
i

The C Programmer’s Guide to the
Mosaic Handheld

Menu

Clear

On
Off

F1F5
F9 F2F6

F10 F3F7
F11 F4F8

F12

Shift
CAPS

Num
Lock

Shift
small

Enter

Ctrl Alt

Esc Bk
Delete

Home

End
Yes

Pg Up

Pg Dn
Insert

Display

Sound
No Backspace

PQRS

pqrs
7

TUV

tuv
8

WXYZ

wxyz
9

GHI

ghi
4

JKL

jkl
5

MNO

mno
6

TAB !°~`

@%^&²
1

ABC

abc
2

DEF

def
3

0
 _? ' "

<>{}

+–×÷=

. , : ; #
•

/\ |*$

()[]SYM

EXP

Menu

Clear

On
Off

F1F5
F9 F2F6

F10 F3F7
F11 F4F8

F12

Shift
CAPS

Num
Lock

Shift
small

Enter

Ctrl Alt

Esc Bk
Delete

Home

End
Yes

Pg Up

Pg Dn
Insert

Display

Sound
No Backspace

PQRS

pqrs
7

TUV

tuv
8

WXYZ

wxyz
9

GHI

ghi
4

JKL

jkl
5

MNO

mno
6

TAB !°~`

@%^&²
1

ABC

abc
2

DEF

def
3

0
 _? ' "

<>{}

+–×÷=

. , : ; #
•

/\ |*$

()[]SYM

EXP

ii The Mosaic Handheld

The C Programmer’s Guide to the Mosaic Handheld
by Mosaic Industries, Inc.

Copyright © 2004 Mosaic Industries, Inc. All rights reserved.
Printed in the United States of America

Published by: Mosaic Industries, Inc.
5437 Central Ave. Suite 1
Newark, CA 94560, USA
510-790-8222
www.mosaic-industries.com

Printing History (Revision Notice):

March 2004: Draft v0.1

Not Approved for Life-Support Use
Mosaic’s embedded computers, software, and peripherals are intended for use in a wide
range of OEM products, but they are not designed, intended or authorized for use as
components in life support or medical devices. They are not designed for any application
in which the failure of the product could result in personal injury, death or property dam-
age.
Complex software often contains bugs, and electronic components fail. Where a failure
may cause serious consequences, it is essential that the product designer protect life and
property against such consequences by incorporating redundant backup systems or safety
devices appropriate to the level of risk. The buyer agrees that protection against conse-
quences resulting from system failure, of either hardware or software origin, is solely the
buyer’s responsibility.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this document, and Mosaic Industries, Inc. was aware of a trade-
mark claim, the designations have been printed in caps or initial caps. For example, Microsoft, Microsoft
Windows, and Visual Basic are registered trademarks of Microsoft Corporation.

While every precaution has been taken in the preparation of this manual, Mosaic assumes no responsibility for
errors or omissions, or for damages resulting from the use of the information contained herein.

iii

Table of Contents

The C Programmer’s Guide to the
Mosaic Handheld

How To Use This Book viii

Getting to Know Your Handheld Instrument 1
Introducing the Mosaic Handheld 1
Programming the Handheld 3

Choice of Programming Languages 4

Hardware Functionality 5
Graphical User Interface: Keypad, LCD Display, Backlight 5
Battery Power for Portability 5
68HC11 Processor 6
Memory and Mass Memory 7
Measurement and Control 7
Communications 8
Real-Time Clock 8
Personality Board and Extensible I/O 8

Getting to Know Your Hardware 9
A Tour of the Processor Board 11
A Tour of the Personality Board 14
A Tour of the Power Board 15

Powering Your Handheld 17
Controlling Power 17

Automatic Turn-On 17
Manual Turn On and Off 17
Programmable Shut-Down 17
Continuously ON 18

iv How To Use This Book

Using Battery Power 18
Replacing the Batteries 18
Charging the Batteries 18
Battery Lifetime 19

Tethered Operation 20
Using the Power Adapter 20
Power Metering 20

Your First Program 23
Installing the Mosaic IDE and Control-C Compiler 23
Turning on Your Handheld 24
Using the Mosaic IDE 26

Using the Editor and Compiler 26

Your First C Program 28
Compiling a Program 28
Downloading and Running the Program 28
Interactively Debugging Your Program 30
An Introduction to Extended Memory 33
An Introduction to Multitasking 36
Summary 41

The IDE: Writing, Compiling, Downloading and Debugging Programs 43
Writing Programs 43

Using the Editor/Compiler 43
Sylistic Conventions 44
Accessing the Standard (Kernel) Library Functions 46
Initializing Variables 47

