is battery backed (except for the 1K of RAM at B000H-B3FFH
on the 68HC11 itself), the user area (including the location where the startup pattern is stored)
maintains its contents even when it is powered down.  Thus a warm restart will be performed most
of the time when you turn on the QCard.  This is convenient: it means that access to the words you
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defined, your memory map, and the contents of the user area are not altered by removal of power.  It
also means that pushing the restart button and powering the machine off and on again have similar
effects, except that powering the machine off loses the contents of the 1K of RAM on the 68HC11 at
addresses B000H-B3FFH.

If a crash over-writes the user area, the next restart will be a cold restart.  QED-Forth signals a cold
startup by printing a COLDSTART statement before the QED-Forth V4.4x startup message is
printed.  If the crash did not corrupt the startup pattern in the user area, a warm restart would be
performed, and you could continue debugging.  In most cases, all of the words that you defined
would still be accessible.  If the machine is behaving in an unpredictable manner, however, it may
be necessary to reset the machine and perform a cold restart to establish a known initialized state.

Recovery Tricks

Some crashes may be difficult (but not impossible!) to recover from.  For example, if the name area
of the dictionary is corrupted, QED-Forth may not be able to find even the most basic commands in
the dictionary.  If every command you give is met with the ? error message, try executing COLD.
The FIND word in the interpreter is programmed to always recognize the word COLD, even if the
dictionary is corrupted.

If All Else Fails, Use the Special Cleanup Mode

These recovery techniques may not work if you have a buggy autostart word or a major crash.  If
typing COLD or pressing the reset button does not greet you with the standard “QED-Forth V4.4x”
prompt, you may need to use the special cleanup mode to restore your system to a proper state.  This
involves installing Jumper J1 and then pressing the reset button.  The special cleanup procedure
places the QCard in the same state it was in when it was shipped from the factory.

The COP Watchdog Timer and Clock Monitor
In many embedded control applications, it is important that processor crashes be detected quickly so
that the system can rapidly be returned to a proper operating condition.  The Computer Operating
Properly subsystem, also known as a “watchdog timer” or “COP”, provides this capability.  It gives
the programmer a way to force a processor reset if an application program crashes or gets lost.
When enabled, the COP resets the processor if the application program fails to periodically update a
specified register within a predetermined time-out period.  The COP time-out period is programma-
ble to any of four values between 8 msec to 0.5 seconds.

To use the COP, design and debug an application program that, in addition to performing all of its
normal tasks, periodically writes a 2-byte pattern to the COP reset (COPRST) register as described
below.  The specified pattern must be written before the COP “times out”.  Then install the applica-
tion as an autostart routine using the QED-Forth word AUTOSTART or PRIORITY.AUTOSTART,
and enable the COP.

If the application program ever allows the time-out period to be exceeded without writing the speci-
fied pattern, the COP resets the processor.  Presumably the pattern will not be properly written if the
processor crashes for any reason, so the COP provides a way of automatically resetting the proces-
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sor to recover from crashes.  Then, because the application program has been installed as an
autostart routine, the application is automatically restarted when the COP forces a reset.

Be Careful with the COP

Before enabling the COP, make sure that a debugged application program that properly updates the
COPRST register has been installed as an Autostart() or PriorityAutostart() routine.  If the startup
program is improperly designed so that it is unable to service the COP on time, the COP will reset
the machine, thereby invoking the startup program again, and leading to an infinite series of COP
resets.

If you find yourself in this situation you can return the QCard Controller to its “pristine” state by
entering the special clean-up mode: install Jumper J1 and then press the reset button to resume nor-
mal operation with the COP disabled and any autostart routine removed.

The COP feature should prove trouble-free as long as the application program is:

fully debugged;

capable of updating the COPRST in a timely fashion; and,

installed as an autostart routine.

Configuring the COP

Three bits are used to configure and enable/disable the COP.  They are named CR0, CR1, and
NOCOP.  CR0 and CR1 are located in the OPTION register.  These bits determine the amount of
time which can elapse between updates of the COPRST register by the application program.  If the
time-out period is exceeded, the COP forces a reset.  The four available time-out periods are:

Table 7-1 COP Time-out Period

CR1 CR0 Time-out Period

0 0 8.192 ms

0 1 32.768 ms

1 0 131.07 ms

1 1 524.5 ms

The CR1 and CR0 bits in the OPTION register may be modified only during the first 64 cycles after
a reset.  The function InstallRegisterInits() makes it easy to specify a value that will be automatically
stored into the OPTION register after every reset; consult its glossary entry for details.

The third control bit is called NOCOP and is located in the CONFIG register.  The QCard is shipped
with this bit set so that the COP is disabled.  To enable the COP, clear this bit.  The CONFIG regis-
ter’s contents are non-volatile, and so are maintained even after the processor has been powered
down.
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Servicing the COP

Servicing the COP is accomplished by writing 55H and AAH to the COPRST register.  Although
the order of the writes is important, the number of intermediate instructions between them is incon-
sequential.  The two writes must be performed before the time-out period has elapsed.  Once AAH
has been stored, the COP will need to be serviced again before the next time-out period has elapsed.

The Clock Monitor

The clock monitor provides a second level of security by monitoring the main system clock and
resetting the processor if the clock signal disappears or oscillates too slowly.  The clock monitor
does not initiate a reset as long as the E-clock frequency is greater than 200 kHz (the E-clock fre-
quency is one quarter the frequency of the on-board crystal).  A reset is always triggered at E-clock
frequencies below 10 kHz, and may be triggered at frequencies as high as 200 kHz.

The clock monitor is primarily used as a backup for the COP.  The COP relies on the clock’s pres-
ence for reliable operation, and the clock monitor can ensure that the processor is safely reset if the
clock fails.

Enabling the clock monitor is accomplished by setting the CME (clock monitor enable) bit in the
OPTION register.  This bit may be set or reset at any time.  A second bit named FCME (force clock
monitor enable) is also involved.  When the FCME bit is in its default state of 0, the bit has no ef-
fect, and when FCME is set, the clock monitor feature cannot be disabled until a reset occurs.  We
will assume that FCME is 0, and that the CME bit controls the clock monitor.   See MC68HC11F1
Technical Data Manual, p.5-3 for further details.  Note also that if the clock monitor is enabled, a
STOP assembly instruction will trigger a reset because it stops the clock, as discussed in the “Low
Power Modes” section below.

Processor Operating Modes

Low Power Modes

The 68HC11F1 has two low power modes.  These modes are enabled by assembly instructions
STOP and WAI (wait).  The STOP command puts the CPU into its lowest power-consumption
mode by stopping all clocks, thereby stopping all processing (MC68HC11F1 Technical Data Man-
ual, p.5-17).  If the clock monitor is enabled, a reset will be triggered when the clocks stop due to a
STOP instruction.  To use a STOP instruction when the clock monitor reset is enabled, disable the
monitor before the STOP instruction, and re-enable it after returning from the STOP.

Pulling either /RESET or /IRQ low wakes the processor up after a STOP instruction.  Pulling the
reset line low awakens the CPU and performs the standard reset startup sequence.  For the CPU to
be awakened by the /IRQ line going low, the I bit in the CCR register must be clear so that interrupts
are globally enabled.  When /IRQ goes low and the I bit is clear, execution begins with the /IRQ
handler and then executes the code following the STOP instruction.
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The STOP instruction is executed as a NOP unless the S bit in the CCR is cleared.  After clearing
the S bit, any occurrence of a STOP instruction puts the CPU into its lowest power mode.  After
each reset or restart, QED-Forth leaves the S bit in the CCR in its default set position, meaning that
the STOP mode is disabled.

WAI Low Power Mode

The WAI instruction also puts the 68HC11F1 in a low power mode.  However, clocks are not dis-
abled in the wait mode, so power consumption is greater than the STOP mode.  After a WAI in-
struction, the machine state is stacked and processing stops.  Power savings can be increased by
setting the I bit in the CCR and disabling the COP.  Further savings can be achieved by disabling the
on-chip subsystems, including executing A/D8.OFF to turn off the A/D (MC68HC11F1 Technical
Data Manual, pp.5-17...5-18).

The WAI low power state can only be exited by an unmasked interrupt or by pulling the /RESET
pin low.  When an unmasked interrupt occurs, (for example /IRQ goes low, the COP is not serviced,
clock monitor failure or reset occurs), the appropriate interrupt handler is executed and then proc-
essing continues with the instructions following the WAI.  Implementing the WAI lower power
mode is accomplished by simply executing WAI.

Summary of Low Power Modes

In sum, power can be saved by putting the CPU in a low power mode while processing is not re-
quired.  The 68HC11F1 has two low power modes with different degrees of savings.  Both modes
are terminated by unmasked interrupts.  While the WAI instruction can be called without any prepa-
ration, the STOP instruction must be enabled by clearing the S bit of the CCR register.

Operating Modes of the 68HC11F1 CPU

The 68HC11F1 microcontroller has four operating modes: expanded nonmultiplexed, special test,
single chip, and special bootstrap modes (M68HC11 Reference Manual, Section 3 and
MC68HC11F1 Technical Data Manual, pp.4-1...2).  The standard operating mode is expanded non-
multiplexed, meaning that the processor has access to expanded memory beyond its on-chip mem-
ory, and that the address and data lines are not multiplexed together (as they are on other members
of the 68HC11 family).  The QCard also makes use of the special test mode, renaming it the “special
cleanup” mode.  This mode makes it possible to rapidly recover from any programming error that
causes repeated machine crashes.  The single chip mode takes away the ability of the processor to
address external memory, and special bootstrap allows startup code to be inserted into the processor;
these two modes are not used on the QCard.

The processor’s operating mode is determined by the states of two pins named MODA and MODB
(refer to the schematic in Appendix C).  On the QCard, MODA is always high and MODB may be
pulled LOW by installing Jumper J1; this invokes the special cleanup mode.  When Jumper J1 is not
installed, the board is in the standard operating mode.
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Special Cleanup Mode

The Special Cleanup Mode is useful if a buggy startup routine has been installed (using the
AUTOSTART or PRIORITY.AUTOSTART words) or if invalid register initializations have been
specified (for example, using the InstallRegisterInits() word).  To recover from these problems,
simply enter the special cleanup mode by installing Jumper J1 and pressing the reset button.  This
completely re-initializes the system software to its “pristine” state, and displays the QED Forth
startup message at your terminal.
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Chapter 8

Digital and Timer-Controlled I/O

Overview of Available Digital I/O
The  QCard Controller provides up to 8 digital I/O lines, 8 analog input lines (which may be used as
digital intputs), and up to three communications channels.  The digital I/O lines originate from two 8
bit ports on the CPU (68HC11) named PORTA and PORTE.  Table 8-1 summarizes the uncommit-
ted digital I/O available.

Table 8-1 The  QCard Controller’s Uncommitted Digital I/O

I/O
Lines

Type Port
Address

Comments / Alternate Uses

6 Timer-controlled inputs or outputs
including 3 input-capture, 3
output-compare, and pulse
accumulator

PA 0-2, 5-7 Bit-by-bit configured by the application as inputs or
outputs, including:

Timed inputs: PA 0-2
Timed outputs: PA 5-7

Pulse accumulator: PA 7

There are a total of 6 uncommitted digital I/O lines for your use.  After initialization or reset, all
digital I/O lines are configured as inputs, but they may be reconfigured as outputs.

In addition to these I/O lines there are several committed to other services on the controller; these
are summarized in Table 8-2.

Table 8-2 Committed I/O pins

Service Port Pins

8-bit A/D CPU PORTE PE 0-7

Serial 2 CPU PORTA PA 3-4

For applications requiring even more digital I/O, I/O lines usually committed to the 8-bit A/D and
the secondary serial port may be redirected as general purpose digital I/O if these other services are
not needed.  Table 8-3  summarizes the digital I/O lines gained if other services are not used.
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Table 8-3 Additional digital I/O lines made available if other services
are forfeited and their committed I/O pins freed.

Services Used Digital I/O Available

8-bit A/D Serial 2 Inputs Outputs Total

Yes Yes 0 to 6 0 to 6 6

No Yes 6 to 14 0 to 6 14

No No 8 to 16 0 to 8 16

The maximum number of digital inputs and outputs is 16 (up to 16 can be configured as inputs, up
to 8 as outputs) if none are used for the 8-bit A/D or the secondary serial port.  Table 8-3
summarizes the digital I/O and alternate use of some of the I/O pins.

Digital inputs and outputs are very useful in data acquisition, monitoring, instrumentation and con-
trol applications.  A low voltage (approximately 0 Volts) is established on a digital output pin when
the processor writes a logical 0 to the corresponding bit in a data register associated with the digital
output port.  A high voltage (approximately 5 Volts) is established on the digital output pin when the
processor writes a 1 to a corresponding bit in the port’s data register.  This allows software to con-
trol external events and processes.  For example, an application program can use digital outputs to
activate solenoids and turn switches and lights on and off, or to interface the  QCard Controller with
a wide variety of digital accessories.

A digital input allows the processor to monitor the logical state of an external voltage by reading a
data register associated with the port.  External voltages near 0 Volts connected to a digital input
cause the corresponding bit in the port’s data register to be read as a logical 0, and external voltages
near 5 Volts connected to a digital input are read as a logical 1.  Application programs can use digi-
tal inputs to read switches and keypads or to interface to digital devices such as A/D converters and
real-time clocks.

Using digital I/O is very easy: simply configure the output port as input or output as explained be-
low, and then use functions or assignment statements to read from or write to the port.  The names
of the data and direction registers and all required initialization routines are pre-defined in the
header files so you don’t have to worry about hexadecimal register addresses in your code.

The following sections describe the available digital I/O ports and how to use them.

The digital I/O signals on the  QCard Controller originate from a Motorolla 68HC11 processor chip.
The 68HC11 provides two 8 bit ports named PORTA and PORTE.

Table 8-4  summarizes the digital input/output available on the  QCard Controller including the
names, addresses, and number of signals associated with the digital ports on the 68HC11.  The “con-
figurable as” column specifies whether the direction of the port may be changed on a bit-by-bit,
nibble-by-nibble, or byte basis (or in the case of PORTE, configured as digital or analog input). The
final column lists alternate uses (other than standard digital I/O), the signal pins and the number of
signals associated with the alternate uses.
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Table 8-4 Digital I/O Port Addresses and Configurability.

Port Name Address
(HEX)

I/O
Line

Configurable As Alternate Use (Signals Used)

68HC11:

PORTA 8000 8 Bitwise I/O Serial2: PA3 & PA4 (2)
Pulse accumulator: PA7 (1)

Timed inputs: PA0-3 (3 or 4)
Timed outputs: PA3-7 (4 or 5)

PORTE 800A 8 Bytewise digital or
analog input

8 bit A/D: PE0-7 (8)

Table 8-5  specifies the named data direction register which controls the input/output direction, or
specifies the functions that configure each digital I/O port.

Table 8-5 Digital I/O port data direction registers
and configuration functions.

Port Name Configured By

68HC11:

PORTA DDRA

PORTE AD8On()
AD8Off()

Using the Digital I/O Ports on the 68HC11 Chip

This section describes how to configure and access the PORTA and PORTE digital ports in the
68HC11 chip on the  QCard.

As you work through the examples in the remaining sections of the chapter, you can use a voltmeter
to verify that the outputs are behaving as you expect.  You can also connect the input signals
through a 1 kOhm resistor to +5V or GND to verify that you can digitally read their values.  (The 1
kOhm resistor is just a safety precaution to minimize the chance that you’ll “blow out” a port bit by
mistakenly connecting an output bit to a supply voltage; even if you make this mistake, the resistor
would limit the current to safe levels.)

Digital inputs and outputs are very useful in data acquisition, monitoring, instrumentation and con-
trol applications.  A low voltage (near 0 Volts) is established on a digital output pin when the proc-
essor writes a logical 0 to the corresponding bit in a data register associated with the digital output
port.  A high voltage (near 5 Volts) is established on the digital output pin when the processor writes
a 1 to a corresponding bit in the port’s data register.  This allows software to control external events
and processes.  For example, an application program can use digital outputs to activate solenoids
and turn switches and lights on and off, or to interface the  QCard Controller with a wide variety of
digital accessories such as D/A converters, displays, etc.

A digital input allows the processor to monitor the logical state of an external voltage by reading a
data register associated with the port.  External voltages near 0 Volts connected to a digital input
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cause the corresponding bit in the port’s data register to be read as a logical 0, and external voltages
near 5 Volts connected to a digital input are read as a logical 1.  Application programs can use digi-
tal inputs to read switches and keypads or to interface to digital devices such as A/D converters and
real-time clocks.

PORTA

PORTA is configurable as input or output on a bit-by-bit basis. To configure PORTA, use an assign-
ment statement to write to the DDRA (Data Direction Register A) register.  DDRA and all 68HC11
register names are defined in the QEDREGS.H file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC
directory.  Writing a 1 to a bit position in DDRA configures the corresponding port bit as an output,
and writing a 0 to a bit position configures the corresponding bit as an input.  For example, the fol-
lowing C statement configures PORTA as all outputs:

DDRA = 0xFF;

To configure PORTA as all inputs, use the statement:

DDRA = 0x00;

If we want to configure bits 0-6 as inputs, and bit 7 as output, we can execute:

DDRA = 0x80;

To change the state of an output bit on PORTA of the 68HC11 chip, use an assignment statement
with PORTA on the left hand side to write to the port’s data register named PORTA.  For example, if
PORTA is configured as all outputs, the following C statement sets all PORTA bits high:

PORTA = 0xFF;

To read the state of PORTA, use an assignment statement with PORTA on the right hand side to read
the port’s data register.  For example, the following code fragment reads PORTA and places the re-
sults in the variable named latest_porta_state:

static unsigned char latest_porta_state;
latest_porta_state = PORTA;

PORTE

PORTE (named in the QEDREGS.H file) is an 8 bit analog or digital input port.  PORTE is configured
as a digital input after a reset or restart, and is read in the same way that PORTA is read: simply use it
as the right hand side of an assignment statement.  For example, to read the digital state of PORTE,
your program could execute the statements:

static unsigned char latest_porte_state;
latest_porte_state= PORTE;

To configure PORTE for analog input, use the function:

AD8On()

To turn off the 8 bit A/D and revert to a digital input port, use:

AD8Off()
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(For experts and the curious:  AD8Off() turns the 8 bit analog converter off by clearing the A/D
power up bit named ADPU in the OPTION register; AD8On() sets the ADPU  bit.)

Using Uninterruptable Operators

The Importance of Uninterruptable Operators

Care must be taken when performing “read/modify/write” operations in applications that use inter-
rupts or multitasking.  Operations such as setting or clearing individual bits in a byte while leaving
other bits unchanged are called “read/modify/write” operations because they involve reading the
port, modifying the read contents, and writing the result back to the port.  Unpredictable results can
occur if more than one interrupt service routine or task tries to access a single port or memory loca-
tion at the same time using a read/modify/write sequence.  The simplest solution to this problem is
to access the memory location or port using an “uninterruptable” read/modify/write operator.

The following scenario illustrates the importance of uninterruptable operators when more than one
task or interrupt routine is writing to a memory location.  Let’s assume that two different tasks are
controlling the bits of PORTA.  Assume that TASK1 is controlling the state of bit 4, and TASK2
controls bit 7.  Let’s assume that bit 4 is low when TASK2 tries to execute the following code:

static unsigned char mask = 0x80;
PORTA |= mask;

TASK2 is merely trying to set the top bit in PORTA to 1, but this statement may have unintended
consequences.  The compiler generates code that reads the contents of PORTA, performs a bitwise
OR with the contents of mask, and stores the result back into PORTA.  Assume that the timeslicer
interrupt is serviced just after the OR instruction and transfers control to TASK1.  TASK1 may
change the state of bit 4 to a 1.  When control is then transferred back to TASK2, the final store to
PORTA is executed.  Unfortunately, this store command erroneously sets bit 4 back to the low state!
TASK2 was interrupted after it read the state of PORTA but before it had a chance to write the new
contents, so it undoes the change that TASK1 made in the state of PORTA bit 4!  This can indeed
cause problems in an application program.

Pre-coded Read/Modify/Write Functions

The pre-coded read/modify/write functions avoid this problem by disabling interrupts for ten to
sixteen cycles (2.5 to 4 microseconds at a 16 MHz crystal speed).  This prevents the corruption of
the contents when different tasks or interrupts share access to a single location.  The following func-
tions are uninterruptable:

void  ChangeBits( uchar data, uchar mask, xaddr address )
void  ClearBits( uchar mask, xaddr address )
void  SetBits( uchar mask, xaddr address )
void  ToggleBits( uchar mask, xaddr address )

Additional uninterruptable operators are declared in the XMEM.H header file in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory; these routines are described in detail in the Con-
trol-C Glossary.
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Create Your Own Uninterruptable Functions

It is easy to create your own uninterruptable functions using the _protect keyword.  For example,
the following uninterruptable function sets specified bits in a port or memory byte:

void _protect  SetBitsUninterrupted( uchar mask, char* address )
{  *address |= mask;
}

In response to the _protect keyword, the compiler ensures that interrupts are temporarily disabled
while SetBitsUninterrupted() is executing, and that the global interrupt mask (the I bit in the
condition code register) is restored to its prior state after the function terminates.

Simple stores to and fetches from 1-byte or 2-byte memory locations are intrinsically uninterrup-
table because they are implemented with single assembly-language opcodes.  However, the 68HC11
processor does not have a single opcode that can access a 32 bit memory location.  Thus, problems
can arise when one task writes to a floating point or long variable, and a second task needs to read
the saved value.  The data that is read may be invalid if the read or the write is interrupted between
the time of the writing/reading of the first 16 bits and the writing/reading of the second 16 bits.  In
these cases uninterruptable operators should be used.  An example is presented by the functions
named:

PeekFloatUninterrupted()
PokeFloatUninterrupted()

which are defined using the _protect keyword in the TURNKEY.C example program found in the last
chapter of this book.

Connecting Hardware to the Digital Outputs
On the  QCard Controller the processor’s port A is available for you to connect to external devices.
You can use them to directly drive LEDs, relays, transistors, opto-isolators or other digital logic
devices.  But please be careful -- whenever these outputs are connected to external devices you must
stay within the voltage and current capabilities of the output pins.  Because the MC68HC11 refer-
ence manuals don’t specify the electrical capability of these ports very well we provide some addi-
tional information here.

Electrical Characteristics of the 68HC11’s I/O Ports

The electrical characteristics of the 68HC11F1’s digital I/O signals are specified in detail on page A-
3 of the MC68HC11F1 Technical Data Manual.  This table lists the “DC Electrical Characteristics”
of the processor.

Pins on the 68HC11 configured as digital inputs report a logical “high” if the input voltage is greater
than 0.7 times the supply voltage, or 3.5 Volts.  They report a logical “low” if the input voltage is
less than 0.2 times the supply voltage, or 1.0 Volt.  Input voltages between 1.0 and 3.5 Volts may be
read as either high or low.

Pins on the 68HC11 configured as digital outputs in the “high” state can maintain the output voltage
within 0.8 Volts of the positive supply if 0.8 mA or less is being drawn from the pin.  If less than 10
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microamps is being drawn, the output high voltage is within 0.1 Volt of the positive supply.  In the
low state, the digital outputs can keep the voltage below 0.4 Volts while sinking up to 1.6 mA of
current.  Load circuitry that requires significant current to be sourced or sunk by the digital output
should include external resistors to ensure that the absolute maximum rating of 25 mA per output
pin is never exceeded.

Protecting the Input and Output Pins

These output pins are very useful because they can directly drive a wide range of devices.  Never-
theless, any circuitry connected to the processor should take care to:

◙ Prevent excessive voltage levels at the pin; and,

◙ Prevent excessively great currents.

We’ll address each of these concerns in turn.

Preventing Excessive Voltages

Excessive voltages are prevented by ensuring that voltages of less than a diode drop below VSS (-0.6
V) or greater than a diode drop above VDD (VDD+0.6 V ) are never applied to the processor.  For
some applications, particularly when driving inductive loads such as relays, you may need to pro-
vide Schottkey diode clamps between the pin and VDD and between the pin and ground.  All pins on
the processor have inherent diode clamps to the processor’s ground voltage, VSS, but it is best not to
rely on these; if there is the possibility of the output pin being driven to a negative voltage level it is
better to prevent excessive power dissipation in the processor package by externally clamping the
voltage to ground (VSS) with a Schottkey diode.  Processor port A also have inherent diode clamps
to the chip’s +5V supply voltage, VDD, but it is better not to rely on these; instead external Schottkey
clamps to VDD should be used.

Preventing Excessive Currents

The current into or out of any pin on the MC68HC11 should also be limited to prevent damage.  The
specified maximum current is 25 mA into or out of any one pin at a time, although these pins can
typically withstand transients of more than 100 mA at room temperature.  In driving more than one
pin at a time it is necessary only to stay within the processor’s maximum power dissipation.  Un-
fortunately, Motorola doesn’t specify what this maximum is, but we recommend that you don’t
exceed a total of 100 mW for all processor I/O pins combined.  The chip’s total power dissipation is
the sum of its internal power (which varies from device to device so much that it can only be deter-
mined by actually measuring it, but which is specified at less than 150 mW) and the power associ-
ated with the I/O pins.  Pin currents must be limited using external resistors.

Output Pin V-I Characteristics

The output pins of the MC68HC11 are similar in electrical characteristics to the SN54/74HC digital
logic family.  They can source or sink up to 25 mA and are guaranteed to source 0.8 mA while pro-
viding a valid logic high and to sink 1.6 mA at a valid logic low, although they generally do much
better.  A valid logic high level is between VOH = VDD and VOH = VDD - 0.8 V, and a valid low level
is between VOL =VSS = 0 V and VOL =VSS + 0.4 V.  As the output is loaded, the VOL and VOH levels
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rise or fall.  It is often useful to know just how much to expect the VOL and VOH levels to degrade
with current.  For currents of less than 10 mA the voltage change is linear with current; that is, it can
be modeled as a voltage source of either zero or five volts and an equivalent series resistance of 40
ohms.  At greater output currents the resistance increases until at the greatest specified current for
any one pin, 25 ma., the equivalent resistance is 60 ohms.  At this current the voltage degradation of
the VOL or VOH is 1.5 volts.  Figure 8-1 and Figure 8-2  illustrate this variation.

These figures can be used to choose component values for particular circuits.  For example if we
wish to use a pin of Port A to drive a light-emitting diode we would place the LED in series with a
resistor and connect them between an output pin and ground.  The resistor limits the current, to the
LED.  From the LED data sheet we note that its forward voltage at a current of 10 mA is specified to
be 2.2 V.  What should the resistor value be?  We calculate it as,

Eqn. 8-1 R = (VOH - 2.2 V ) / 10 mA

Consulting the VOH vs I curve for the output pin we find that at 10 mA VOH = 4.4 V.  We therefore
need a resistance of 220 ohms.
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Figure 8-1 Degradation of the Port A or Port D output high voltage with
current.  The maximum current allowed for continuous operation is
25 ma.
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Figure 8-2 Degradation of the Port A or Port D output low voltage with current.
The maximum current allowed for continuous operation is 25 ma.

The Processor’s Output Compare Functions
The processor’s programmable timer subsystem contains 5 output compare (OC) functions (named
OCx for x from 1 to 5) associated with PORTA output pins PA7 through PA3 (in descending order).
These output compare functions allow you to specify actions that take place at particular, well de-
termined times.  Using output compares, it is easy to set up real-time clocks, cause periodic execu-
tion of code, and generate precisely timed synchronous or asynchronous waveforms.  They can be
used to implement a stepper motor controller, pulse generator, pulse width modulation (PWM) sig-
nals, precisely timed output pulses, timesliced multiplexing, or serial communications.

Output-compare functions work by automatically changing PORTA output pins and/or invoking an
interrupt service routine (ISR) whenever the contents of a free-running 16-bit counter (TCNT)
matches the contents of user-set output-compare registers, TOCx.  When these contents match, we
say that a “successful output compare” has occurred.  Thus the programmer can precisely specify a
future time at which an action will occur by simply storing the time as a 16-bit value in the appro-
priate output compare register, TOCx.  The free running counter counts at a programmable rate,
from 0 to 65536, then rolls over to zero and continues counting.  Its rate is one count each 2 micro-
seconds, for a rollover period of 131.072 milliseconds.  Consequently, you can set up output com-
pares to trigger events with a resolution of 2 microseconds, and up to 131.072 milliseconds into the
future (or arbitrarily longer if you keep track of rollovers on TCNT).

Because TCNT is clocked by a prescaler driven from the system E clock, you can change the count
rate by modifying the prescaler’s division ratio, from its current value of 8 to 1, 4, or 16, changing
its rollover period to 16.384, 65.536, or 262.144 milliseconds.  If you do though, the system
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timeslicer will be affected.  We find that a 2 microsecond tick rate provides sufficient resolution for
most applications.

Each of the five output compare subsystems has a 16-bit TOCx register, a successful compare OCxF
(interrupt) flag, and an interrupt mask OCxI, where “x” is the output compare number.  OC1 can
control any of pins PA3 through PA7 and it has its own register to specify which of PORTA pins are
affected.  Output compares OC2, OC3, OC4 and OC5 each control a single pin.  They each have a
pair of output mode/level bits, OMn and OLn, which determine the effect that each successful com-
pare has on PORTA bits PA6, PA5, PA4, and PA3 respectively.  The processor automatically sets
an output compare’s OCxF flag bit in the TFLG1 register when the contents of the TCNT register
and the OC’s TOCx register are equal.  At the same instant, the state of the associated PORTA pin is
set, cleared, or toggled as specified by the output mode bits.  In addition, if the output compare’s
OCxI mask bit in the TMSK1 register is set, an interrupt is recognized when a successful compare
occurs.

An active output compare function can cause a signal change on a PORTA pin at a specified time T,
and/or trigger an interrupt at time T:

◙ Signal Change – To cause a signal change on a PORTA pin when time T equals the contents of
TCNT, the PORTA pin must be configured as an output, and the output compare function must
be enabled.  OC1 is enabled by storing the data to be output in OC1D and specifying the pins
to be changed in OC1M, and OC2-OC5 are enabled simply by storing a 2-bit code into TCTL1
specifying the desired signal change.  Using the CFORC register, it is also possible for soft-
ware to immediately force a state change on a timer-controlled signal without causing an inter-
rupt.

◙ Interrupt – To trigger an interrupt when time TCNT = T, an interrupt handler must be installed,
and the output compare’s local interrupt must be enabled by setting bits in TMSK1.

Table 8-6 Output Compares and their properties

Output
Compare

Controlled
PORTA Pin

Comparison
Register

Comments and Alternate Use

OC1 PA3, 4, 5, 6,
and/or 7

TOC1 May control multiple pins simultaneously, or be paired with
another OC to jointly control pin PA3, 4, 5, or 6.

OC2 PA6 TOC2 The OC2 timer is used by the kernel’s  timeslicer and
elapsed time clock functions.  If you do not use these
functions, pin PA6 may be controlled by OC1 or used for
general purpose I/O.

OC3 PA5 TOC3 Not used by the kernel.

OC4 PA4 TOC4 Used as an output by the secondary serial port.  Available if
you do not need Serial 2.

OC5 PA3 TI4O5 Shared with Input Capture 4, which is used as an input by
the secondary serial port.  Available if you do not need
Serial 2.
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As summarized in the table, the output compares are not all identical in function, and some are used
by the operating system.  OC1 and OC5 differ from the others slightly in function, OC2 is used by
the operating system’s timeslicer, and OC4 and OC5 are used by the secondary serial port:

◙ OC1 is special in that it can synchronously control any of PORTA pins PA7, PA6, PA5, PA4,
and PA3.  Even when OC1 is used to control several PORTA pins, the timer and interrupt
functions of those pin’s output compares may still be used independently of the pin (to imple-
ment clocks, etc.).  While the other output compares can be used to set, clear, or toggle an out-
put pin, OC1 can be used only to set or clear a pin, but not to toggle it.

◙ OC2 is used by the timeslicer.  Consequently, if you need the services of the timeslicer
(timesliced task switching or elapsed time clock function) make sure that you do not use OC2
for other functions.  Even if you do use the timeslicer, pin PA6 is still available for use as gen-
eral purpose I/O, or as an output controlled by OC1.

◙ OC4 is used as an output by the secondary serial port, so you can’t use it or its associated pin
PA4 if you need the second RS232 serial link.

◙ OC5 shares its timer register and output pin with input capture 4 (IC4).  OC5 operates like the
other output compares, but it must be initialized by clearing the I4/O5 bit of the PACTL (pulse
accumulator control) register before it may be used.  Also, IC4/OC5 and associated pin PA3
are used by the secondary serial port, so be sure not to use these resources if you need the sec-
ond RS232 serial link.

Pulse and PWM Generation Techniques

The processor’s output compare functions provide lots of flexibility for creating single pulses or
pulse-width-modulated waveforms.  Most methods are variations on this algorithm:

1. The desired start time of the pulse is programmed by storing an appropriate count in the out-
put-compare register (TOCx) of OCx, and the OCx interrupt is enabled by setting a flag bit in
TMSK1.

2. OCx’s mode/level bits (OMx and OLx) are configured to automatically set the output com-
pare’s corresponding output either high or low, depending on the polarity of the desired pulse
(this action enables the output compare).

3. When the compare occurs, the pin state is automatically changed and an interrupt service rou-
tine called.

4. The interrupt service routine (ISR) reprograms the output compare to automatically change its
pin back to its inactive level on the next compare;

5. The ISR also increments the output-compare register by a value corresponding to the desired
duration of the pulse.

Since the pin-state is changed by hardware automatically at specific values of the free-running
counter, the pulse width is controlled accurately to the resolution of the free-running counter irre-
spective of software latencies.  By repeating the actions for generating a pulse, you can generate an
output signal of a specific frequency and duty cycle.  While software latency and execution times do
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not affect the timing of the waveform, they do impose limits on the frequency and duty cycles at-
tainable.  The different methods of generating PWM signals differ primarily on where the software
execution times are constrained to fit, either within the on time, the off time, or the waveform’s
period as a whole.

The following is a quick summary of some of some specific ways you can use output compares to
generate pulses or PWM waveforms.  You can find complete descriptions of the registers mentioned
in Motorola’s MC68HC11F1 Technical Data Manual.  Example 1 shows you how to generate a
tirggered pulse, Examples 2 and 3 represent exceptional and instructive methods of generating
PWM signals, and examples 4-6 are commonly used PWM methods.  Example 6 provides code for
generating “failsafe” PWM signals.

Example 1 – Creating a Single Precise Pulse from an External Trigger

Suppose you’d like to output a single pulse on PA5 with very precise duration in response to a trig-
gering event, for example the leading edge of an input pulse on PA0.  You’d like the output pulse to
start a precise, fixed time after the initiating trigger and to last some precise duration, between 2
microseconds and 131 milliseconds.  Further, the output pulse should occur after the first occurrence
of the trigger (after enabling the system) and then stay off rather than being retriggered by subse-
quent input pulses.

To do this you would use one input capture (IC3) and two output compares (OC1 and OC3).  Be-
cause the trigger may occur anytime an input capture is used to determine the precise time of its
leading edge.  And because the output pulse width must be precisely controlled, and its duration can
potentially be shorter than any interrupt service routine, the pulse should be turned on and off by
output compares.  The input capture invokes an interrupt service routine that enables the output
compares.  For our example we’ll assume the desired pulse start time is 10 milliseconds (or 5000
TCNT counts) after the trigger is detected, and its duration is precisely 10 microseconds (5 TCNT
counts).  Here’s one way to do it using three routines:

An initialization routine (called ENABLE) that configures and enables IC3 to capture a rising
edge on PA0, forces PA5 off to initialize it, and configures and enables OC3 to turn off pin
PA5;

An interrupt service routine for IC3 (called IC3_ISR) that programs the comparator registers of
OC1 and OC3 and enables OC1; and,

An interrupt service routine for OC1  (called OC1_ISR) that disables OC1 so that after the
output pulse is first turned on it is not turned on again.

Here’s how to write the routines:

ENABLE – Inhibit IC3, OC1, and OC3 interrupts by storing 0x0xxxx0 to TMSK1 (using
CLEAR.BITS with a mask of 0xA1).  Configure OC1 to set PA5 high on an output compare
by setting bit 5 of OC1D, but don’t enable it using OC1M yet – the IC3_ISR will be responsi-
ble for doing that.  Configure OC3 to clear its associated pin (PA5) on an output compare by
storing appropriate mode/level bits (OM3 and OL3), that is xx10xxxx, into the timer control
register (TCTL1).  Initialize PA5 to the OFF state by forcing an early output compare on OC3.
This is done by setting bit 5 of CFORC.  Configure and enable IC3 to capture a rising edge
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PA0.  This is done by clearing bit 0 of DDRA (to set the data direction of PA0 to input), and
setting the lower two bits of TCTL2 (the two corresponding to IC3) to xxxxxx01 to capture a
rising edge.  Clear the interrupt flag bit (IC3F) left over from any prior edge detection, if any,
by writing a one to IC3F in TFLG1.  Finally, enable an IC3 interrupt by setting the IC3I bit in
TMSK1.

IC3_ISR – On entering the ISR routine first disable further interrupts by clearing the IC3I bit
in TMSK1, and clear the interrupt flag bit (IC3F) by writing a one to IC3F in TFLG1.  Then
read TIC3 to determine the trigger time, we’ll call it TT.  Set up OC1 to turn on output pin
PA5 at time TT+5000 by setting TOC1=TT+5000 and configure OC3 to turn it back off just 5
counts later, by setting TOC3=TT+5005.  Enable an OC1 interrupt by setting the OC1I bit in
TMSK1.  Finally enable OC1 and tie it to PA5 by setting bit 5 in OC1M.

OC1_ISR – This interrupt service routine will be invoked when the output pulse is turned on.
It only needs to disable OC1 so that further pulses are not produced until the system is re-
enabled by executing ENABLE again.  Disable OC1 by clearing bit 5 in OC1M.  Disable inter-
rupts on OC1 by first clearing the OC1I bit in TMSK1, then clear the interrupt flag bit (OC1F)
by writing a one to OC1F in TFLG1.

Example 2 – Two OCs Generate a PWM Waveform Without Interrupts

Using two output compares you can generate a PWM waveform of any duty cycle (from 1/65536 to
65535/65536) without using interrupt service routines.  As no ISR is used, no software resources are
needed to maintain the waveform, and there is no impact on overall system performance.  The PWM
waveform is free – from a software perspective.  So what’s the catch?  The catch is that the wave-
form must have a fixed period, equal to the rollover period of the free-running counter, or 131.072
milliseconds.  If you can live with that, here’s how it’s done:  Two output compares are used, one
sets the output pin at a particular value of TCNT, and the other simply resets the pin at another
TCNT value.  One of the output compares must be OC1 –  because it can be used in conjunction
with another to control the same pin.  Let’s use OC1 to turn ON an output pin (PA5) whenever
TCNT hits 0x0000, and OC3 to turn it OFF whenever TCNT hits 0x1000.  More specifically,

1. Disable interrupts caused by OCs by storing 0x00 to the timer interrupt mask register 1
(TMSK1).  Now, output compares will not cause interrupts.  Even so, they can still control
output pins.