Compiling Programs 47
Compiling Multiple Source Code Files 47

Using the Interactive Debugger 48
Overview of the Forth Language and Programming Environment 48
Displaying the Values of Static Variables 51
Use Type Keywords To Interactively Call C Functions 53
Displaying the Values of FORTH_ARRAY Elements 54
Assigning Values to Static Variables and FORTH_ARRAY Elements 55
Under the Hood of the QED-Forth Interactive Debugger 56
Other Useful QED-Forth Functions 58

The Handheld Kernel vs. Prior Kernels 59

Making Effective Use of Memory 61
The Handheld’s Memory Map 61

Addressing Memory in C 67

Software Development Using Flash Memory 67
Locating Nonvolatile Data in EEPROM 69
Using C Arrays and Forth (Kernel) Arrays 70

Storing Data Acquisition Results in C Arrays and Forth Arrays 70

How To Use This Book v

Real Time Programming 77
The Timeslicer and Task Switching 77
Using Interrupt Service Routines (ISRs) 78

Interrupt Recognition and Servicing 78
External Hardware Interrupts /IRQ and /XIRQ 84
Routines that Temporarily Disable Interrupts 85
Writing Interrupt Service Routines 85
An Example: Periodically Calling a Specified Function 88
Calling Kernel Functions From Within ISRs 91

Failure and Run-Time Error Recovery 93
Getting Started and Getting Stopped – Restarts and Resets 93

Resets versus Restarts 94

The COP Watchdog Timer and Clock Monitor 96
The Clock Monitor 98

Processor Operating Modes 98
Low Power Modes 98
Operating Modes of the 68HC11F1 CPU 99

Programming the Graphical User Interface 101
The Structure Of The GUI Toolkit 101

A Closer Look At Objects 101
The GUI Toolkit Objects 102

Building Your Application 103
Designing Your User Interface 103
Transferring Your Images to the Handheld Controller 106
Coding Your Application 107
Handling Errors 115
Expanding the GUI Toolkit’s Objects and Methods 116

GUI Objects in Detail 116
GUI_TOOLKIT 116
GUI_DISPLAY 118
GUI Screens 119
GUI Keypads 121
GUI_PEN 123
GUI_BUZZER 123
GUI_BATTERY 124
GUI_TIMER 125
Graphic Object 126
Font Object 127
Textbox Object 128
Controls 130
Action Key Object 130
Data Entry Key Object 131
Shift Key Object 132
Plot Object 132
Screen Object 134

vi How To Use This Book

Customizing the Keypad Overlay 136

Digital and Timer-Controlled I/O 139
Overview of Available Digital I/O 139

Using the Digital I/O Ports on the 68HC11 Chip 141
Using Uninterruptable Operators 143

Connecting Hardware to the Digital Outputs 144
The Processor’s Output Compare Functions 147

Pulse and PWM Generation Techniques 149

Data Acquisition Using Analog to Digital Conversion 155
Data Acquisition Using the Handheld 155

Examining the Demonstration Program 156

Fundamentals of Analog to Digital Conversion 156
Determining the Resolution of an A/D Converter 156
Converting an A/D Count into Its Equivalent Voltage Reading 157

Using the 8-bit A/D 157

Serial Communications 161
RS-232 and RS-485 Communications 161

Serial Protocols 162
Serial Connectors and Configuration Options 162
Using the Serial Ports 164
Setting Baud Rates 168
Multi-Drop Communications Using RS-485 168

Synchronous Serial Peripheral Interface (SPI) 169
SPI Bus Pins 169
SPI Network Connections 170
Configuring the SPI 171
Summary 175

The Battery-Backed Real-Time Clock 177

Customizing Your Handheld Instrument 181
Using the Personality Board to Customize I/O 181
Routing I/O Into the Instrument 182
Mounting Additional Components 183

Appendix A: GUI Function Reference 197
Categorized List of All Objects, Properties, & Methods 197

Object Types (constants used by New_Object) 197
Errors (constants returned by Read_Error) 197
Properties Of Objects (constants used by Set_Property & Get_Property) 197
Pre-Instantiated Object Reference Constants 199
Battery Constants 199
Keypad Event Constants (contained in the KEY_EVENT and PRIOR_KEY_EVENT
property) 199

How To Use This Book vii

Keypad Type Constants (contained in the KEY_TYPE and PRIOR_KEY_TYPE property)199
Keypad Shift State Constants (contained in the SHIFT_STATE property) 199
GUI Methods 199

Glossary 200

viii How To Use This Book

How To Use This Book

Welcome, and thanks for purchasing the Mosaic Handheld™. This manual provides instructions for
using your new handheld embedded computer platform. The Handheld packs a keypad and graph-
ics/character display, programmable computer, up to 1 megabyte of memory, communications,
analog and digital I/O, battery pack, and an expansion I/O bus into a rugged handheld enclosure.
This platform is perfect for prototyping and manufacturing handheld instruments and dramatically
cuts the cost of data acquisition and control from a handheld user interface. It is ideal for machine
automation, industrial control, robotics, handheld data acquisition, and scientific instrumentation.

The I/O-rich Handheld hosts a 16 MHz Motorola 68HC11F1 microprocessor, 512K Flash (expand-
able to 1 MB) and 128K Battery Backed RAM (expandable to 512K), and 320 bytes of EEPROM.
On-board I/O includes 8 digital I/O lines with counter/timer capabilities, 8 analog inputs, a fast
synchronous SPI serial interface, and dual RS232/485 ports. A real-time clock tracks the calendar
and time of day and battery-backs the 128K RAM.

A convenient prototyping board allows you to integrate application-specific circuitry including
sensors and actuators. The Handheld has plenty of room for your own circuitry and up to 4 I/O ex-
pansion modules called WildCards™ that you can mix and match depending on your application,
allowing you to have virtually any kind of I/O in a convenient handheld form factor.

WildCards implement a wide variety of communications, data acquisition and control capabilities.
Available WildCards include octal 12-bit D/A and 16-bit A/D converters, a 24-bit resolution analog
data acquisition subsystem, a Compact Flash card mass memory interface, fast buffered RS232/485
dual UARTs, high voltage/high current isolated I/O, and AC or DC solid state relays. You can
select the WildCards that meet your needs to configure a cost-effective customized controller for
your application.

The Handheld also includes a nickel-metal-hydride battery pack and self-contained charger, with
plenty of power for several days of intermittent use. The battery pack may be charged overnight or
while the instrument is in use.

How To Use This Book ix

The Handheld is easily programmable in C, Forth or Assembly using any PC. Built-in programming
tools include an interactive debugger, a multitasking executive, and comprehensive device-driver
libraries.

Prerequisite Knowledge

The Mosaic Handheld is intended for use by experienced programmers or any technically minded
person up to the challenge of real-time programming. We assume that if you’re designing a product
requiring an embedded computer, you have experience in the design of the hardware and software
needed to customize the Mosaic Handheld to your product, and an understanding of the basics of
writing, compiling and debugging software programs. You should be comfortable programming in
either the C or Forth programming languages; you can program the Mosaic Handheld in either. This
manual is geared to the C programmer. If your would rather program in Forth, give us a call and
we’ll send you the Forth programmers manual. We recommend the following references for novice
programmers:

◙ The C Programming Language, by Kernighan and Ritchie

◙ C: A Reference Manual, by Harbison and Steel

Motorola’s M68HC11 Reference Manual and MC68HC11F1 Technical Data Manual are included
with this documentation package as Adobe Acrobat Portable Document Format (*.pdf) files.

How to Use this Documentation

This manual is laid out in several parts, in an order we hope you find most useful. We have invested
a lot of effort to make this documentation instructive and helpful. The available software and hard-
ware functions are all described in detail, and many coded examples are presented. For those who
are designing “turnkeyed” instruments, we have included a complete turnkeyed application program.
This well documented program illustrates how to use dozens of features, including the graphical
user interface, interrupts, floating point math, formatted display of calculated results, multitasking,
and automatic program startup. The source code is included on your CD-ROM. This sample pro-
gram can serve as a useful template for a wide variety of applications. This manual contains the
following parts:

Part 1,Getting Started: A Quick Tour of the Mosaic Handheld, will familiarize you with the Mo-
saic Handheld (Chapters 1 and 2) and its programming environment, and get you writing your first
program (Chapter 3). These first two chapters guide you through the Mosaic Handheld’s hardware,
explain how to establish communications with it, tell you how to install your compiler, and show
you how to compile and run your first program.

After working through the examples of Chapter 3 you will have exercised some of the key hardware
and software features of your instrument. You might then leaf through the categorized list at the
beginning of the C Function Glossary to get a feel for the wealth of precoded library functions avail-
able for you to use.

Part 2, Programming the Mosaic Handheld, provides everything you need to know to master real-
time programming on the Mosaic Handheld.

x How To Use This Book

Part 3, Communications, Measurement and Control, focuses on the Handheld’s hardware re-
sources – A/D, serial communications, timer-controlled I/O, real-time clock and others – and pro-
vides examples for using each.