2. Use OC3 to turn OFF the pulse whenever TCNT=0x1000 (for example, for a duty cycle of
1/16) by storing 0x1000 into TOC3.  Configure OC3 to clear its associated pin (PA5) on a suc-
cessful compare by storing appropriate mode/level bits (OM3 and OL3), that is xx10xxxx, into
the timer control register (TCTL1).  Now, whenever TCNT hits 0x1000 pin PA5 will be
cleared.  We configure the OFF transition first because we don’t want the pin to get stuck ON
before we’re done configuring our output compares, just in case.

3. Use OC1 to turn ON the pulse whenever TCNT=0x0000 by storing 0x0000 into TOC1.  Asso-
ciate OC1 with pin PA5 by setting bit 5 in the output compare mask register OC1M.  Config-
ure OC1 to set the pin high by storing 0x20 into the OC1 data register, OC1D.  Now, whenever
TCNT hits 0x0000 pin PA5 will be set high.

Because an ISR isn’t used, there is no possibility of software delays influencing the PWM output.
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Advantages: Precise transition time control, all duty cycles possible with 16-bit resolution, no soft-
ware needed to keep things running, failsafe in that a software crash is not likely to affect operation.

Disadvantages: Only a single channel, only a single PWM period.

Example 3 – A Single OC-Driven ISR Generates Many PWM Channels

What if you want to generate many channels of PWM waveforms, more than there are output com-
pares?  In the prior example output compares were used to generate a precisely-timed high-
resolution waveform on a single channel without the assistance of an ISR.  This example provides
the other extreme, an unlimited number of channels of low-resolution PWM signals are generated by
a single output-compare-driven interrupt service routine.

The scheme uses a single output compare to periodically invoke an interrupt service routine.  The
OC is not tied to a PORTA pin, rather it is used only as a dedicated clock that calls the ISR at a
fixed interval corresponding to the smallest ON or OFF time that can be produced.  Each time the
ISR is called it updates all the PWM outputs using any general purpose output pins available.  It
may do this by reading values from a look-up table, counting, or more computationally.

Because the ISR latency can vary depending on what other interrupt-driven services are running on
the controller there is some jitter (or variance) on the transition times, producing a slightly varying
PWM duty cycle.  This variation can be compensated on the average if the ISR reads TCNT to de-
termine the actual ON and OFF times and modulates the next ON or OFF time to attain the desired
PWM duty cycle averaged over a number of cycles – but of course that requires greater execution
time.

The sum of the ISR latency and execution times must be less than the difference between adjacent
OC times, placing a limit on the smallest ON or OFF time attainable.  If the ISR is delayed so long
that the next OC time is missed, the next ISR doesn’t occur until TCNT rolls over and another match
occurs.  Consequently rollover delays of a TCNT period may be inserted into the desired ON or
OFF times.

For an example of software generated PWM signals with 8-bit resolution and best averaging prop-
erties see “MI-AN-056 Optimal PWM Algorithm” and “MI-AN-058 Using Port PPA for PWM”.

Advantages: Any number of channels can be accommodated.

Disadvantages: ISR latency causes jitter in the transition times; ON or OFF times smaller than the
ISR latency and execution time are not possible; rollover delays possible if timing criteria not met;
not failsafe.

Example 4 – One OC and ISR Generates a “No Jitter” PWM Signal

The simplest way of generating a precise PWM waveform with arbitrary duty cycle and period is to
use a single output compare to automatically turn on and off an output pin and an interrupt service
routine that reprograms the output compare after each transition.  The “off” transition invokes the
ISR which sets up the turn-on time and programs the next output state to be “on”, and the “on” tran-
sition invokes the same ISR to set up the turn-off time and the next “off” state.  The on and off times
must each be great enough to contain the latency and execution time of the ISR.  So duty cycles that
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would require very small on or off times are not attainable.  If the ISR is delayed so that it does not
program the next transition in time, than the output compare doesn’t find a match until TCNT rolls
all the way around.  In this case rollover delays of approximately 131 msec may be inserted into
either the on or off time.

Advantages: Transitions are precise, with no jitter; duty cycle and period are programmable over a
wide range.

Disadvantages: ON or OFF times smaller than the ISR execution time and latency are not possible;
rollover delays are possible; not failsafe – a software crash can leave the output stuck ON.

Example 5 – Two OCs and ISRs Generate a “No Jitter” PWM Signal of any Duty
Cycle

To obtain ON and OFF times that may be each as small as a single clock tick, two OCs and ISRs are
required.  The “off” transition invokes an ISR which sets up the next turn-off time, and the “on”
transition invokes a different ISR to set up the next turn-on time.  Each ISR simply increments the
next ON or OFF comparison register by the period.  There is no particular restriction on the short-
ness of the ON or OFF times, either can extend down to just a single count of TCNT, but their sum,
the period, must be great enough to contain the latency and execution times of both ISRs.  Because
OCs are used to drive the output pin, the transition times are exact, with no jitter.  If service of either
ISR is delayed for more than a period then a rollover delay may be inserted into either the on or off
time.

Advantages: Transitions are precise, with no jitter; duty cycle and period are programmable over a
wide range, duty cycle extends fully from 1/65536 to 65535/65536.

Disadvantages: Rollover delays are possible; not failsafe – a software crash can leave the output
stuck ON.

Example 6 – One OC and ISR Generates a “Failsafe” PWM Signal

A single OC and associated ISR is used.  The OC invokes an ISR for each transition.  For the ON
transition, the ISR is responsible for setting the output pin.  It also computes the next turn-off time
based on the time at which the pulse is actually turned on, and programs the OC to automatically
turn it back OFF at the turn-off time.  At the next OC the pin is turned off by hardware and the ISR
is again called.  This time the ISR just sets the turn-on time for the next OC time, disconnecting the
OC from the pin so that the pin is not automatically set.  This sequence of events produces pulses
whose duration is invariant with respect to ISR delay, but that may jitter back and forth within their
fixed period.  Despite any jitter, the duty cycle and period are both precisely controlled.  If the ISR
is delayed by more than the off time, rollovers are inserted into only the off time, never the on time.
So the pulse on times are failsafe so long as the processor’s clock is running.

Advantages: Failsafe operation assures an ON pulse is never longer than desired and the pulses turn
off on a software crash.  ON time may be as small as a single TCNT count.

Disadvantages: Pulse position jitter; rollover delays are possible in the OFF time; minimum OFF
time must be greater than the IST latency and execution time.
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Table 8-7 PWM Methods.

Method ISR
Used

Output
Compares

Turn
ON/OFF

Jitter D.C.
Accuracy

D.C. Range Rollovers
inserted?

Period

2 no OC1 and
one other

OC/OC none Perfect any no – failsafe Fixed at 131.072 ms

3 yes any OC ISR/ISR yes limited by
ISR
delays

Ton, Toff >ISR yes on and off times must
each be greater than ISR
latency and execution
times

4 yes any OC OC/OC no Perfect Ton, Toff >ISR yes on and off times must
each be greater than ISR
latency and execution
times

5 yes OC1 and
one other

OC/OC no Perfect Ton, Toff
unlimited

yes P>ISR1+ISR2

6 yes any OC ISR/OC yes Perfect Ton unlimited,
Toff>ISR

failsafe –  into
only the off
time
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Chapter 9

Data Acquisition Using Analog to Digital Conversion

This chapter describes the analog inputs available on the  QCard, explains how to connect the
converters to external signals, and details the built-in driver routines that make the analog in-
puts easy to use.  Simple code is presented to calculate measured voltages based on A/D
readings.

Data Acquisition Using the QCard Controller
Many instrument applications require monitoring of analog signals.  Analog to digital (A/D) con-
verters can perform this function.  An A/D converter samples analog signals and converts them to
digital values that can be stored, processed, or displayed.

The resolution of an A/D is specified in bits.  For example, an 8-bit A/D converts an analog signal
into one of 256 discrete digital numbers.

Table 9-1 Analog I/O

I/O
Lines

Type Port
Address

Comments / Alternate Uses

8 8-bit 0-5 V analog inputs PE 0-7 Alternately may be used as digital inputs.

The  QCard Controller hosts an analog to digital converter to address a wide variety of instrumenta-
tion and control applications.  It includes an 8-channel 8-bit analog to digital (A/D) converter that is
built into the 68HC11 processor chip.  It converts unipolar signals with a nominal 0 to +5 volt range;

The analog inputs are brought out to the 24 pin Field Header on the  QCard; the connector diagrams
in Appendix B specify the pin assignments.

The 8 bit A/D Converter

The 8 bit A/D converter in the processor converts unipolar signals with a nominal 0 to +5 volt range,
and conversion results are returned in registers in the 68HC11.  The analog inputs are connected to
the PORTE pins on the processor; these can be used as digital inputs if the 8 bit A/D is disabled.
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Examining the Demonstration Program

The code discussed in this section is located in the file named AD8.C in the
\MOSIAC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory.  Most of the functions in this file
are interactive versions of functions declared in the ANALOG.H file in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory; they are described in detail in the Control-C Glos-
sary.

We recommend that you compile and download the AD8.C program now so that you can interac-
tively work through the exercises in this chapter.  Simply use your TextPad editor to open AD8.C,
and click on the Make Tool to create the download file named AD8.DLF.  Then enter the Mosaic
Terminal program, and type:

WARM

or:
COLD

to terminate any prior multitasking program that might be running, and select the “Send File” menu
item to send AD8.DLF to the  QCard Controller.

Fundamentals of Analog to Digital Conversion
An analog to digital converter samples an analog signal and outputs a digital number that is propor-
tional to the analog signal.  The A/D converters on the  QCard Controller sample input voltages and
communicate the digital result to the 68HC11 processor.

The analog input signal must be within the input range of the A/D converter.  On the  QCard Con-
troller, the lower bound of the range is equal to the voltage on VRL (voltage reference/low) and the
upper bound of the allowable input range is equal to the voltage on VRH (voltage reference/high).
By default, their values are 0 Volts (analog ground) and 5.0 Volts (analog +5V), respectively.

The converter measures the input voltage with a certain specified resolution.  The resolution is the
granularity with which the measurement is performed.  It can be specified as a number of bits or as a
voltage increment.  For example, an A/D converter with only 1 bit of resolution and a 5 Volt input
range would classify all voltages from 0 to just under 2.5 Volts as the digital value 0, and voltages
from 2.5 Volts to 5 Volts as the digital value 1.  This converter has a resolution equal to 1 bit, which
corresponds to 2.5 Volts per count.

The converter measures the input voltage with a specified accuracy.  The accuracy tells how close
the measured value is to the actual voltage.  A typical 8 bit A/D converter is accurate to within plus
or minus one least significant bit.

Determining the Resolution of an A/D Converter

The VRL and VRH analog input reference pins define the lower and upper voltages that can be con-
verted by the 8 bit A/D.  The resolution depends on the input voltage range.  The measurement
resolution of a B-bit A/D, expressed in Volts per count, is
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Eqn. 9-1 Resolution = (VRH - VRL) / 2B [Volts per count]

where 2B is the number of counts that can be represented by a B-bit number.  From this equation we
see that resolution becomes finer (better) as B grows larger or as the reference voltage range (VRH -
VRL) gets smaller.  For the 8 bit A/D the resolution is

Eqn. 9-2 8 bit Resolution = (VRH - VRL)/256 [Volts per count]

With the default VRL and VRH of 0 V and 5 V, respectively, the resolution of the 8 bit converter is
19.5 mV per count.

Converting an A/D Count into Its Equivalent Voltage Reading

To convert the 8-bit count returned by the A/D converter into an equivalent voltage, use the formula

Eqn. 9-3 Input Voltage = VRL + ( Count * Resolution)

Combining this with Eqn. 9-1 yields

Eqn. 9-4 Input Voltage = VRL + Count * (VRH - VRL) / 2B
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Figure 9-1 Conversion function for the 8-bit A/D.
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Using the 8-bit A/D
Initializing the 8 Bit A/D

The 8 bit A/D is inside the 68HC11 processor chip, and is accessed via PORTE.  This 8 bit port can
be used as either an 8 channel A/D or as an octal digital input port.  When the  QCard Controller is
first powered up, or after a reset or restart, the 8 bit A/D converter is disabled and PORTE is config-
ured as a digital input port.  To turn on the A/D converter, a program must call the function:

AD8On()

Another function named AD8Off() is available to turn off the 8 bit A/D so that PORTE once again
acts as a digital input port.

The function named

InitAnalog()

defined in the AD8.C file calls AD8On().  If you interactively execute InitAnalog(), as,
InitAnalog( )

the 8 bit A/D converter will be turned on and ready for use.

In an autostarting application you should include InitAnalog() in your start-up code.

Hardware Connections

To sample an analog voltage, attach a voltage with a value between zero and +5 Volts to the 8 bit
A/D channel 0 input named PE0.  The 8 bit A/D inputs are the PORTE signals named PE0 through
PE7 available at pins 17 through 24 on the Field Header (see Appendix A).  Each analog signal is
converted to a number between 0 and 255 indicating its value relative to VRL (the low voltage ref-
erence) and VRH (the high voltage reference).  The default values are VRL = 0 Volts (analog
ground) and VRH = 5 Volts.  The exact voltage difference between VRH and VRL varies slightly
from board to board; it is a good idea to measure the value on your board to obtain the most exact
voltage equivalents of the measured A/D results.

Interactively Perform the Conversion

The Convert8() function is defined near the middle of the AD8.C file; you can see from its defini-
tion that it is simply an interactively callable version of the AD8Sample() function.  Now that you
have connected an input voltage to channel PE0, you can type from your terminal:

Convert8( int 0)

The printed return value summary displays the conversion count; you’ll see a printout that looks
something like this for a 1.5 volt signal:

Rtn:  -30722    77  =0x87FE004D =fp: -3.822E-34
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We know that this function returns an integer, so we identify “77” (hex 0x004D) as the return value;
the other numbers in the summary are irrelevant.  If the input is 1.5 volts, the result should be ap-
proximately 77 counts (256 * 1.5 / 5.0).  If the input voltage equals VRL (the low reference voltage,
typically at 0 Volts), the result will equal 0.  If the input is within 1 bit of VRH (the high reference
voltage, typically at 5.0 Volts), the result will equal decimal 255.  If the input is exactly half of
(VRH - VRL), the result will equal decimal 128.

Multiple 8 Bit A/D Conversions with Results Stored in a C Array

The function AD8Multiple() which is defined in the ANALOG.H file expects as inputs a buffer
xaddress (32 bit extended address), a sampling interval parameter, the number of samples, and a
channel number.  When called, it performs the specified number of conversions and saves the results
as single bytes in the specified buffer.  As explained in the Glossary, the sampling interval parame-
ter specifies the timing of the samples, with 0 representing the fastest sampling, and 65,535 repre-
senting the slowest sampling.  You can sample at up to 100 kHz (100,000 samples per second) using
the 8-bit A/D provided the processor is devoted to this single task.

The AD8ToCArray() function defined in AD8.C uses a standard C one-dimensional array named
results_8 as the data buffer.  The function accepts a channel number as input, performs conver-
sions at the fastest sampling speed (100 kHz), and places the results in the array.  The number of
samples is specified by the DEFAULT_NUMSAMPLES constant which equals 16.  Because we have
connected the channel 0 input (AN0), let’s perform the multiple conversion on this channel.  Type at
your terminal:

AD8ToCArray( int 0)

remembering to type at least one space after the ( character.  This function does not return a value,
so the printed return value summary is not relevant.  To see the results of the conversion, you could
write a simple C function that prints the contents of results_8; this is left as an exercise for you.
You can also use the debugging routine named DUMP to view a hexadecimal dump of the buffer.  To
do this, type at your terminal:

results_8  0  16  DUMP

DUMP is a QED-Forth function that expects as inputs an address (in this case, results_8 puts the
address on the data stack), a page (0, representing the common page), and the number of bytes to be
dumped (16).  You should see a printout similar to this if you connected a 1.5 volt signal:

pg  addr 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F  0123456789ABCDEF

00  8E2D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D  MMMMMMMMMMMMMMMM

This tells us that the contents of the 16 bytes starting at address 0x8E2D (which is the address of
results_8) all equal 0x4D.  To the right of the hex dump the ascii equivalent of the memory
contents is displayed; this is not relevant for the numerical data here.  We conclude that the A/D
conversion result was 0x4D, equivalent to decimal 77; this is the same value returned by the
Convert8() function above.  Your results may vary slightly depending on the exact value of sup-
ply voltage on the  QCard Controller – the +5V supply is used as the default reference voltage.
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For Experts: How To Use Additional Features of the 8 Bit A/D

The built-in driver routines for the 8 bit A/D are easy to use and address the requirements of most
applications.  If you wish to gain a detailed understanding of the operation of the 8 bit A/D, or need
to use one of its special modes, the information in the Analog-To-Digital Section of the
MC68HC11F1 Technical Data Manual may prove useful.  For example, one of the operating modes
allows the 8 bit A/D converter to continuously sample four different analog inputs in rapid succes-
sion.
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Chapter 10

Serial Communications

RS-232 and RS-485 Communications
The QCard Controller has two serial communications ports: a primary serial port called Serial 1 that
supports both RS232 and RS485 protocols, and a secondary serial port called Serial 2 that supports
RS232.  The Serial 1 port is implemented with the 68HC11's on-chip hardware UART (Universal
Asynchronous Receiver/Transmitter).  Serial 2 is implemented by a software UART in the control-
ler’s QED-Forth Kernel that uses two of the processor’s PortA I/O pins to generate a serial commu-
nications channel.

Table 10-1 Serial Communications Channels

Channels Type Port Address Comments / Alternate Uses
1 Serial 1: RS232/485 hardware

UART at up to 19.2 KBaud
PD 0-1, PD 5
used for RS-485.

1 Serial 2: RS232 software
UART at up to 4800 Baud

PA 3-4 PA 3-4 may be used as timer-controlled I/O
(one input-capture and one output-compare)
if Serial 2 is not used.  PA 3-4 may also be
used for hardware handshaking for Serial 1.

1 Synchronous Serial Peripheral
Interface at 2 MBaud

PD 2-5

3 Serial communications channels

The primary channel’s UART translates the bit-by-bit data on the serial cable into bytes of data that
can be interpreted by the QED-Forth Kernel or by your application program.  It controls the serial-
to-parallel and parallel-to-serial conversion and performs all of the timing functions necessary for
asynchronous serial communications.  The communications is asynchronous because no synchro-
nizing clock signal is transmitted along with the data.  Rather, the UART deduces the correct time to
sample the incoming signal based on the start and stop bits in the signal itself.  (The QCard Con-
troller also supports fast synchronous serial communications via the Serial Peripheral Interface de-
scribed later in this Chapter.)

The secondary channel is very useful for debugging application programs that communicate with
other computers or I/O via the primary channel.  Since both channels can operate simultaneously
and independently, debugging can be performed while the application program is communicating
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via its primary channel.  The dual communications channels also provide an easy way to link sys-
tems that communicate using different serial protocols.

Serial Protocols

There are several protocols that govern the format of exchanged data, with the RS232 protocol used
primarily by personal computers, and the RS485 protocol used in industrial control systems.  The
Serial 1 port can be configured for either RS232 or RS485 communications at up to 19200 baud.
The Serial 2 port is dedicated to RS232 communications at up to 4800 baud.

RS232

RS232 is by far the most common protocol.  It is supported by virtually all personal computers, and
is the default protocol for both of the QCard Controller’s serial ports.  Its simplest implementation
requires only three wires: one to transmit serial data, a second to receive serial data, and a third to
provide a common ground reference.  RS232 allows both communicating parties to transmit and
receive data at the same time; this is referred to as full duplex communications.  RS232’s greatest
benefit is its universality; practically all personal computers can use this protocol to send and receive
serial data.

RS232 uses inverse logic; that is, a positive bit at the 68HC11 UART is inverted by the onboard
RS232 driver chip and appears as a negative signal on the serial cable.  The terminal’s serial re-
ceiver chip re-inverts the signal to its positive sense.  The data bits are also transmitted in reverse
order, with the least significant bit transmitted first, after a start bit.  The specified signal levels of
approximately +/- 9 Volts are derived from the QCard Controller’s +5 Volt supply by a dual RS232
driver chip that has a built-in charge pump voltage multiplier.