Part 4, Putting It All Together, introduces a real-time interactive application, and provides code
you can use as a template for your application. It also discusses the nuts and bolts of product inte-
gration, mounting, noise considerations and power requirements.

Part 5, Reference Data, contains detailed specifications, pin-outs, and schematics.

Conventions Used in This Book

The following conventions are use throughout this manual:

Abbreviations

A/D Analog to Digital Converter

CCFL Cold Cathode Fluorescent, a display backlight that uses a small fluorescent light bulb

CF Compact Flash, a nonvolatile memory with fast random access for reading and slower block
writing.

COP Computer Operating Properly timer

D/A or DAC Digital to Analog Converter

EEPROM Electronically Erasable Programmable Read-Only Memory, nonvolatile

EL Electroluminescent Display

FLASH Flash Programmable Read-Only Memory, nonvolatile and on-the-fly reprogrammable

GUI Graphical User Interface, also called an MMI (Man Machine Interface)
or OI (Operator Interface)

I/O Inputs and Outputs

LCD Liquid Crystal Display

LED Light-Emitting Diode

PIA Peripheral Interface Adapter (a chip that provides 24 digital I/O signals)

PROM Programmable Read-Only Memory, nonvolatile one-time programmable

QED Quod Erat Demonstrandum, or Quick Easy Design, whichever you prefer

QED-Forth The name of the Mosaic Handheld’s onboard operating system and interactive resident
language.

RAM Random Access Memory, volatile

RTC Real-Time Clock

RTOS Real Time Operating System

SPI Serial Peripheral Interface, a fast bidirectional synchronous serial interface

SRAM Static Random Access Memory, volatile

UART Universal Asynchronous Receiver Transmitter

How To Use This Book xi

Throughout this manual the names of code functions and extended code segments are distinguished
by their typeface. The following font styles are used:

Typefaces

English Text Plain text uses a Times New Roman Font
C function names appearing within text void InstallMultitasker(void)

Forth function names appearing within text BUILD.STANDARD.TASK

C code in listings #define FULL_SCALE_COUNTS 256

Forth code in listings 256 CONSTANT FULL_SCALE_COUNTS

Commands typed to the Mosaic Handheld
through a terminal

CFA.FOR main PRIORITY.AUTOSTART

Mosaic Handheld responses to a terminal
program

ok

Code function names and listings use a fixed space font. C code uses a font with serifs, QED-Forth
code is sans serif. Terminal commands are indented and followed by a back-arrow symbol repre-
senting the enter key on the keyboard, and the Mosaic Handheld’s responses are underlined with a
dotted line. Both are indented in the text. Listings of more extensive code examples are set off by
indenting and captioning.

Integer numbers are not accompanied by a decimal point; the presence of a decimal point indicates
that the number is a floating-point format number. Decimal base numbers are written in standard
form while binary numbers are written in hexadecimal (base sixteen, using 0-9 and A-F) and pre-
ceded with “0x”, for example, the 16-bit integer equivalents of decimal 0, 65,535 and 15,604 are
represented as 0x0000, 0xFFFF, and 0x3CF4 respectively.

Obtaining Code Examples and Example Applications

Please check our website periodically at www.mosaic-industries.com, where we’ll be posting code
examples and example applications, and providing software updates and enhancements.

For Technical Help (or just to chat) Contact Us

We have tested and verified the sample code in this user’s guide to the best of our ability, but you
may find that some features have changed, or even that we have made a mistake or two. If you find
an error, please call us and we’ll fix it pronto.

If you are facing a challenging software hurdle, or a hardware problem in interfacing to our prod-
ucts, please don’t hesitate to email or call us. We can often help you over the hurdle and save you a
lot of time. So contact us by phone or email:

510-790-8222
support@mosaic-industries.com

We provide free technical help to all registered, licensed users.

1

Chapter 1

Getting to Know Your Handheld Instrument

Congratulations on your choice of the Mosaic Handheld™, a customizable handheld comput-
ing, data acquisition and communications platform that is ideal for machine automation, in-
dustrial control, robotics, data acquisition, and scientific instrumentation. This Chapter
introduces the various software and hardware features of the Handheld: the enclosure, battery
management, keypad and display, real time operating system, choice of programming lan-
guages, processor, memory, serial communications, real-time clock, and I/O.

In this chapter you’ll learn:

All about the operating system and software features of the Mosaic Handheld;

How to use the hardware features of your instrument; and,

How to configure various options.