RS485

RS485 is another protocol supported by the primary serial port on the QCard Controller.  It is a half
duplex protocol, meaning that only one party at a time may transmit data.  Unlike the standard
RS232 protocol, RS485 allows many communicating parties to share the same 3-wire communica-
tions cable.  Thus RS485 is the standard protocol of choice when multi-drop communications are
required.

Like RS232, the data bits are transmitted in reverse order, with the least significant bit transmitted
first.  The RS485 protocol uses differential data signals for improved noise immunity; thus RS485
can communicate over greater distances than RS232.  An RS485 transceiver is present on the QCard
Controller, and its data direction is controlled by pin 5 of port D of the 68HC11.

Serial Connectors and Configuration Options

The primary and secondary serial communications ports are accessible through the QCard's 10 pin,
dual row Communications Header (H4) and 24 pin, dual row Field Header (H2) and through the
PowerDock's 10 pin, right-angle, dual row Communications Header (H1) and individual DB-9 Se-
rial 1 and Serial 2 connectors.  These standard 9-pin serial connectors are located on the back of the
PowerDock.  A serial communications cable is also supplied with QCard Starter Kits.
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The pinout of the QCard’s Communications Header (H4), QCard’s Field Header (H2), PowerDock’s
Communications Header (H1), and the PowerDock’s Communications Connectors are shown in the
following tables.  There are surface mount resistor pads on the QCard that will allow you to bring
out the secondary serial port to the Field Header on pins 5-6 or 7-8 as shown with the parentheses in
Table 11-3.  Pads are also available on the PowerDock to bring out the RS485 signals to the DB9
Serial 1 Connector.  Please contact Mosaic Industries for these custom configurations.

Although the RS232 protocol specifies functions for as many as 25 pins, each communications
channel requires only three for simple serial interfaces: TxD1 (transmit data), RxD1 (receive data),
and DGND (digital ground).  The RS232 protocol specifies the use of two separate grounds, a signal
ground and a protective (or “chassis”) ground.  The QCard Controller does not differentiate between
these.  To provide a convenient means of attaching two grounds to the serial cable, there are several
pins (labeled DGND) on the communications connector that are connected to the controller’s ground
plane.

Table 10-2 QCard Serial Communications Header, H4

Signal Pins Signal
/TxD1 – 1 2 – /RxD1

DGND – 3 4 – /MOD1.CS

RS485 XCVR- – 5 6 – RS485 XCVR+

/TxD2 – 7 8 – /RxD2

DGND – 9 10 – +VBAT

Table 10-3 QCard Field Header, H2

Signal Pins Signal
DGND – 1 2 – +5V

AGND – 3 4 – V+RAW

/TxD1(/TxD2) – 5 6 – /RxD1(/RxD2)

XCVR-(/TxD2) – 7 8 – XCVR+(/RxD2)

PA7 – 9 10 – PA6

PA5 – 11 12 – PA4

PA3 – 13 14 – PA2

PA1 – 15 16 – PA0

PE7 – 17 18 – PE6

PE5 – 19 20 – PE4

PE3 – 21 22 – PE2

PE1 – 23 24 – PE0
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Table 10-4 PowerDock Serial Communications Header, H1

Signal Pins Signal
/TxD1 – 1 2 – /RxD1

DGND – 3 4 – DGND

RS485 XCVR- – 5 6 – RS485 XCVR+

/TxD2 – 7 8 – /RxD2

DGND – 9 10 – +5V

Table 10-5 PowerDock Serial 1 Table 10-6 PowerDock Serial 2

Signal Pins Signal Signal Pins Signal
DCD1/DTR1/DSR1 – 1 DCD2/DTR2/DSR2 – 1

6 – DSR1/DTR1/DCD1 6 – DSR2/DTR2/DCD2
/TXD1 – 2 /TXD2 – 2

7 – CTS1/RTS1 7 – CTS2/RTS2
/RXD1 – 3 /RXD2 – 3

8 – RTS1/CTS1 8 – RTS2/CTS2
DSR1/DTR1/DCD1 – 4 DSR2/DTR2/DCD2 – 4

9 – NC 9 – NC
DGND – 5 DGND – 5

Notes: Notes:
NC indicates no connection NC indicates no connection
Pins 1, 4 and 6 (DSR1/DTR1/DCD1) are con-
nected.

Pins 1, 4 and 6 (DSR2/DTR2/DCD2) are con-
nected.

Pins 7 and 8 (CTS1/RTS1) are connected. Pins 7 and 8 (CTS2/RTS2) are connected.

Given the availability of ready-made communications cables, it is not necessary to study or under-
stand the following descriptions of cable connections.  These detailed signal descriptions and cable
diagrams are presented to provide complete information for those who have special communications
requirements and for those who wish to make their own application-specific communications cables.
Most computers conform to IBM PC AT-compatible RS232 interfaces which use 9-pin D-Type
connectors, consequently the QCard Controller brings out its serial ports to two female 9-pin D-
Type connectors on the PowerDock.  Table 10-7  shows the connection diagram for a standard 9-pin
serial cable.

Table 10-7 Serial Cable Connections.

Cable
Pin

PC AT or
Terminal

QCard
Controller

1 NC DTR1/DSR1
2 RxD TxD1
3 TxD RxD1
4 DTR DSR1/DCD1
5 GND GND
6 DSR DTR1/DCD1
7 RTS CTS1
8 CTS RTS1
9 NC NC
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We can gain insight into the operation of the RS232 protocol by examining the signal connections
used for the primary serial port in Table 10-7.  The transmit and receive data signals carry the mes-
sages being communicated between the QCard Controller and the PC or terminal.  The QCard Con-
troller’s transmit data signal TxD1 (pin 2 on the 9-pin serial connector) is connected to the
terminal’s receive data signal RxD (pin 2 on its 9-pin connector).  Likewise, the terminal’s transmit
signal TxD is connected to the QCard Controller’s receive signal RxD1.  Chassis and signal grounds
are connected together to the digital ground (DGND) signal.

From the QCard Controller’s point of view, these three signals (TxD, RxD, and ground) are the only
connections required to perform serial communications.  While these signals provide a data path,
they do not provide hardware handshaking that allows the two communicating parties to let each
other know when they are ready to send or receive data.

The RS232 protocol provides for four handshaking signals called ready to send (RTS), clear to send
(CTS), data set ready (DSR), and data terminal ready (DTR) to coordinate the transfer of informa-
tion.  The QCard Controller, however, does not implement hardware handshaking.  Rather, it relies
on software handshaking via transmission of XON/XOFF characters to coordinate data transfer and
ensure that information is not lost when one of the communicating parties is busy.

Many terminals and PCs, however, do rely on hardware handshaking to determine when the other
party (in this case the QCard Controller) is ready to accept data.  By connecting pairs of these hand-
shaking signals together, the terminal or PC can be made to think that the QCard Controller is al-
ways ready to send and receive data.  Thus in Table 10-7 , RTS1 is connected to CTS1, and DSR1 is
connected to DTR1 and DCD1 onboard the QCard Controller using zero ohm shorting resistors.
These signals may alternatively be redirected to the digital inputs and outputs used by the second
serial port if hardware handshaking is required.

The secondary serial port is connected similarly except that the onboard connection of RTS to CTS,
and DSR to DTR are permanent.

Enabling RS485 Communications

If your application requires RS485, use the primary serial port (serial1) for RS485 communications,
and use the secondary serial port (Serial 2) to program and debug your application code using the
RS232 protocol.  The default serial routines used by the onboard kernel assume that full duplex
communications are available, so you cannot use the RS485 protocol to program the controller.  You
can use it to communicate with other devices.

A jumper, J3, configures the primary serial port for either RS232 or RS485 operation.

For RS232 operation: Remove the jumper shunt from J3.  In this case, cable connections may
be made to Serial 1 on either the 10-pin Serial Communications Header or the Serial 1 Con-
nector.

For RS485 operation: Install the jumper shunt onto J3.  In this case, cable connections must be
made to Serial 1 at pins 5 and 6 of the 10-pin Serial Header or pins 7 and 8 of the 24-pin Field
Header.  The RS485 connections are not brought out to the Serial 1 Connector.
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Using the Serial Ports

Using the primary serial port is easy.  In fact, you have been using it all along as you worked
through the examples in this document.  The standard C serial I/O routines such as printf(),
scanf(), putchar(), and getchar() give you high level access to the serial ports.  All high
level routines call the following low level revectorable serial primitives to access the currently ac-
tive serial port:

int   AskKey(void)   // returns a flag that is true if an input char is waiting
char  Key(void)      // waits for and returns the next input char
void  Emit(char)     // outputs the specified char to the serial port

Because all of the serial I/O routines on the QCard Controller are revectorable, it is very easy to
change the serial port in use without modifying any high level code.

Let’s do a quick experiment to see how easy it is.  We’ll use code from the GETSTART.C program.
If you have already downloaded the program, you are ready to go.  If your board is presently run-
ning a multitasking application, type

WARM

to stop the program now.

If you have not yet compiled the GETSTART program and you want to do the exercises here, open
GETSTART.C in your TextPad editor, click on the Make Tool, and after the compilation is done,
enter Mosaic Terminal by clicking on the terminal icon and use the “Send File” menu item to send
GETSTART.DLF to the QCard Controller.

Switching the Default Serial Port

Before running the program, let’s switch to the secondary serial port. The secondary serial port is
implemented by a software UART that controls two pins on PortA.  Pin 3 of PortA is the Serial2
input, and pin 4 of PortA is the Serial2 output.  To switch to the secondary serial port running at
1200 baud, simply type from the terminal the following QED-Forth commands:

DECIMAL 

1200  BAUD2

USE.SERIAL2

You can operate the port at any baud rate up to 4800 baud; just specify the rate you want before the
BAUD2 command.  Now select the “Comm” item in the “Settings” menu of the Terminal program,
and click on 1200 baud (or whatever baud rate you selected in the command above).  Move the
serial cable from the “Serial Port 1” connector to the “Serial Port 2” connector on the PowerDock.
Typing a carriage return at the terminal should now produce the familiar “ok” response via the Se-
rial2 port.

Now type:
main

and you’ll see the familiar starting message of the GETSTART.C program:
Starting condition:

The radius is      0; the circular area is      0.
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ok

In fact, the program works the same as it did before, but now it is using the secondary serial port
instead of the primary port -- and you didn’t even have to recompile the code!

For those of you interested in the details, here’s how it works: The low-level serial driver routines
named Key(), AskKey() and Emit() are revectorable routines that can be redirected to use either
of the serial ports.  By interactively executing the QED-Forth function

USE.SERIAL2

before calling main, we revectored these serial primitives to use the Serial2 port.

You can invoke the C version of this routine by calling

UseSerial2()

anywhere within your C program’s source code file.  Function prototypes for this function and other
versatile serial I/O routines are defined in the COMM.H header file, and are described in detail in the
Control-C Glossary.

To return to using the primary serial port, simply type from the active terminal the QED-Forth
command:

USE.SERIAL1

which transfers control back to serial port 1 running at the prior established baud rate (typically
19200 baud).  A hardware reset (pressing down on the reset switch) has the same effect.  If you do
this now, remember to move the QCard Controller’s serial connector back to Serial Port 1, and to
change the terminal’s baud rate back to 19200 baud using the “Comm” item under the terminal’s
“Settings” menu.

If you always want the QCard Controller to start up using the secondary serial port as the default
serial communications link, you can type at your terminal:

1200  SERIAL2.AT.STARTUP

where 1200 is the baud rate that you choose; you can specify any standard baud rate up to 4800
baud.  The complementary routine is:

SERIAL1.AT.STARTUP

which makes the primary serial port the default startup serial link.  We recommend that you keep the
faster Serial1 port as the default serial link as you work through the exercises in this book.

All of these functions that we are calling interactively via the operating system can also be called
from C in your program source code; their C function prototypes are as follows:

void UseSerial1( void );
void UseSerial2( void );
void Baud2( int baud );
void Serial1AtStartup( void );
void Serial2AtStartup( int baud );

In summary, the code provided for implementing the second serial port is very flexible and can be
used to support dual concurrent communications ports.  Data translation between different machines
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can be performed with ease, and applications that communicate via the primary serial port can be
debugged using the secondary channel.

Timing Considerations and Multitasking

In multitasking systems using both serial ports Serial1 and Serial2, the application code should
include one of the commands

SERIAL_ACCESS = RELEASE_ALWAYS;
SERIAL_ACCESS = RELEASE_NEVER;

before building the tasks.  This prevents contention that can occur if the default
RELEASE_AFTER_LINE option is installed in the SERIAL_ACCESS user variable.

The primary serial port, Serial1, is supported by the 68HC11's on-chip hardware UART, and does
not require interrupts to work properly.  On the other hand, the secondary serial port (Serial2) is
implemented using hardware pins PA3 (input) and PA4 (output), and is controlled by the associated
interrupts IC4/OC5 and OC4, respectively.  The QCard Controller’s kernel software contains a
complete set of high level driver routines for the Serial2 port, and these functions are summarized in
the Control-C Glossary.

The maximum Serial2 communications rate is 4800 baud.  Because the software UART is interrupt
based, competing interrupts that prevent timely servicing of the Serial2 interrupts can cause com-
munications errors on the secondary serial channel.  For example, at 4800 baud (bits per second),
each bit lasts about 200 microseconds (µs), and if communications are full duplex (e.g., if the QCard
Controller echoes each incoming character), then there is a serial interrupt every 100 µs or so.  In the
middle of a character, each interrupt service routine takes about 35 µs.  At the end of a received
character, the service routine takes about 45 µs.  At the start of a transmitted character, the service
routine takes about 65 µs.  Thus, as a rough approximation, operating at 4800 baud full duplex re-
quires about 40 to 50% of the 6811's CPU time (that is, an average of approximately 40 to 50 µs
service time every 100 µs).

If you are running Serial2 at 4800 baud, the rest of your application must be able to function prop-
erly using the remaining portion of the CPU time.  Moreover, if Serial2 is running full duplex at
4800 baud, any other interrupt service routine that takes longer than 100 µs is likely to cause a
problem.  If an interrupt service routine takes longer than 200 µs, then an entire serial bit will be
missed, causing a communications error.  Also, several non-serial interrupts can stack up; if they
have higher priority than the serial interrupts, they will be serviced before the Serial2 interrupt rou-
tine, and again a serial input or output bit may be lost.

Routines that temporarily disable interrupts for significant periods of time can also interfere with the
Serial2 port.  The Control-C Glossary contains a list of functions that temporarily disable interrupts,
and the glossary entries give further information regarding how long interrupts are disabled.  In most
cases the times are less than 25 µs which does not pose a problem.  However, note that the functions
that write to EEPROM disable interrupts for 20 msec. per programmed byte.  Be sure to account for
these effects when designing your application.

We have built sophisticated instruments using the QCard Controller that operate very reliably using
multiple interrupts in addition to the software UART.  If your application requires use of the secon-
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dary serial port as well as other interrupt routines, the key is to keep the interrupt service routines
short and fast.  You might also consider operating the secondary serial port at a lower baud rate to
relax the timing constraints.

Setting Baud Rates

The rate of data transmission is expressed in bits per second, or baud.  The primary serial channel
can operate at standard speeds up to 19200 baud and can be configured for either RS232 (the de-
fault) or RS485 operation.  The Serial2 channel is always configured for RS232 communications,
and can sustain baud rates up to 4800 baud.

The routines

void Serial1AtStartup( void );
void Serial2AtStartup( int baud );

make it easy to establish a standard baud rate at which the board will communicate each time it
starts up.  Although the maximum standard baud rate of the primary serial port is 19200 baud, non-
standard baud rates of over 80 Kbaud can be attained by the 68HC11's on-chip UART and the on-
board RS232 driver.  The maximum sustainable baud rate on the secondary serial port is 4800 baud.

Multi-Drop Communications Using RS-485

Connecting computers together in multi-drop networks is common in factories and laboratories.  In
these distributed processing networks, a variety of machines and instruments work locally, but
communicate and share data or resources with one another globally using a single serial link.  You
can use the QCard’s RS485 link to create such a multi-drop serial network.

In the most common multi-drop RS-485 protocol, one computer is designated as a “master” and the
rest of the computers or devices on the serial bus are designated as “slaves”.  At any given time,
only the master and a single “active” slave communicate.  The remaining “inactive” slaves may
actively receive, or listen to, data on the communications line, but only one slave at a time can
transmit a message.  If more than one slave tried to drive the transmit line simultaneously, their
serial drivers would fight with each other for control of the bus.  To ensure that no two devices drive
the network at the same time, it is necessary that each slave device be able to disable it’s own RS-
485 data transmitter.

Software Implementation of an RS485 Network

Because the requirements of every multi-drop application are so unique, it is difficult to specify or
design a software protocol that meets everyone’s needs.  This section describes the QED-Forth
routines that control the RS485 transceiver, and presents some ideas that may prove useful in de-
signing a multi-drop data exchange protocol.

The QCard Controller controls the RS485 transceiver with bit 5 of Port D of the processor.  When
this bit is high, the transceiver is in transmit mode.  When it is low, the transceiver is in receive
mode.  QED-Forth includes three built-in routines to facilitate control of the RS485 transceiver.
They are:
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void InitRS485( void );
void RS485Receive( void );
void RS485Transmit( void );

InitRS485() configures Port D to ensure that bit 5 is an output.  RS485Receive() clears bit
PD5 to place the transceiver in receive mode, and RS485Transmit() sets bit PD5 to place the
transceiver in transmit mode.

To use a QCard as a slave in a multi-drop network, simply define a word, (named Silence(void),
for example) that when executed calls RS485Receive() to disable the transmitter, and then exe-
cutes a routine such as Key() to listen to the communications on the serial bus.  The Silence()
routine searches the incoming serial characters for a pre-determined keyword (for example, the ascii
“name” of this particular slave).  When the network master wants to talk to this particular slave, it
outputs the slave’s ascii name onto the serial bus.  When the keyword name is received by the
Silence() routine running in the slave, the slave QCard Controller executes RS485Transmit()
to send an acknowledgment to the master (which should now be listening to the serial bus to accept
the acknowledgment).  The master and slave can then exchange data.

The data exchange format may be a line of ascii text.  The master and slave could even exchange
ascii QED-Forth commands.  When the exchange is complete, the slave can again execute the
Silence() routine to disable its transmitter and begin listening for its name.

Synchronous Serial Peripheral Interface (SPI)
The Serial Peripheral Interface, SPI, is a fast synchronous serial interface.  It provides a convenient
means of connecting the QCard Controller to a variety of peripheral devices, including analog to
digital and digital to analog converters, real time clocks, and other computers which use high speed
communication.

The SPI can transfer data much more rapidly than an asynchronous serial link – its maximum rate is
2 Megabits/second.

After configuring the SPI system to communicate on a properly connected network of devices,
sending and receiving data is as simple as writing and reading a register.  The QED-Forth kernel
includes pre-coded drivers that configure and control the SPI for maximum speed data transfers.
This chapter describes those drivers, and presents code that makes it easy to configure the SPI for
different data transfer rates and formats.

SPI Bus Pins

Hardware is interfaced to the SPI via three PORTD pins named SCK, MOSI, and MISO brought out
to pins 7, 8, and 10 on the Wildcard Port Header (see Appendix B).  The SCK (serial clock) pin is a
configurable synchronous data clock output.  This signal synchronizes the exchange of bytes be-
tween the QCard and its peripherals.  The byte-sized messages are transmitted and received via the
MOSI (master out/slave in) and MISO (master in/slave out) pins.  The /SS (active-low slave select)
is typically used to enable data transfers by slave devices when it is active low.  For the QCard, /SS
is not used for SPI communication because it is used to control the direction of the RS485 trans-
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ceiver; you can use any digital I/O line as a /SS signal.  A ground connection is also necessary to
ensure that the communicating devices have a common voltage reference.

When the QCard controls the network, it is referred to as a “master”; otherwise, it is a “slave”.  The
distinction between master and slave is an important one.  The device that initiates a data transfer is
the master, and all other devices on the network are slaves.  Only one active master may control the
network at a time; however, the device that assumes the role of master may change according to an
appropriate protocol.

If you are using the QCard as a slave device and require the /SS signal for your external SPI hard-
ware, configure one of the Port A pins on the Field Header as an input pin.  By polling the Port A
pin or by setting up an interrupt service routine, you can configure the QCard to ignore the SCK
input when /SS is high and keep MISO in a high-impedance state so that it does not interfere with
the SPI bus.  When the /SS input goes low, the slave (or QCard in this case) transfers data in re-
sponse to the SCK clock input that is initiated by the master.

If you are using the QCard as a master device, each external SPI device will require a separate select
line (/SS).  You can implement the slave select lines by configuring Port A pins as outputs.  Re-
member that the /SS is active low so to select a device you need to set the pin low; otherwise the pin
should idle high.

There are many possible configurations of master/slave networks.  Regardless of the network, how-
ever, there are only four signals used: SCK provides a synchronized clock, MOSI and MISO signals
are used for data transmission and reception, and /SS configures the QCard as a master or slave
device.  In this section we will consider the most general and simple configurations.

SPI Network Connections

Configured as a master device, the QCard transmits bytes via the “master out/slave in” pin, MOSI.
It receives bytes sent by a slave device via the “master in/slave out” pin, MISO.  Transmissions are
always initiated by the master device, and consist of an exchange of bytes.  As the master transmits
a byte to an active slave (that is, a slave with its /SS input active low), the master receives a byte
from the slave.  It may be that only the byte sent from the master to the slave is meaningful; never-
theless, each device simultaneously transmits and receives one byte.  The only difference between
the master and slave devices is that the master initiates the transmission.

Slave devices use the master in/slave out pin, MISO, for transmitting, and the master out/slave in
pin, MOSI, for receiving data.  The following wiring diagram illustrates how the MOSI, and MISO
pins of a master and a slave would be connected to exchange data:

Master Slave

MOSI → MOSI

MISO ← MISO

SCK → SCK

/SS → /SS

GROUND ↔ GROUND
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The status of a device as master or slave determines how the various pins must be configured.  The
arrows in the diagram point to pins configured as inputs, and originate from output pins.  Thus, the
master has only one input, MISO, which is the slave’s only output.  Note that the master device
outputs the clock synchronization signal SCK to the slave’s SCK which is configured as an input.
Also, in the diagram, the master’s /SS (slave select) is configured as an output.  By setting this out-
put LOW, the slave’s input /SS is pulled LOW.  The GROUND line serves as a common voltage
reference for the master and slave.

There are a variety of ways the MOSI, MISO, SCK and /SS pins on your QCard Controller can be
connected.  The one you choose depends on the specific device, or devices you will be connecting
to.  In some circumstances a one-way data flow may suffice.  For example, a QCard Controller
connected to a serial A/D converter might have these connections:

Master
QCard Controller

Slave
Serial A/D Device

MOSI → not connected

MISO ← Conversion Output

SCK → CLK

/SS  (Port A pin) → /CS

GROUND ↔ GROUND

In this example, the QCard Controller selects the serial A/D by outputting a LOW signal on /SS.
Even though the MOSI pin is not connected to anything, the master initiates a transmission using a
“dummy” byte.  The SCK pin clocks the serial A/D’s CLK input which causes the A/D’s conversion
result to be transferred to the master via the MISO line.

The QCard allows the details of the synchronous communications protocol to be customized for
compatibility with a variety of peripherals.  The next section describes the registers that configure
and control the QCard Controller’s SPI.

Configuring the SPI

The SPI is configured and accessed via four registers:

Name Description Reference

SPCR SPI control register MC68HC11F1 Technical Data Manual,  p.8-5

SPSR SPI status register MC68HC11F1 Technical Data Manual, p.8-7

SPDR SPI data register MC68HC11F1 Technical Data Manual, p.8-7

PORTA.DIRECTION Port A data direction (DDRA) MC68HC11F1 Technical Data Manual,p. 6-2

Given a properly wired network and a properly configured SPCR control register, a master device
may transmit a message by simply storing the byte to the SPDR data register.  This automatically
activates the SCK clock which synchronously transmits the data.  As the master transmits its data, 8
bits of data are simultaneously received.  The received data byte is accessed by reading SPDR data
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register.  This ability to exchange messages means that the SPI is capable of full duplex communi-
cation.  Once the data has been exchanged, a flag bit in the SPSR status register is set to indicate that
the transfer is complete.  If the programmer has enabled the local interrupt mask for the SPI, an
interrupt is recognized at this point.  Any required SPI output signals must be configured as outputs
by setting the appropriate bits in the Port A data direction register which is named
PORTA.DIRECTION in the QED-Forth kernel.

Initializing the SPI Control Register

The SPI control register, SPCR, contains 8 bits which must be initialized for proper control of the
QCard Controller’s SPI (M68HC11 Reference Manual, Section 8.6.2).  These bits are:

Bit Name Description

SPIE SPI interrupt enable

SPE SPI system enable

DWOM Port D wired-or mode

MSTR Master

CPOL Clock polarity

CPHA Clock phase

SPR1 SPI clock rate select bit1

SPR0 SPI clock rate select bit0

The DWOM bit (port D wired-or mode) should always be set to 0.  Setting DWOM to 1 takes away
the processor’s ability to pull the Port D signals high unless there is a pull-up resistor on each bit of
the port.  Setting this bit to 1 without installing pull-up resisters corrupts the operation of the serial
communications interface which uses bits 0 and 1 of Port D.

Setting SPE (SPI enable) to 1 turns on the SPI system.  This bit should be set only after all other SPI
configuration is complete.

SPIE is a local interrupt mask that allows an interrupt to be recognized when an SPI data transfer
has completed, or if a write collision or mode fault is detected.

Setting the MSTR bit initializes the QCard as a master, and clearing the MSTR bit initializes it as a
slave.  If the /SS pin of the master is an input and if a low input level is detected, the processor sets
the MODF bit in the SPI status register a “mode fault” condition.  This detects the presence of more
than one master on the SPI bus.

The CPOL, CPHA, SR1 and SPR0 configure the SCK pin’s clock polarity, clock phase, and clock
rate.  These signals are described in detail below.

SPI Clock Signal Configuration

The SCK pin’s synchronous clock signal has configurable phase, polarity and baud rate so that it can
interface to a variety of synchronous serial devices.  In general, all devices on a network should use
the same phase, polarity, and baud rate clock signal.  In some cases, however, a sophisticated net-
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work may have device groups on a network that use different clock configurations.  Although the
devices would share the same network, communications would only be understandable by members
of the same group.

The clock’s polarity is controlled by a bit named CPOL (clock polarity) and its phase is controlled
by CPHA (clock phase).  CPOL determines whether the clock idles in the low state (CPOL = 0) or
the high state (CPOL = 1).  If the clock idles in the low state, the leading edge of the clock is a rising
edge.  If the clock idles in the high state, the leading edge of the clock is a falling edge.  The CPHA
bit determines whether data is valid on the leading or trailing edge of the clock.  Note that the data is
changed by the transmitting device one half clock cycle before it is valid.

The following table summarizes the combinations of CPHA and CPOL settings:

CPOL CPHA Data is valid on the:

0 0 Rising, leading edge

0 1 Falling, trailing edge

1 0 Falling, leading edge

1 1 Rising, trailing edge

Many serial devices require a clock that idles in the low state (CPOL = 0), and expect valid data to
be present on rising clock edges.  Thus in this common configuration the transmitting device outputs
the data when the clock goes low, and the receiving device samples the valid data when the clock
goes high (CPHA = 0).  In other words, data is valid on the “rising leading edge” of the clock.

To interface devices that support synchronized serial interfaces, but are not configurable like the
QCard, determine the device’s requirements for clock phase and polarity and configure the QCard’s
CPHA and CPOL accordingly.  It is important to note that when the CPHA bit is 0, the /SS line
must be de-asserted and re-asserted between each successive data byte exchange (68HC11 Refer-
ence Manual, Section 8.3.2).  If the CPHA bit is 1, the /SS line may be tied low between successive
transfers.

SPI Baud Rate

The two lowest order bits in the SPCR control register, named SPR1 and SPR0, determine the data
exchange frequency expressed in bits per second; this frequency is also known as the baud rate.
This setting is only relevant for the master device, as it is the master’s clock which drives the trans-
fer.  SPR1 and SPR0 determine the baud rate according to the following table:

SPR1 SPR0 SPI Frequency (bits/s)

0 0 2.0 MHz

0 1 1.0 MHz

1 0 250 kHz

1 1 125 kHz
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Summary of the SPCR Control Register

The SPIE bit in the SPCR (SPI control register) enables SPI interrupt handling.  The SPE bit turns
on the SPI system.  The DWOM bit determines whether Port D needs pull-up resistors; it should be
set to 0.  The MSTR bit determines whether the device is a master or slave.  The CPOL and CPHA
bits configure the synchronous clock polarity and phase and specify when valid data is present on
the MISO and MOSI data lines.  Finally, for master devices, the SPR1 and SPR0 bits determine the
baud rate at which data is exchanged.

SPI Status Register Flags

There are three flag bits implemented in the SPSR (SPI status register).  They are:

Flag Condition

SPIF SPI transfer complete

WCOL Write collision

MODF Mode fault

Any of these conditions may generate an interrupt if the SPIE (SPI interrupt enable) bit in the SPCR
control register is set.

The SPIF is set when a data transfer is complete, and is cleared by a read of the SPSR status register,
followed by a read or write to the SPDR data register.  Thus, resetting the SPIF flag is very simple.
After a data transfer is initiated by writing to the SPDR data register, the processor may poll the
SPSR status register until the SPIF flag is set.  Then reading the data that was received (by reading
the SPDR) or initiating a new data transfer (by writing to the SPDR) automatically clears the SPIF
flag.  Alternatively, the if the SPI interrupts are enabled, the SPI interrupt handler determines what
caused the interrupt by reading the SPSR register to see which of the three status bits is set.  If SPIF
is set, reading the received data or initiating a new data transfer automatically clears the SPIF bit.

A write collision occurs when a byte is written to the SPI data register, SPDR, while data is being
exchanged.  The WCOL flag is set when a write collision occurs.  The data transfer that is in process
when the write collision occurs is completed.  WCOL is cleared by a read to the SPSR followed by a
read or write to the SPDR.

A mode fault occurs when the SPI senses that a multimaster conflict (MC68HC11F1 Technical Data
Manual, p.8-7) exists on the network as explained above in connection with the /SS input.  When a
mode fault is detected, the processor:

1. disables the SPI outputs by clearing the bits in the Port D data direction register (DDRD),

2. clears the MSTR bit in the SPCR to configure the SPI as a slave,

3. clears the SPE bit to disable the SPI, and

4. generates an interrupt if the SPIE bit in the SPCR is enabled
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These steps greatly reduce the chance that the communicating devices might be damaged by con-
tention on the SPI bus.  The MODF bit is cleared by a read of the SPSR followed by a write to the
SPCR.

SPI Data Transfers

A data transfer is initiated by a master device when it stores a message byte into its SPDR register.
If a slave device has already stored a byte into its SPDR register, that byte will be exchanged with
the master’s byte.  Once the bytes have been exchanged, the master may write a new byte to initiate
another byte exchange.  Although data byte transfers are easily executed once the network has been
wired and configured properly, a carefully executed software protocol may be required to ensure
data integrity.

Summary

The flexibility and power of the 68HC11’s serial peripheral interface supports high speed communi-
cation between the 68HC11 and other synchronous serial devices.  The interface can be used to
support analog to digital and digital to analog converters, networks of many computers controlled by
a single master, or networks of devices controlled by several coordinated masters.  Pre-coded device
drivers configure the SPI for a standard data format, and routines defined in this chapter make it
easy to customize a data format and baud rate for your application.   With careful design, many
peripherals can communicate via the SPI, and powerful multi-processor systems can be linked using
this high speed bus.
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Chapter 11

The Battery-Backed Real-Time Clock

A battery-backed real time clock (RTC) may be optionally included.  If so, the RTC’s battery also
backs-up the 128K RAM.  Note however that if the expanded memory option is chosen, providing
512K or RAM, then none of the RAM can be battery-backed.  The accuracy of the clock is better
than +/- 2 minutes per month.

A 7 ma-hr Lithium rechargable battery is used.  This backup battery charges automatically while
+5V is applied to the board.  When +5V is not applied the battery keeps alive the RTC and the RAM
so that information is not lost.  The length of time the battery lasts varies from board to board pri-
marily because RAM chips vary device-to-device in their leakage currents.  Their leakage currents
also depend strongly on ambient temperature so that while a battery may last a long time at normal
or low ambient temperatures, at greater temperature it may discharge quickly.

We have measured battery discharge times for typical devices and have found the following:

◙ Actual measurements at normal temperatures (<40°C) show the battery should backup the
memory more than two years between recharging.  Our actual measurements of the RAM cur-
rent draw show it to draw much less than its “typical” spec from its datasheet.

◙ Assuming the “typical” current specifications of the RAM data sheets the battery should last
139 days; and,

◙ At the worst case current specification for the RAM, battery life would be 44 days at normal
temperatures, and as little as 6 days if operated continuously at an ambient temperature of
70°C.

◙ If the RAM is not battery backed, but the RTC installed, typical RTC retention time at 25°C
should be 300 days.

Figure 11-1 illustrates the dependence of battery lifetime between charges while backing up the
128K RAM and powering the RTC, and ambient temperature.
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Figure 11-1 Battery discharge time as a function of ambient temperature.

After each cold restart the kernel re-initializes the RTC chip to charge the battery and to use battery
backup on removal of power.  The maximum battery recharge time is 22 hours.

Setting and Reading the Real Time Clock

The built-in library functions SetWatch() and ReadWatch() make it easy to set and read the real
time clock.  The SetWatch() and ReadWatch() functions use the top 16 bytes of the 68HC11F1’s
on-chip RAM as a buffer to hold intermediate results during the data transfers, and the top 8 bytes at
addresses 0xB3F8-0xB3FF serve as the watch_results structure that contains the results returned
by the most recent call to ReadWatch() as described below.

Because the structure that is written to by ReadWatch() is at a fixed location, this code is not re-
entrant.  This is not a problem in single-task applications or applications where only one task uses
the watch.  But it can cause problems if multiple tasks are executing ReadWatch().  For example,
assume that task #1 calls ReadWatch(), but before it can access the contents of the structure using
the assignment statement, the timeslice interrupt occurs and task#2 proceeds to call ReadWatch(),
then the contents of the structure could be changed before task#1 is able to execute its assignment
statement.  To avoid this situation, the multitasking application can be configured so that only one
task calls ReadWatch() and SetWatch() and shares the data with other tasks.

Another option is to define a resource variable to mediate access to the watch.  The routines needed
to accomplish this are declared in the MTASKER.H file and described in detail in the Control-C Glos-
sary.  The following brief example illustrates how to design a re-entrant function that returns the
current WATCH_MINUTE:

RESOURCE watch_resource;     // declare resource variable: controls
                             // watch access
  _Q int CurrentMinute(void) // reads watch, returns current minute
   {  int minute;
      GET(watch_resource);   // get access to watch; Pause() if
                             // another task has it
      ReadWatch();           // updates contents of watch structure
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      minute = WATCH_MINUTE;
                             // you can also transfer other contents
                             // from the watch structure to
                             // "task-private" variables here
      RELEASE(watch_resource); // release access to watch so other
                             // tasks can use it
      return minute;
   }

The CurrentMinute() function can be simultaneously called from multiple tasks without causing
any conflicts.  The GET() and RELEASE() macros automatically mediate access to the watch, en-
suring that only one task has access at a time.

The battery-backed clock is pre-set at the factory to Pacific Time in the United States.  To re-set the
smart watch to your time zone, your program can call the function:

void SetWatch(hundredth_seconds,seconds,minute,hour,day,date,month,year)

The interactively callable routine named SetTheWatch() is defined in the TIMEKEEP.C file so you
can set the watch from your terminal.  As explained in the Control-C Glossary, the hour parameter
ranges from 0 to 23, the day from 1 to 7 (Monday=1 in this example), and the year parameter ranges
from 00 to 99.  For example, if it is now 10 seconds past 5:24 PM on Wednesday, May 26, 2004,
you could interactively set the watch by typing:

SetTheWatch( 0, 10, 24, 17, 3, 26, 5, 4)

The watch is set and read using 24-hour time, where midnight is hour 0, noon is hour 12, and 11 PM
is hour 23.  Note that you may assign any day of the week as “day number 1”.

The function ReadWatch() writes the current time and date information into a structure named
watch_results that occupies the top 8 bytes of on-chip RAM at addresses 0xB3F8-0xB3FF.  Pre-
coded macros name the structure elements so it is easy to access the time and date information.  For
example, the following simple function in the TIMEKEEP.C file reads the smart watch and prints the
time and date:

_Q void SayDate(void)
{   ReadWatch();     // results are placed in watch_results structure
printf(“\nIt is now %d:%d:%d on %d/%d/%d.\n”,
WATCH_HOUR, WATCH_MINUTE, WATCH_SECONDS,
WATCH_MONTH, WATCH_DATE, WATCH_YEAR);
}

It simply calls ReadWatch(), and then executes a printf() statement using the pre-coded struc-
ture macros to reference the time parameters in the watch_results structure.  If you called this
function immediately after setting the watch as described in the prior section, the response at your
terminal might be:

It is now 17:24:31 on 5/26/04.

After compiling TIMEKEEP.C, you can interactively type at your terminal:
SayDate( )

at any time to see a display of the current time and date.



140 Chapter 11: The Battery-Backed Real-Time Clock

For backwards compatibility with the QED product line, the hundredths of a second field is present
but it is not used.  The hundredths of a second value is required for SetWatch() but it is ignored and
it is always 0 from ReadWatch().
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Part 4

Putting It All Together
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Chapter 12

A Turnkeyed Application

This chapter presents an application program that integrates a range of hardware and soft-
ware features of the QCard Controller.  The application is "turnkeyed", meaning that it can be
placed in Flash and configured to autostart each time the board is powered up.  This chapter
explains all of the elements of the program.

The example application reads a voltage using the 8 bit analog to digital (A/D) converter and out-
puts a pulse width modulated (PWM) signal that, when averaged using a simple resistor and ca-
pacitor, tracks the input voltage.  In addition, the program calculates and displays the mean and
standard deviation of the input signal.  This application demonstrates how to:

◙ Use the pre-coded library routines

◙ Take advantage of the “Make” utility which automatically sets up a memory map that is com-
patible with a turnkeyed application in Flash

◙ Use the 8 bit A/D converter

◙ Use floating point mathematics to calculate means and standard deviations

◙ Write and install an interrupt routine that generates a PWM output

◙ Assembly-code an interrupt routine for increased performance

◙ Write to the liquid crystal display (LCD)

◙ Write the application using a modular multitasking approach

◙ Configure the application to automatically start upon power-up or reset

The program is called TURNKEY.C in the \MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES
directory.  The commented application code is presented at the end of this chapter.  The text of this
chapter will frequently refer to the code, offering background and explanation.  Some of the section
titles in this chapter are keyed to the titled sections in the code which are set off with asterisks.

Overview of the Application
The main activities of this application are performed by 3 modular tasks and one interrupt routine:
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The first “data gathering” task collects data from channel 0 (or any other channel that you
designate) of the 8 bit A/D converter (PORTE on the 68HC11), converts the 8 bit reading to its
equivalent voltage, and saves it in a floating point variable called input_voltage.

The second “output control” task calculates the duty cycle, high-time and low-time of a pulse
width modulated (PWM) output signal so that its average value matches the latest
input_voltage measured by the data gathering task.

An interrupt attached to output compare 3 (OC3) controls the PWM output signal appearing at
PORTA (PA5), pin 11 of the Field Header.  The interrupt service routine updates the OC3
timer registers based on the high-time and low-time calculated by the output control task.

Once each second for ten seconds, the third “statistics” task samples the input voltage calcu-
lated by Task 1 and stores it as a floating point number in a FORTH_ARRAY called
Last10Voltages.  When 10 seconds have elapsed, this task calculates the mean and standard
deviation of the 10 data points and writes them to the LCD display.  It then starts filling the ar-
ray with new data, repeating the entire process.

There is one additional task that is always present in this application: the default task named
FORTH_TASK that runs QED-Forth and executes main().  In the final version of this application we
put the QED-Forth task ASLEEP.  This prevents the end user of the system from gaining access to
the Forth interpreter.  We use the interactive QED-Forth task during development and debugging; it
allows us to execute commands and monitor the performance of the routines that are being tested.

Hardware Required for the Example Application

This sample application requires a QCard Controller, Keypad/Display Wildcard, a resistor, capaci-
tor, potentiometer, and a voltmeter to verify proper operation.  An optional operational amplifier
would allow the output signal to drive loads other than a high impedance voltmeter or oscilloscope.
Please be careful not to short pins together when working with the on-board connectors.

A 10 Kohm (or any other reasonably valued) potentiometer is connected to place a controllable
voltage on PE0, which is channel 0 of the 8 bit A/D converter on the HC11.  The potentiometer is
connected between +5V and AGND (analog ground), with the potentiometer’s wiper connected to
PE0 (pin 24 of the field header).

The PWM output appears on PA5 (that is, pin 5 of PORTA).  A resistor and capacitor are connected
to integrate the square-wave output signal to a steady average voltage across the capacitor.  The
capacitor voltage can be measured with a high impedance voltmeter or oscilloscope.  An optional
amplifier can be used if the output must drive lower impedance loads.

The statistical report generated by Task 3 is sent to the LCD display.

The Memory Map

The first step in programming an application is assigning the memory areas that will be occupied by
the object code, variable area, and also the heap which holds FORTH_ARRAYs in paged memory.
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Fortunately, the Mosaic IDE Make Tool automatically sets up a very versatile memory map.  For
reference, here is a brief summary of the main memory areas allocated by the Make Tool:

◙ 0x0000-0x7FFF (32K) in page 4 is the program’s object code which will eventually be in
Flash.

◙ 0x4600-0x7FFF (14.5K) in page 0x0F is the RAM heap area that holds FORTH_ARRAY data in
paged memory.

◙ 0x3000-0x45FF (5.5K) in page 0F is a reserved heap for the graphics display buffer.

◙ 0x8E00-0xADFF (8K) is available common RAM (the C .data and .init sections) which hold C
variables, C arrays, TASK areas, and pfa’s (parameter field areas) of FORTH_ARRAYs.

◙ 0xB000-0xB3FF (1K) is 68HC11 on-chip RAM (the C .onchipRAM section); the top 48 bytes
at 0xB3D0-0xB3FF are reserved.

◙ 0xAEC0-0xAFFF (320 bytes) is available EEPROM (the C .eeprom section); EEPROM at
0xAE00-0xAEBF is reserved for startup utilities and interrupt revectoring.

◙ 0x4000-0x7FFF (16K) on page 0x05 is used for QED-Forth debugging definitions that are
present in the .DLF download file

◙ QED-Forth ROM occupies 0x0000-0x7FFF on page 0, 0x0000-0x2FFF on page 0x0F, and
0xB400-0xFFFF in common ROM.

While the object code ends up in Flash memory, the variable area and heap must always be located
in RAM.  The variable area includes the areas where variable values are stored, where TASK areas
(the tasks’ stacks, buffers, pointers, etc.) are allocated, and includes the parameter fields that hold
addressing and dimensioning information associated with heap items.  The heap in paged memory
holds FORTH_ARRAYS and other data structures.  Both variables and the contents of the heap must
be subject to rapid change while the application is running, so they can never be placed in Flash.

Other Memory Areas

The upper half of page 5 is used to hold the QED-Forth definitions (names and object code) that
facilitate interactive debugging.  This region is typically not needed after debugging is done, and so
is typically not included in the final Flash.  If interactive function calling capability is required in the
final application (for example, if you want to give the end user or a customer service person the
ability to execute interactive commands from a terminal), then this area can be included in nonvola-
tile Flash memory in the final turnkeyed system.

While downloading an application, the object code area must be RAM so that the specified bytes
can be stored in memory.  As described earlier, proper use of SAVE and RESTORE utilities can save
you from having to re-download all of your code after a crash or mistaken command.

8 Bit A/D Data Gathering Task

The first section of the example application code uses the 8 bit analog to digital (A/D) converter to
convert the voltage input derived from the external potentiometer to a digital value between 0 and
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255.  The task converts the 8 bit A/D reading into its equivalent floating point voltage which spans
0.0 to 5.0 Volts, and stores it in a variable called input_voltage.

We define some simple constants that specify the high and low reference voltages of the A/D, and
the number of counts (2^8 = 256 counts).  The CountToVolts() function converts the 8 bit A/D
reading into its equivalent floating point voltage (a number between 0.0 and 5.0 Volts).
GatherData() is the activation routine for this task.  It calls AD8On() to power up the 8 bit A/D,
and enters an infinite loop that acquires an A/D sample, converts it to a voltage, and stores it in the
variable input_voltage which other tasks can read.

A special storage operator named PokeFloatUninterrupted() is declared using the _protect
keyword, which causes the compiler to disable interrupts before calling the function, and restore the
global interrupt enable flag (the I bit in the Condition Code Register) to its prior condition after the
function returns.  This uninterruptable function is used because the input_voltage variable holds
data that is accessed by more than one task.  The uninterruptable store and fetch operators ensure
that 32 bit data is not misread because of intervening interrupts or task switches.

The Pause() cooperative task-switch command forces at least one task switch on each pass through
the infinite loop of GatherData(); we also rely on the timeslicer to switch tasks every 5 ms.

Pulse Width Modulation Task

The goal is to create a PWM output whose average voltage is equal to the input voltage read by the
data gathering task.  This code specifies the activity of the task that calculates the high-time and
low-time parameters needed to generate the pulse width modulated output signal.  An interrupt
routine (described in the next section) controls the output signal subject to the high- and low-times
calculated by this task.

We could perform all of the duty cycle computations in the interrupt service routine that controls the
PWM output, but this is not a good practice.  Long interrupt service routines can delay the proces-
sor’s ability to respond to other interrupts in a timely manner.  The best approach is to perform the
more time-consuming computational functions in foreground tasks so that the associated back-
ground interrupt service routines execute very rapidly.

We define static integer variables to hold the high-time and low-time which, as their names imply,
hold the number of timer counts that the PWM signal is high and low.  Floating point constants
LOW_OUTPUT_VOLTAGE and HIGH_OUTPUT_VOLTAGE are defined to specify the voltage levels
corresponding to logic level 0 and logic level 1; for maximum accuracy you could measure the volt-
age levels on PA5 (pin 5 of PORTA on the 68HC11) and set these constants accordingly.

The period of the PWM output is chosen to be 130 msec, which corresponds to 65,000 counts on the
free-running timer.  The resident QED operating system automatically configures the free-running
counter to increment every 2 microseconds.

We enforce a minimum time between interrupts via the constant MINIMUM_HIGH_OR_LOW_TIME
which is approximately equal to the maximum number of timer counts divided by 256.  That is, we
only require 8 bits of resolution from our PWM.  The benefit of imposing a minimum high or low
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time is that by doing so we can ensure that the minimum time between PWM interrupts is more than
adequate to allow the service routine to execute.

We next define a routine that calculates the PWM duty cycle such that the average output signal
matches the latest measured input_voltage.  The HighAndLowTimes() function converts the
calculated duty cycle into the parameters needed by the interrupt service routine, and
SetPulseParameters() is the infinite loop that serves as the activation word for the PWM task.
Note once again that we have put Pause() in the loop so that both cooperative and timesliced mul-
titasking are used.

Output Compare 3 Interrupt Code

This code defines an interrupt service routine and an installation routine for the OC3 (Output Com-
pare 3) interrupt which controls the output signal.  We first define constants to name the relevant bit
masks.  The relevant 68HC11 hardware register names are defined in the QEDREGS.H file in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory.

OC3Service() is the interrupt service routine that controls the state of the PA5 output bit.  It relies
on the ability of the output compare (OC) function to automatically change the state of an associated
PORTA output bit at a specified time.  Specifically, OC3 can be configured to automatically change
the state of the output PA5 when the count in the TOC3 register matches the contents of the free-
running counter (TCNT) register.  Setting the “mode bit” specified by the constant OC3_MODE_MASK
in the timer control 1 (TCTL1) register enables the automatic output control function.  The OC3
“level bit” specifies whether the output bit will be set high or low upon a successful compare.  The
OC3Service() routine simply reverses the state of the OC3 level bit (specified by the constant
OC3_LEVEL_MASK) and adds the appropriate high_time or low_time increment to the OC3 reg-
ister to specify when the next interrupt will occur.  Recall that high_time and low_time are cal-
culated by the foreground PWM task, so the interrupt has very little to do and can execute rapidly
(typically in under 50 µsec).

InstallOC3() enables direct hardware control of PA5 by setting the OC3 mode bit, calls
ATTACH() to post OC3Service() as the OC3 interrupt handler routine, initializes PA5 by forcing
an output compare, and enables the OC3 interrupt.  The main() routine defined at the end of the
code example calls the InstallOC3() initialization routine each time the processor restarts.

Assembly Coding a Function Definition

AssembledOC3Service() is an assembly coded version of the interrupt service routine.  While it
is only slightly faster than the high level version, it is included to illustrate how assembly coding is
performed within this programming environment.

Assembly mnemonics use the standard Motorola format as described in the Motorola 68HC11 book.
After the function is declared and the opening { is entered, the #asm preprocessor directive indi-
cates that the following code is to be passed straight through to the assembler, bypassing the C com-
piler.  The #endasm preprocessor directive returns control to the compiler.  These preprocessor
directives must appear alone on a line.  Each opcode instruction must occupy a separate line that
starts with at least one tab or space.  Labels (such as branch destinations) should appear alone on a



148 Chapter 12: A Turnkeyed Application

line, with no leading spaces.  The * is the comment character; text after the first * on a line is
ignored.

Assembly constants are defined using EQU (equate) statements.  Note that just above the function
definition of AssembledOC3Service(), the required constants are defined as EQU statements
within the delimiting #asm ... #endasm preprocessor directives.

Statistics Task

The code in this section continuously loads a matrix with one input voltage acquired in each of the
last 10 seconds, and writes the mean and standard deviation of this data to the liquid crystal display
every 10 seconds.  We define a single-row FORTH_ARRAY called Last10Voltages to hold the
data; this array resides in the heap associated with the statistics task.  Two variables keep track of
the current and prior matrix indices; these aid in managing storage of data into Last10Voltages.

The SetupDisplay() function writes the headings to the LCD display.  The
STRING_TO_DISPLAY macro (defined in the INTRFACE.H file) makes it easy to write a text string
to a portion of the display buffer in system RAM, and the UpdateDisplay() command writes the
contents of the buffer to the LCD display.  CalcStats() calculates the latest calculated mean and
standard deviation values, and ShowStats() writes them to the display.  ShowStats() uses
sprintf() to convert the floating point numbers to ASCII strings that can be written to the display
buffer.  The format is specified so that each floating point number will occupy the same number of
spaces each time it is displayed. LogDataAndShowStats() fills the Last10Voltages array with
measured voltages and calls the subsidiary functions to display the statistical results every 10 sec-
onds.

Statistics() is the activation routine for the task; it dimensions and initializes the data array,
sets up the display, and enters an infinite loop that logs the data and displays the statistics.  Pause()
is included in the infinite loop so that both cooperative and timesliced task switching are used.

Build and Activate the Tasks

Now that we have defined the activation routines for the tasks, it is time to execute the TASK state-
ment to name the tasks, allocate their 1K task areas in common RAM and set up the tasks.

The routine BuildTasks() initializes the user area and stack frame of each task, and links the tasks
into a round-robin loop.  The first statement of this routine is very important:

NEXT_TASK  = TASKBASE;

When executed, this command makes the currently operating task (which will always be the default
FORTH_TASK) the only task in the round-robin loop.  This sets a known startup condition from
which the task loop may be constructed.

Note that the ReadInputTask and ControlOutputTask are built with a null heap specification
because they do not access any heap items.  The StatisticsTask, however, does access a heap
item.  It requires a heap specified by DEFAULT_HEAPSTART and DEFAULT_HEAPEND which are
defined in the HEAP.H header file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory.  Note
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that we also use the same heap specification for the default FORTH_TASK; see the
INIT_DEFAULT_HEAP() routine.  The FORTH_TASK is not active in the final application, so the
sharing of this heap space does not cause a conflict during operation.

ActivateTasks() simply activates each of the three tasks with the appropriate action routine.
Each action routine is an infinite loop that performs the desired activity of the task.

Define the main Routine

The main() function is the top level routine in the application.  After execution of the
PRIORITY.AUTOSTART command as explained below, it will be called each time the board is pow-
ered up or reset.  The operating system always wakes up and enters the default FORTH_TASK whose
task area starts at 0x8400 in common memory upon every restart, so the default QED-Forth task is
always the task that calls main().

It is good programming practice to initialize all variables each time the application starts up; this is
done by the InitVariables() function.  After initializing the variables, main() calls
INIT_DEFAULT_HEAP() to initialize the heap of the FORTH_TASK, calls InitElapsedTime() to
initialize the elapsed time clock to zero, installs and initializes the OC3 (PWM) interrupt service
routine, and builds and activates the tasks.

The next command in main() is

ColdOnReset()

which forces a COLD restart every time the machine is reset.  This enhances the operating security of
a turnkeyed application by ensuring that every user variable and many hardware registers are ini-
tialized after every restart and reset.  This command may be commented out during debugging so
that restarts do not cause QED-Forth to FORGET all of the defined functions in the application pro-
gram.

The main() function then puts the default FORTH_TASK asleep by executing:

STATUS = ASLEEP;

This takes effect once multitasking commences, and does not prevent execution of the remainder of
main().  This command should be commented out during program development so that the awake
QED-Forth task can be used to aid in debugging.

The main() function then RELEASEs the FORTH_TASK’s control of the serial line.  This is not re-
quired in this simple application, but it would be necessary if another task required access to the
serial port in the final application. For example, the RELEASE() statement would be required if the
statistics task printed to the terminal instead of to the LCD display.

The final commands start the timeslicer (which also starts the elapsed time clock and globally en-
ables interrupts) and Pause() to immediately transfer control to the next task in the round-robin
loop.  The final Pause() is not essential in this simple application, but it does ensure smooth op-
eration in applications where tasks other than QED-Forth require access to the serial port.
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Compile the Program

To compile, assemble and link the program and create the download file, simply use your editor to
open the TURNKEY.C file in the \MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory,
and then click on the Make Tool.  When the compilation is complete, you can view the warning
messages and highlight the associated source code lines.  (None of the warnings adversely affect the
operation of this program.)

Make sure that your QCard Controller is turned on and is communicating with the Mosaic Terminal.
Then download the program to the QCard Controller by using the terminal’s “Send File” menu item
to send the TURNKEY.DLF file.

Using SAVE, RESTORE and Write-Protection During Debugging

After downloading the program, you can interactively type SAVE from the terminal; this stores rele-
vant memory map pointers into reserved locations in EEPROM.  You can proceed to interactively
test each function in the program one at a time as described earlier. If a crash occurs, simply type
RESTORE to bring back access to all of the interactively callable function names.  The use of SAVE
and RESTORE can greatly reduce the number of times that you have to re-download your code during
debugging.

Configure the Board to Autostart the Program

After debugging is completed interactively type the QED-Forth command:
CFA.FOR  main  PRIORITY.AUTOSTART

which installs main() as a routine that is automatically executed upon each restart or reset.  Note that
the QED-Forth V4.4x greeting is suppressed when an autostart routine is installed (you could easily
print your own greeting by modifying the main() function).  PRIORITY.AUTOSTART installs an
autostart pattern in the top 6 bytes of page 4 which is in Flash in the final system.  The autostart
pattern tells the operating system to automatically call main().

The PRIORITY.AUTOSTART command is used to configure systems that will go into production.
For one-of-a-kind prototypes, another QED-Forth command (called simply AUTOSTART) is available
that installs the autostart pattern in EEPROM which resides in the 68HC11 chip itself.  Because the
pattern installed by AUTOSTART is in the processor chip and not in Flash, it is not automatically
transferred to a new board when the production Flash is plugged in.  In summary, the AUTOSTART
command is convenient while debugging a prototype, but the PRIORITY.AUTOSTART command
must be used when generating Flash for a production system.

After executing the PRIORITY.AUTOSTART command, the main() routine can be invoked by re-
setting the QCard Controller, thus starting the program.  If you need to remove the autostart vector
(and the QED-Forth monitor is still active and responding to your commands, that is, if you didn’t
put it ASLEEP), you can simply type:

NO.AUTOSTART
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to remove any PRIORITY.AUTOSTART or AUTOSTART vectors.  If QED-Forth is not awake (and so
does not respond to the terminal), you can remove the autostart vector by entering the special
cleanup mode.  Note that the special cleanup mode configures the system to expect a baud rate of
19200 baud, so if you are using a different baud rate, you’ll need to interactively execute the com-
mand BAUD1.AT.STARTUP to re-establish the desired configuration.

You can monitor the operation of the turnkeyed program by connecting a voltmeter or oscilloscope
across the output capacitor C1, and by watching the update of statistics every 10 seconds on your
display.  Adjusting the input potentiometer should result in an output voltage that tracks the input.

Turnkeyed Application Code Listing
Listing 12-1 Turnkeyed Application
// Turnkeyed Application Code Listing, C Language version.
// This is a complete real-time application program, with instructions on
// how to set up the program to AUTOSTART each time the processor starts up.

// Copyright 2004 Mosaic Industries, Inc.  All Rights Reserved.
//  Disclaimer: THIS SOFTWARE IS PROVIDED ON AN “AS IS” BASIS, WITHOUT ANY
//  WARRANTIES OR REPRESENTATIONS EXPRESS OR IMPLIED, INCLUDING, BUT NOT
//  LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
//  FOR A PARTICULAR PURPOSE.

// ************************ Turnkeying a QED Application ********************
//
// This is the code for an example application.  The accompanying chapter
// presents a detailed explanation of this code.  The code can run on a QCard
// with the minimum memory configuration.  To allow display of the statistical
// results calculated by the program, a Keypad/Display Wildcard should be
// attached to the QCard.

// Description of the application:
// This program reads an input voltage, creates a pulse width modulated (PWM)
// signal whose average value tracks the input voltage, and reports the
// mean and standard deviation of the input voltage.  The following 3 tasks do
// the work:

// Task 1: Reads 8 bit A/D input AN0, measuring the voltage on a potentiometer
//                connected to PortE pin PE0/AN0.

// Task 2: Outputs on Port A bit 5 a PWM signal whose average equals the A/D
//                input.

// Task 3: Every 1 second puts A/D value into a matrix, and every 10 seconds
//         displays the mean and standard deviation of the last 10 seconds
//         worth of data.
//
// The following issues are addressed:
//
//      Using the default C memory map as set up by the MAKE utility
//      Proper initialization of tasks at startup
//      Autostarting
//      Interrupt service routines and interrupt attaching
//      In-line assembly coding
//      Initialization of the heap memory manager
//      Timesliced multitasking
//      ColdOnReset() for secure restart
//      Floating point calculations
//      Using the display
//      Going into production
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// ************************ Default Memory Map ************************

// 0-7FFF (32K) in page 4 is user application code (eventually will be ROMmed)

// 4600-7FFF (14.5K) in page 0F is RAM Heap area that holds banked array data.

// 3000-45FF (5.5K) in page 0F is a heap for the graphics display buffer.

// 8E00-ADFF is available common RAM (the C .data and .init sections)
//      which hold C variables, C arrays, and pfa’s (parameter field areas)
//      of FORTH_ARRAYs.

// B000-B3FF is 1K 68HC11 on-chip RAM; the top 48 bytes
//      at B3D0-B3FF are reserved.

// AEC0-AFFF is available EEPROM referenced by the .eeprom section
//      {EEPROM at AE00-AEBF is reserved for startup utilities
//       and interrupt revectoring}

// QED-Forth ROM occupies 0-7FFF on page 0, 0-2FFF on page F,
//      and B400-FFFF in common ROM.

 #include <\mosaic\allqed.h>     // include all of the qed and C utilities

// *********************** 8 BIT A/D Data Gathering Task *********************

// This task gathers data from the 8 bit A/D and places it in a variable
// easily accessed by other tasks.

// Define the control registers and some useful constants:

#define AD8_INPUT_CHANNEL       ((char) 0)
// You can use any channel you want and place the input potentiometer on
// the corresponding A/D8 input pin.  For example, if 0 is your input
// channel, place the input signal on the pin labeled AN0 (pin 10 of
// the analog connector).

static float input_voltage;
        // Holds voltage corresponding to latest result of A/D input. Because the
        // contents of this variable are shared among several tasks, we use
        // uninterruptable PokeFloatUninterrupted and PeekFloatUninterrupted
        // to access it.

// Now we convert a measured count from the A/D that ranges from 0 to 255
// into a voltage that ranges from 0.0 Volts (the low reference voltage)
// to nearly 5.0 Volts (the high reference voltage).
// This involves solving the equation:
// Voltage=[(high.ref.voltage -
              low.ref.voltage)*measured.count/256]+low.ref.voltage

// First let’s define some constants:
#define FULL_SCALE_COUNTS       256     // 256 counts in an 8 bit converter
#define LOW_VREF                0.0
#define HIGH_VREF               5.0
         // NOTE: For maximum accuracy, measure +5VAN with a voltmeter and
         //        set HIGH.REF.VOLTAGE equal to the result.

_Q float CountToVolts(int count)
        // This routine converts 8 bit A/D measured count n { 0 <= n <= 255 }
        // to the corresponding floating point voltage r
        // {typically, 0.0 <= r <= 5.0 }  by solving the equation:
        // r = [ (high.ref - low.ref) * count / 256 ]  + low.ref
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{  return( ((HIGH_VREF - LOW_VREF) * count / FULL_SCALE_COUNTS) + LOW_VREF );
}

_Q  _protect  void PokeFloatUninterrupted(float value, float* destination )
// stores value into the address specified by destination;
// the _protect keyword guarantees that
// interrupts will be disabled while this function executes;
// this prevents corruption of data when two tasks are accessing the same
// 4-byte variables
{  *destination = value;
}
 _Q  _protect  float PeekFloatUninterrupted(float *  source )
// fetches and returns the contents from the address specified by source;
// the _protect keyword guarantees that
// interrupts will be disabled while this function executes;
// this prevents corruption of data when two tasks are accessing the same
// 4-byte variables
{  return *source;
}

_Q void GatherData(void)
// This is the activation routine for the data gathering task.
// It continually acquires readings from the A/D, converts the readings
// to voltages, and updates the input_voltage variable that is accessed
// by other tasks.
{       uchar sample;
        float sample_voltage;
        AD8On();                        // make sure A/D is powered up
        while(1)                        // start infinite loop
        {       sample = AD8Sample(AD8_INPUT_CHANNEL);
                sample_voltage = CountToVolts(sample);
                PokeFloatUninterrupted(sample_voltage, &input_voltage);
                Pause();
        }
}

// ********************* Pulse Width Modulation (PWM) Task ********************

// This task calculates the high time and low time of the PWM output based on
// the value of the input_voltage which is updated by the data gathering task.
// The goal is to set the duty cycle of the PWM output so that the average of
// the PWM signal equals the input_voltage. This is achieved by solving the
// equation:
//      DutyCycle = (input_voltage - low.output) / (high.output - low.output)
//      in which low.output and high.output are the voltage levels that appear
//      on the PWM output pin in the low and high states, respectively.

// Given the duty cycle, and given our choice of a PWM period of 130 msec, we
// calculate the high.time and low.time of the PWM signal in terms of the timer
// counts; each timer count equals 2 microseconds.  high_time is the number of
// timer counts that the signal is in the high state and low_time is the number
// of timer counts that the signal is in the low state during each 130 msec
// period.  high_time and low_time are calculated as:
//      high_time = Duty.cycle * TIMER_COUNTS_PER_PERIOD
//      low_time = TIMER_COUNTS_PER_PERIOD - high_time
//              where TIMER_COUNTS_PER_PERIOD = 130 msec/2 microsec = 65,000.

// We also “clamp” high_time and low_time to a minimum value to prevent a
// situation where interrupts are requested so rapidly that the processor
// can’t service them.

// The OC3 (output compare 3) interrupt code in the subsequent section uses
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// these calculated values to pulse width modulate the PORTA output port pin
// PA5.
 // We define some variables and constants:

static uint high_time;   // the number of timer counts that PWM output is high
static uint low_time;    // the number of timer counts that PWM output is low
static float duty_cycle;

#define LOW_OUTPUT_VOLTAGE      0.0     // the voltage on PA5 when it is low
#define HIGH_OUTPUT_VOLTAGE     5.0     // the voltage on PA5 when it is high
// NOTE: for maximum accuracy, the voltage output of pin PA5 could be measured
//   in the low and high states and LOW_OUTPUT_VOLTAGE and HIGH_OUTPUT_VOLTAGE
//   set accordingly.

#define MS_PER_PERIOD   130    // use a 130 msec period for PWM output
                               // NOTE: the timer “rolls over” every 131 msec

#define TIMER_COUNTS_PER_PERIOD         65000
//   130 milliseconds corresponds to 65,000 counts of 2 microseconds (usec)
//   each on the free-running timer.  QED-Forth sets the contents of TMSK2 so
//   that each timer count represents 2 usec.  This is true whether the crystal
//   speed is 8 MHz or 16MHz.  We assume here that the programmer has not
//   installed a different value in TMSK2 using InstallRegisterInits().

#define MINIMUM_HIGH_OR_LOW_TIME  ((int) 250)    // corresponds to 500usec
// we choose a minimum high or low time approximately equal to the maximum
// number of timer counts divided by 256.  That is, we only require 8 bits of
// resolution from our PWM.  The benefit of imposing a minimum high or low time
// is that bey doing so we can ensure that the minimum time between PWM
// interrupts is 500 usec.  This is more than sufficient time to allow the
// service routine to execute.

_Q void CalculateDutyCycle(void)
// implements the equation:
//     duty_cycle = (input_voltage-low.output)/(high_output-low_output)
// duty_cycle is in the range 0.0 to 1.0
{   duty_cycle = (input_voltage - LOW_OUTPUT_VOLTAGE)
                               / (HIGH_OUTPUT_VOLTAGE - LOW_OUTPUT_VOLTAGE);
    duty_cycle = MIN((float) 1.0, duty_cycle) ;
    duty_cycle = MAX((float) 0.0, duty_cycle) ; // clamp to 0<=duty_cycle<=1.0
}

_Q void HighAndLowTimes(void)
// saves high and low times as 16bit integer counts in the variables
// high_time and low_time using the equations:
//     high_time = duty_cycle * TIMER_COUNTS_PER_PERIOD
//     low_time  = TIMER_COUNTS_PER_PERIOD - high_time
// both high_time and low_time are clamped to a minimum so that timer interrupts
// don’t occur more frequently than they can be reliably serviced.
{
  high_time = MAX((TIMER_COUNTS_PER_PERIOD *
                 duty_cycle),MINIMUM_HIGH_OR_LOW_TIME);
  low_time = MAX((TIMER_COUNTS_PER_PERIOD - high_time),MINIMUM_HIGH_OR_LOW_TIME);
  high_time = TIMER_COUNTS_PER_PERIOD - low_time;
  // make sure that high_time + low_time is exactly one period despite clamping
}

 _Q void SetPulseParameters( void )
        // this is the activation roution for the pwm task.  It updates the
        // values in high_time and low_time for use by the oc3 interrupt which
        // generates the pwm output waveform on PORTA pin PA5.
{       while(1)
        {       CalculateDutyCycle();
                HighAndLowTimes();
                Pause();



Turnkeyed Application Code Listing 155

        }
}

// ********************* OC3 Interrupt Code **********************
// This interrupt routine generates a pulse width modulated output on Port A
// bit 5 based on the duty cycle calculated by the PWM task.
// There are 4 steps involved in coding an interrupt service routine:
//      1.  Name all required hardware registers (see the QEDREGS.H file in the
//              \MOSAIC\FABIUS\INCLUDE\MOSAIC directory),
//              and name all required bit masks with appropriate mnemonics.
//      2.  Use C or assembly code to define an interrupt handler which
//              must clear the interrupt request flag and perform required
//              service actions.
//      3.  Install the interrupt handler using the Attach() function.
//      4.  Write routines to enable and disable the interrupt.  (We combine
//          steps 3 and 4 in a routine that ATTACHes and enables the interrupt).

// Define output mode configuration flags and masks that specify action
// to be performed when a successful output compare occurs:
#define PA5_MASK                0x20  // mask for setting/resetting PA5
#define OC3_MASK                0x20  // to set/clr OC3 interrupt flag & mask
#define OC3_MODE_MASK           0x20  // mask in TCTL1; enables PA5 pin control
#define OC3_LEVEL_MASK          0x10  // mask in TCTL1; controls level of PA5

// Summary of the functions of these registers: OC3 (output compare 3) is
// associated with pin PA5 on PORTA.  We can write a 16 bit count into the TOC3
// register, and when the count in TOC3 matches the count in the main counter
// TCNT, an interrupt request can occur.  The request only occurs if interrupts
// are globally enabled and if the OC3 interrupt is locally enabled.  The OC3
// interrupt is locally enabled by setting the bit specified by the OC3_MASK in
// the TMSK1 register.  When the interrupt request occurs, the 68HC11
// automatically sets the bit specified by OC3_MASK in the TFLG1 (timer flag
// #1) register.  Our interrupt service routine must clear this bit (oddly
// enough, interrupt request bits are cleared by writing a 1 to the bit
// position!) The register TCTL1 controls whether the state of the PA5 bit is
// automatically changed when TOC3 matches TCNT.  In this application we enable
// this automatic “pin control” action by setting the bit specified by
// OC3_MODE_MASK in TCTL1.  The bit specified by OC3_LEVEL_MASK in TCTL1 then
// controls the level (high or low) to which PA5 is set upon a successful
// output compare.

 _Q void OC3Service(void)
{       char temp = OC3_LEVEL_MASK;
        TFLG1 = OC3_MASK;  // reset the oc3 interrupt flag so that new oc3
                           // interrupts will be recognized. because the flag
                           // is cleared by writing a one to it we can use a
                           // assignment command without affecting other bits.
        if( temp &= TCTL1 )   // look at the oc3/pa5 pin output level
        {       TCTL1 &= ~OC3_LEVEL_MASK;      // AND with complement of mask
                TOC3 += high_time;
        }                  // if the output level just toggled high we’ll
                           // set the mode/level bit so the next output
                           // compare forces the pin low after the high_time
        else               // else if the output level just toggled low...
        {       TCTL1 |= OC3_LEVEL_MASK;
                TOC3 += low_time;  // set the mode/level bit so the next output
        }                       // compare forces the pin high after low_time
}

// Pass the required constants through to the assembler:
// Don’t insert any leading spaces on a line that contains an EQU directive.
#asm
TOC3            EQU     $801A
TCTL1           EQU     $8020
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TFLG1           EQU     $8023

PA5_MASK        EQU     $205
OC3_MASK        EQU     $20
OC3_MODE_MASK   EQU     $20
OC3_LEVEL_MASK  EQU     $10
NOT_OC3_LEVEL_MASK EQU  $EF

#endasm

 _Q void AssembledOC3Service( void )
// This interrupt service routine performs the same functions as the high level
// service routine named OC3Service.  This alternative interrupt service routine
// is assembly coded to illustrate the principles of assembly coding with
// this environment.  This routine it executes in under 45 usec
// including the call and return overhead. The high level version
// is nearly as fast.
// NOTE: #asm and #endasm in-line assembly directives
//               must be the first on a line,
//  AND:  each line of assembly code MUST START WITH A TAB OR SPACE,
//  BUT:  labels must NOT be preceeded by a tab or space.
//  The comment character for assembly code is the * as shown below.
{
#asm
        ldab TCTL1
        bitb #OC3_LEVEL_MASK    * Look at the OC3/PA5 pin output level
        beq is_low
        * If output just went high, clear the level bit in TCTL1: next OC3 clrs PA5
                andb #NOT_OC3_LEVEL_MASK
                stab TCTL1
                ldd TOC3
                addd high_time
                bra finished
is_low
     * If output just went low, set the level bit in TCTL1: next OC3 sets PA5
                orab #OC3_LEVEL_MASK
                stab TCTL1
                ldd TOC3
                addd low_time
finished
        std TOC3           * update the OC count for the next output compare
        ldaa #OC3_MASK     * Reset the OC3 interrupt flag by writing a 1
        staa TFLG1         * so that new OC3 interrupts will be recognized.
#endasm
}

_Q void InstallOC3( void )
// This installation routine enables the “pin control” function, ATTACHES the
// service routine, configures PortA pin 5 as an output, initializes the output
// compare register TOC3, clears the OC3 interrupt request flag (thus ignoring
// prior interrupt requests), and locally enables the OC3 interrupt.
// PWM can begin when interrupts are globally enabled.
{
        TMSK1 &= ~OC3_MASK;                 // Disable OC3 interrupts.
        TCTL1 |= OC3_MODE_MASK;
        // Set the OC3 mode bit so that an output compare sets or clears PA5 pin
        // depending on the level bit which is toggled by the interrupt routine.
//      ATTACH(AssembledOC3Service, OC3_ID); // optional assembly service routine
        ATTACH(OC3Service, OC3_ID);          // use the C-coded version
        TCTL1 &= ~OC3_LEVEL_MASK;            // Set to low before pulses start.
        CFORC |= OC3_MASK;                   // and init by forcing a compare.
        TOC3 = TCNT + TIMER_COUNTS_PER_PERIOD;  // start after a min 130ms delay
        TFLG1 = OC3_MASK;                       // clear interrupt flag OC3F
        TMSK1 |= OC3_MASK;                      // set OC3I to locally enable OC3
}
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// ************************** Statistics Task **************************

// This task samples the analog input voltage (see task 1) once per second,
// stores it in a matrix, and calculates and prints the mean and standard
// deviation of the data every 10 seconds.

FORTH_ARRAY Last10Voltages;
        // row matrix;  holds 1 voltage per second for past 10 seconds

// these index variables keep track of where data is placed in Last10Voltages:
static int matrix_index, last_index;

// these hold the derived statistics:
static float mean, standard_deviation;

_Q float RowMean(int rownum, FORTH_ARRAY * array_ptr)
// sums the elements in the specified row of the specified matrix and
// divides by the number of elements in the row to calculate the mean.
{       float accumulator = 0.0;
        int i, numcolumns = NUMCOLUMNS(array_ptr);  // see \Mosaic\ARRAY.H file
        for(i=0; i < numcolumns; i++)
                accumulator += FARRAYFETCH(float, rownum, i, array_ptr);
        return (accumulator / numcolumns);
}

_Q float RowStandardDeviation(int rownum, FORTH_ARRAY* array_ptr, float row_mean)
// subtracts the row mean from each element and sums the squares of all
// resulting differences in the specified row of the specified matrix
// and takes the square root of the sum to calculate the standard deviation.
{       float accumulator = 0.0, temp;
        int i, numcolumns = NUMCOLUMNS(array_ptr);  // see \Mosaic\ARRAY.H file
        for(i=0; i < numcolumns; i++)
            {   temp = FARRAYFETCH(float, rownum, i, array_ptr) - row_mean;
                accumulator += (temp * temp);
            }
        return sqrt(accumulator);
}

_Q void InitFPArray(float value, FORTH_ARRAY * array_ptr)
// stores specified floating point value in each element of the array
// do not use this function to init arrays that hold char, int or long data
{       int r, c,
            numcolumns = NUMCOLUMNS(array_ptr),   // see \Mosaic\ARRAY.H file
            numrows = NUMROWS(array_ptr);
        for(c=0; c< numcolumns; c++)
                for(r=0; r < numrows; r++)
                        FARRAYSTORE(value, r, c, array_ptr);
}
 _Q void CalcStats( void )
// This routine calculates mean and standard deviation of the
// Last10Voltages matrix and stores them in variables.
{
        mean = RowMean(0, &Last10Voltages);                     // row# = 0
        standard_deviation = RowStandardDeviation(0, &Last10Voltages, mean);
}

// These routines manage the LCD display.
// The message on the display will look like this:
//      Mean =
//            x.xxx   Volts
//      Standard Deviation =
//            x.xxx   Volts
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#define  FP_OFFSET      4       // character offset to start of mean or
                                // std.deviation in display line
#define VOLTS_OFFSET 14         // character offset to start of “Volts” label
                                // in display line

#define MAX_CHARS_PER_DISPLAY_LINE  40
// large enough for 4x20 character display as well as 16 x 40 graphics display

#define SPACE   0x20            // ascii space {blank}

#define  DISPLAY_CONFIG_BYTE    ((uchar*) 0xAE1E) // see grphext.c file
#define  TOSHIBA_VS_HITACHI_MASK        0x40      // 1 = toshiba; 0 = hitachi

char  linebuffer[MAX_CHARS_PER_DISPLAY_LINE+1];
        // single line buffer to assist in writing to display
        // NOTE: it’s all right if this buffer is longer than the display line;
        //      StrToDisplay() will ignore the extra characters.

_Q uint Toshiba(void)
        // returns flag, = true if toshiba display; false if hitachi
{
        return (((*DISPLAY_CONFIG_BYTE) & TOSHIBA_VS_HITACHI_MASK) ? 1 : 0);
}

_Q void BlankDisplayString(char* string_base, int numelements)
// writes “blanks” into the specified string, taking into account that
// Toshiba graphics displays in text mode use 0x00 as the code for BL
// numelements includes the terminating null character
{       int i;
        char blankchar = (Toshiba() ? 0 : SPACE);
        for( i=0; i < (numelements-1); i++)
                string_base[i] = blankchar;
        string_base[numelements-1] = 0; // terminating null
}

 _Q void SetupDisplay( void )
        // writes headings to display; leaves numbers blank.
{       xaddr display_buffer_base = DisplayBuffer();
        int numlines = LinesPerDisplay();
        int chars_per_line = CharsPerDisplayLine();
        char blankchar = (Toshiba() ? 0 : SPACE);
        FillMany(display_buffer_base, (numlines * chars_per_line), blankchar);
               // FillMany() blanks the display buffer
// blank display buffer
        STRING_TO_DISPLAY(“mean = “, 0, 0 );                // line 0
        STRING_TO_DISPLAY(“volts”, 1, VOLTS_OFFSET);        // line 1
        STRING_TO_DISPLAY(“standard deviation =“, 2, 0 );   // line 2
        STRING_TO_DISPLAY(“volts”, 3, VOLTS_OFFSET);        // line 3
        UpdateDisplay();                 // write buffer contents to display
}

// sprintf(char* s, const char *format, ... ) does formatted write to specified
// string.  Returns #chars assigned,
// not including the terminating null that it writes after the last char.
// Returns a negative number if an error occurs.

_Q void ShowStats( void )
 // displays mean and standard deviation of Last10Voltages on LCD display
{       int num_chars_placed;
        BlankDisplayString(linebuffer, MAX_CHARS_PER_DISPLAY_LINE);
        num_chars_placed = sprintf(linebuffer, “%7.3f”, mean);
          // use field width = 7 chars; 3 digits to right of the decimal point
        if(num_chars_placed > 0)
                STRING_TO_DISPLAY(linebuffer, 1, FP_OFFSET);     // line 1
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        BlankDisplayString(linebuffer, MAX_CHARS_PER_DISPLAY_LINE);
        num_chars_placed = sprintf(linebuffer, “%7.3f”, standard_deviation);
        if(num_chars_placed > 0)
                STRING_TO_DISPLAY(linebuffer, 3, FP_OFFSET);    // line 3
        UpdateDisplay();                                 // write to display
}

_Q void LogDataAndShowStats( void )
// increments matrix_index every second,
// loads input_voltage data collected by task 1 into Last10Voltages array,
// and displays statistics on LCD display every 10 seconds
{       float latest_input;
          // we need this temporary because we must do an uninterrupted fetch
          // from input_voltage, then pass the result to FARRAYSTORE
        matrix_index = (ReadElapsedSeconds()) % 10;  // 0<= matrix_index <= 9
        if(matrix_index != last_index)          // if a second has elapsed...
                {  latest_input = PeekFloatUninterrupted(&input_voltage);
                   FARRAYSTORE(latest_input, 0, matrix_index, &Last10Voltages);
                                                // store reading in matrix
                   last_index = matrix_index;   // update last_index
                   if(matrix_index == 9)        // if 10 seconds have elapsed...
                           { CalcStats();       // calculate new statistics
                             ShowStats();       // update display
                           }
                }
}
 _Q void Statistics( void )
// this is the activation routine for the statistics task;
// it calculates and displays the mean and standard deviation of the data.
{
        DIM(float, 1, 10, &Last10Voltages);     // dimension as a 1-row array
        InitFPArray(0.0, &Last10Voltages);      // initialize array
        last_index = -1;                        // initialize last_index
        SetupDisplay();                         // write headings to display
        while(1)
           {     LogDataAndShowStats();          // calc and display statistics
                 Pause();
           }
}

// ********************* BUILD TASKS  ****************************

// Note: we’ll keep the Forth interpreter task active during
// development/debugging, and put it ASLEEP in the final turnkeyed version.

// First declare the tasks and allocate their 1K task areas:
// FORTH_TASK (see MTASKER.H) is the default task running QED-Forth;
// this task is automatically built and started upon each reset/restart;
// in the autostart routine FORTH_TASK puts itself ASLEEP so the end
// user can’t run Forth.

TASK ReadInputTask;        // data gathering task base xaddr

TASK ControlOutputTask;    // PWM task base xaddr

TASK StatisticsTask;       // statistics reporting task

// BUILD_C_TASK(HeapStart,HeapEnd,Base) and
// ACTIVATE(function_ptr, task_base_addr)
// macros are defined in \mosaic\mtasker.h file.

_Q void BuildTasks( void )
// Empties the round robin task loop and then
// carefully builds the tasks every time we start up.
// Note that only the statistics task has access to the heap.
{
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        NEXT_TASK = TASKBASE;    // important! empties task loop before building
        SERIAL_ACCESS = RELEASE_ALWAYS; // allow sharing of serial ports
        BUILD_C_TASK(0,0,&ReadInputTask);
        BUILD_C_TASK(0,0,&ControlOutputTask);
        BUILD_C_TASK(DEFAULT_HEAPSTART,DEFAULT_HEAPEND,&StatisticsTask);
}

_Q void ActivateTasks( void )
        // associate activation routines with each of the tasks.
{
        ACTIVATE(GatherData, &ReadInputTask);
        ACTIVATE(SetPulseParameters, &ControlOutputTask);
        ACTIVATE(Statistics, &StatisticsTask);
}

 // ********************* SET UP AUTOSTART ROUTINE *********************

// We’ll designate the top level word main as the PRIORITY.AUTOSTART routine.
// Every time the QED-Board is powered up or reset, the main routine will
// automatically be executed by the default FORTH_TASK
// main() zeros the variable area and initializes the heap.
// During debugging, the FORTH task which runs main() has access to
// all defined function names declared using the _Q keyword;
// the names are sent to the QCard via the .DLF download file.
// This helps to debug the program.
// main() initializes the elapsed time clock, installs the
// OC3 interrupt service routines, and builds and activates the tasks.
// It releases control of the serial line, starts the timeslicer, and PAUSEs
// to begin execution of the application.
// After debugging is complete, the optional commands which
// specify a COLD restart and which put the FORTH_TASK ASLEEP can be inserted;
// these commands are “commented out” in the code shown here.

_Q void InitVariables(void)
{       // init static variables & strings at runtime, and delete array
        // to clean up the heap before allocating heap items
        input_voltage = 0;
        high_time = low_time = 0;
        DELETED(&Last10Voltages);
        matrix_index = last_index = 0;
        mean = standard_deviation = 0.0;
        BlankDisplayString(linebuffer, MAX_CHARS_PER_DISPLAY_LINE);
}

void main(void)
        // this is the highest level routine in the turnkeyed application.
{
        InitVariables();        // init variables, delete arrays
        INIT_DEFAULT_HEAP();    // it’s important to init heap at startup
        InitElapsedTime();      // initialize qed elapsed time clock
        InstallOC3();           // install service routine for pwm generation
        BuildTasks();           // initialize user areas of the tasks
        ActivateTasks();        // associate action routine with each task
// the following 2 commands are removed during debugging;present in final version
        //  ColdOnReset();      // ensures full initialization upon each reset
        //  STATUS = ASLEEP;    // puts forth task asleep;
        RELEASE(SERIAL);        // in case another tasks needs to use serial
        StartTimeslicer();      // starts elapsed time clock, enables interrupts
        Pause();                // start next task immediately
}

// Now from your terminal, type:
//   CFA.FOR  main    PRIORITY.AUTOSTART
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// this will install main() as the routine that is automatically executed
// each time the board is reset or powered on.
 // The PRIORITY.AUTOSTART routine initializes the priority.autostart vector
// at locations 7FFA-7FFF on page 4 which will be in Flash.

// Then upon the next restart the main() routine will automatically execute.
// NOTE:   To erase the autostart vector and return to QED-Forth,
//         type at the terminal:
//                      NO.AUTOSTART
//         If you have put the FORTH_TASK asleep so that it does not
//         respond to the terminal,
//         activate the Special Cleanup Mode by installing jumper J1 and
//         pressing the reset button.
//         The Special Cleanup Mode erases the autostart vector and restores the
//         board to a “pristine” condition (it also sets the default
//         baud rate to 19200, and the LCD display type to 4x20 character
//         display; use Baud1AtStartup() and IsDisplay() if you need to
//         change these defaults).
//
// ********* BURNING THE FINAL APPLICATION ***********

// To generate a Flash chip that contains this application,
// download the TURNKEY.DLF file, and execute the
//  CFA.FOR MAIN  PRIORITY.AUTOSTART
// command to install the autostart vector.
// Before resetting the board or typing main (which could put FORTH asleep
// and make communications difficult), we’ll make an image of page 4
// which holds the object code and autostart vector:
// To make a Motorola S2-record file to send to the Flash programmer,
// set your terminal to capture incoming text to a disk file using the
// “Save File” menu item, and interactively type from the terminal:
//      HEX  0 4  DIN 0  8000  DUMP.S2
// Close the file when the dump terminates, and use Textpad to remove
// any extraneous file contents such as the DUMP.S2 command and Forth’s
// “ok” prompts.  Then send the resulting file to a Flash Programmer and
// burn a 512k Flash chip.
// Power up the QCard and it will automatically run the application!
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Appendix A

QCard Electrical Specifications

General Specifications

Property Value
CPU Motorola 68HC11F1 microcontroller with 16 MHz clock speed and 4 MHz bus speed.  Paged

memory expands the processor’s address space to 1 Megabyte.
Onboard Memory 512K Flash

128K RAM (or optional 512K RAM)
320 bytes of EEPROM
Optional battery backup of 128K RAM

Real-Time Clock Optional battery-backed real-time clock
Interrupts 21 interrupts support the 68HC11’s on-chip I/O subsystems

Communications Serial 1: RS232 or RS485 hardware UART at up to 19.2 Kbaud
Serial 2: RS232 software UART at up to 4800 baud

SPI: Fast synchronous serial peripheral interface (SPI) at up to 2 Megabaud
Power 5 VDC at 150 mA

+8-26V if WildCards are used that require the greater voltage
Timer-Controlled 

Digital I/O
CPU Port A provides 8 bitwise programmable I/O lines, including:
• 3 or 4 input capture functions facilitate accurate detection of pulse edges and measurement of

pulse widths with a resolution of 2µs
• 4 or 5 output compare functions make it easy to create complex waveforms and pulse-width

modulated signals up to 20KHz at 50% CPU load, and,
• A pulse accumulator facilitates frequency measurement and pulse counting up to 2MHz
Two lines of Port A are optionally used for a 2nd serial port.

Analog to Digital 
Conversion

CPU Port E provides 8 input channels of 8-bit resolution analog to digital conversion
at up to 100 kHz sampling rate, 0-5 V input range.  These inputs may alternately be used as
digital inputs.

Connectors WildCard Port Connector: 24-pin, 0.1” pitch, dual row
Field Connector: 24-pin, 0.1” pitch, dual row

Serial Connector: 10-pin, 0.1” pitch, dual row
Power (and JTAG) Connector: 7-pin, 2mm pitch, single row

Runtime Security A watchdog timer and clock monitor ensure orderly reset or restart after an error
I/O Expansion The QCard directly hosts 4 WildCards.  If mounted on a PowerDock, hosts up to 8 WildCards.

Wildcards available include:
4 x 20 character display and 5 x 4 keypad
16- or 24-bit resolution A/D
12-bit D/A
Isolated AC or DC solid state relays
64 or 128 Mbyte Compact Flash memory
Logic level, high voltage, and high current digital I/O
Fully buffered dual RS232, RS422 or RS485 UARTs at up to 56 Kbaud
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Power
Your PowerDock (which optionally provides power for your QCard) includes a high-efficiency
switching regulator with surge suppression, transient filtering, and EMI/RFI filtering to provide
clean supplies for the onboard analog and digital electronics.  You need only supply regulated or
unregulated DC power in the range of 8 to 26 volts.

Surge Suppression

The raw input is protected by a “varistor” rated at 33 Volts DC.  This metal oxide surge suppresser
protects a QCard powered by a PowerDock by clamping high voltage spikes before they have a
chance to do any harm.  The varistor has no effect if the input voltage is less than the maximum
specified, or 26 volts.  Above 33 volts the device starts to conduct current, and it acts like a short
circuit to high voltages, thus clamping the voltage spikes.  To prevent this varistor from consuming
current, you should make sure that the maximum DC voltage supplied is always less than 26 volts.

EMI/RFI Filter

Additional protection is provided by an electro-magnetic interference (EMI) and radio frequency
interference (RFI) filter that prevents high frequency noise from invading the circuitry via the power
input, and also prevents EMI from propagating back to the external power supply.  The EMI filter is
implemented by a two stage PI network of inductors and capacitors.  The output of the first stage
filter, called  V+raw, is passed to the Wildcard module bus for supply to Wildcard modules that
require their own unregulated DC power.  This unregulated voltage is free of high-frequency and
high-voltage transients.  If you design custom add-on Wildcard boards, we recommend that you use
V+raw as the input for local 5 Volt regulators.  It is good design practice to place local voltage
regulators on each board, as this minimizes noise problems and improves modularity.

The QCard Controller and PowerDock assembly is designed for reliable low noise operation.  It is
implemented as a state of the art 6-layer surface-mount board.  Two inner layers are dedicated
ground and power planes, providing low-impedance return paths for digital current spikes.

Parameter Min Typ. Max Units Conditions

Input Voltage 8 26 Volts

Power Usage 0.75 Watts No Wildcards

Power Usage – per Wildcard 0.5 Each Wildcard

Operating Conditions

Parameter Min Max Units Conditions

Operating Temperature Range –
Electronics

0 70 °C Industrial Temp also available
(-40 to 85°C)

Humidity 0 95 % Relative
Humidity

At 0 to 45°C, no condensation
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Memory

Parameter Standard With –MM Option Units

Flash 512 512 KBytes

RAM 129 513 KBytes

EEPROM 512 512 Bytes

Battery-Backed RAM 128 KBytes (with –BB option)

Compact Flash Wildcard 64-256 MBytes

CPU I/O (CPU Ports A, D, E)

Parameter Min Max Units Conditions

I/O Voltage Range -0.1 5.3 Volts

Input Low Voltage 1.0 Volts 0.2 x VDD

Input High Voltage 3.5 Volts 0.7 x VDD

Input Leakage Current ±1 µA

Output Low Voltage 0.4 Volts at 1.6 mA

Output High Voltage 3.7 Volts at –0.8 mA and VDD=4.5 V

Output Source 25 mA <65 Ω output drive impedance, one pin at a time,
observing max power dissipation limits.

Output Sink 25 mA <65 Ω output drive impedance, one pin at a time,
observing max power dissipation limits.

Note: We recommend limiting total package power dissipation accruing from I/O current to 800 mW or less,
to assure that the junction temperature remains below 125ºC.

8-bit Analog To Digital Conversion

Parameter Min Typical Max Units Conditions

Number of Input Channels 8

Sampling Frequency 100,000 Samples per second

Input Voltage Range -0.1 0.0 to 5.0 5.1 Volts

Nonlinearity 1 LSB

Absolute Accuracy 2 LSB
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Appendix B

Connector Pinouts

The QCard Controller Starter Kit comprises a stack of two boards: the PowerDock Board, and
the smaller QCard Board. Pin-outs for all I/O connectors on the QCard Board and the Pow-
erDock Board are provided here.

QCard Connectors
The pinouts of all of the connectors on the QCard Board are presented below.  To locate the con-
nectors on the board, consult Figure B–1  and the white silk–screened labels on the visible side of
the QCard Board.  The arrows in the figure point to the locations of pin 1 on each connector.
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Table B-1  H1: Power Header

Pin Signal
1 – V+RAW (+8 to +26 VDC)
2 – GND
3 – +5 VDC
4 – TDI for JTAG programming
5 – TMS for JTAG programming
6 – TCK for JTAG programming
7 – TDO for JTAG programming

Note: V+RAW is needed only if certain WildCards are
used.  Pins 4-7 are generally not used.

Table B-2    H2: Field Header

Signal Pins Signal
GND – 1 2 – +5V

AGND – 3 4 – V+RAW
/TxD1 (/TxD2) – 5 6 – /RxD1 (/RxD2)

XCVR- (/TxD2) – 7 8 – XCVR+ (/RxD2)
PA7 – 9 10 – PA6
PA5 – 11 12 – PA4
PA3 – 13 14 – PA2
PA1 – 15 16 – PA0
PE7 – 17 18 – PE6
PE5 – 19 20 – PE4
PE3 – 21 22 – PE2
PE1 – 23 24 – PE0

Note: Signals in parentheses indicate options configured by
installing appropriate zero ohm shorts on the board.

H3: WildCard Port Header

Signal Pins Signal
GND – 1 2 – +5V
/IRQ – 3 4 – V+Raw

SEL1/XMIT- – 5 6 – SEL0/XMIT+
MOSI/XCV- – 7 8 – MISO/XCV+

/RESET – 9 10 – SCK
/MOD.CS – 11 12 – 16 MHz

E – 13 14 – R/W
/OE – 15 16 – /WE
AD7 – 17 18 – AD6
AD5 – 19 20 – AD4
AD3 – 21 22 – AD2
AD1 – 23 24– AD0
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Table B-3    H4: Communications Header

Signal Pins Signal
/TxD1 – 1 2 – /RxD1

DGND – 3 4 – /MOD1.CS
RS485 XCVR- – 5 6 – RS485 XCVR+

/TxD2 – 7 8 – /RxD2
DGND – 9 10 – +VBAT

Note: This pinout differs from that of the PowerDock
pinout: on the PowerDock pin 4 is connected to
DGND and pin 10 is connected to +5V.

PowerDock Connectors
The pin-outs of all of the connectors on the PowerDock are presented below.  To locate the connec-
tors on the board, consult Figure B-2  and the white silk–screened labels on the PowerDock.
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Figure B-3 Serial Connectors, Power Jack, and Power Switch on the Back of
the PowerDock.

Table B-4 H2: Power Header

Pin Signal

1 – VIN (8 to 26 Volts)

2 – GND

3 – +5 VDC

4 – VBAT

Table B-5 H1: Serial Communications Connector

Signal Pins Signal
/TxD1 – 1 2 – /RxD1

GND – 3 4 – GND

RS485 XCVR- – 5 6 – RS485 XCVR+

/TxD2 – 7 8 – /RxD2

GND – 9 10 – +5V
Note: This pinout differs from that of the QCard pinout:

on the QCard pin 4 is connected to /MOD1.CS and
pin 10 is connected to VBAT.
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Table B-6 H3 & H5: Wildcard Port Headers

Signal Pins Signal
GND – 1 2 – +5V

/IRQ – 3 4 – V+Raw

PG1/XMIT- – 5 6 – PG0/XMIT+

MOSI/XCV- – 7 8 – MISO/XCV+

/RESET – 9 10 – SCK

/MOD.CS – 11 12 – 16 MHz

E – 13 14 – R/W

/OE – 15 16 – /WE

AD7 – 17 18 – AD6

AD5 – 19 20 – AD4

AD3 – 21 22 – AD2

AD1 – 23 24 – AD0

 Table B-7 Serial 1 Connector Table B-8 Serial 2 Connector

Signal Pins Signal Signal Pins Signal
DCD1/DSR1/DTR1 – 1 DCD2 – 1

6 – DSR1/DTR1/DCD1 6 – DSR2/DTR2/DCD2
/TXD1 – 2 /TXD2 – 2

7 – CTS1 7 – CTS2/RTS2
/RXD1 – 3 /RXD2 – 3

8 – RTS1 8 – RTS2/CTS2
DSR1/DTR1/DCD1 – 4 DSR2/DTR2/DCD2 – 4

9 – NC 9 – NC
DGND – 5 DGND – 5

Notes: Notes:
NC indicates no connection NC indicates no connection
Pins 1, 4 and 6 (DCD1/DSR1/DTR1) are con-
nected.

Pins 1, 4 and 6 (DCD2/DSR2/DTR2) are con-
nected.

Pins 7 and 8 (CTS1/RTS1) are connected. Pins 7 and 8 (CTS1/RTS1) are connected.
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Schematics

The QCard Controller Starter Kit comprises two PC boards, designated the QCard Board and
the PowerDock Board.

The QCard Board contains the processor, RAM and Flash memory, digital I/O, and A/D.

The PowerDock Board contains power conditioning, an additional Wildcard port, power
switch, power jack, and DB-9 serial connectors.

This Appendix provides complete circuit schematics for each board.
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QCard Schematic

Figure C-1 QCard Signal Directory.
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Figure C-2 QCard Processor.
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Figure C-3 QCard CPLD.
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Figure C-4 QCard Memory.
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Figure C-5 QCard Serial and Reset Circuitry.
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Figure C-6 QCard Real Time Clock.
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Figure C-7 QCard Headers.
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PowerDock Schematic

Figure C-8 PowerDock Signal Directory.
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Figure C-9 PowerDock Power Circuitry.
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Figure C-10 PowerDock Headers.
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