Introducing the Mosaic Handheld
To serve the needs of real-time control, modern embedded computers must have a set of comple-
mentary features including operating system software, device drivers, user interface, expandable
I/O, and enclosure. You’ll find the Mosaic Handheld has a set of hardware and software that work
together to simplify your product development cycle while bringing new capability to your portable
products.

The Handheld packs a programmable computer, plenty of memory, communications, analog and
digital I/O, battery power, 128x128 pixel graphic display, 32 button keypad, and an expansion I/O
bus into a rugged handheld enclosure. The ABS plastic enclosure is small enough to fit comfortably
in your hand but large enough to hold custom circuitry, sensors, and actuators.

Figure 1-1 diagrams the Handheld, showing its primary components. In addition to its keypad and
graphics/text display it contains:

◙ A Processor Board with serial communications, and analog and digital I/O;

◙ A Personality Board that allows you to filter and route I/O signals and add custom circuitry or
components; and,

◙ A Power Board containing high efficiency switcher power supplies, battery charger, and
battery measurement circuitry.

2 Chapter 1: Getting to Know Your Handheld Instrument

The Mosaic Handheld

Processor and Graphic User Interface
68HC11 microcontroller with watchdog timer & clock monitor
16 MHz clock, 21 interrupts, SPI, 1 MByte addressable memory
128 x 128 pixel, 3.4” diagonal LCD display with LED backlight
Software controlled contrast and backlight intensity
32 key keypad (as 8x4) with audible and tactile feedback

On-Board Memory
Operating

System
Application

Program
FLASH 160 KB 352 or 864 KB
RAM * 4 KB 125 or 509 KB

EEPROM 192 bytes 320 bytes
* 128K RAM optionally battery-backed
Optional Battery-Backed RT Clock

Serial Communications

Serial 1: RS232 or RS485 to
19.2 KBaud

Serial 2: RS232 to 4800 Baud

SPI: 2 MBaud Fast Serial
Peripheral Interface

Digital I/O
8 Timer-Controlled I/O Lines including:

3 or 4 Input-Captures for event timing;
4 or 5 Output-Compares for PWM; and,
1 Pulse Accumulator.

(2 lines optionally used for Serial 2)

Analog I/O
8 Channel 8-bit A/D at up to
100 Ksps, 0-5 V input.
Hosts WildCards for 12-bit
DAC, 16-bit A/D, and 24-bit
resolution data acquisition
subsystem.

I/O Expansion
(Mix & Match Up to 4 WildCards)
WildCard Port 0 WildCard Port 1
64 or 128 MByte
Compact Flash
Mass Memory

Isolated AC / DC
Solid State

Relays
24-bit

Resolution
Analog Data
Acquisition
SubSystem

Fast, Buffered
RS232/485 UART

Logic-Level
Digital I/O

12-bit DAC
16-bit A/D

High-Voltage,
High-Current

DC I/O

High-Performance, Real-Time Controller

Extensive, Customizable I/O
Configuration Area

Prototyping area for custom
analog or digital circuitry,
sensors, or actuators.
Signal selection and routing of 24
I/O signals to a DB-25 mounted on
the bottom of the handheld.
Room for mounting custom
hardware.
User-configurable I/O protection
or filtering.
Connection for an external probe

Flexible Power Options
Battery Power Management
6 AA cell NiMH battery pack uses
off-the-shelf batteries.
Built-in battery charger with
voltage and temperature
protection.
10 hour operating time on battery
power.

External Power
15-26 volt power adapter.
High efficiency switching
supplies.
EMI/RFI filter and surge
protection.
Auto-ON/OFF and keypad power
control.

Menu

Clear

On
Off

F1F5
F9 F2F6

F10 F3F7
F11 F4F8

F12

Shift
CAPS

Num
Lock

Shift
small

Enter

Ctrl Alt

Esc Bk
Delete

Home

End
Yes

Pg Up

Pg Dn
Insert

Display

Sound
No Backspace

PQRS

pqrs
7

TUV

tuv
8

WXYZ

wxyz
9

GHI

ghi
4

JKL

jkl
5

MNO

mno
6

TAB !°~`

@%^&²
1

ABC

abc
2

DEF

def
3

0
 _? ' "

<>{}

+–×÷=

. , : ; #
•

/\ | *$

() []SYM

EXP

Figure 1-1 The Handheld comprises a graphics/text display, keypad,
processor board (or motherboard) with native I/O and
communications, personality board for customization and I/O
expansion, and power board with built-in battery charger.

The Processor Board hosts a 16 MHz Motorola 68HC11F1 microprocessor, 512K Flash and 128K
RAM (expandable to 1 MB Flash and 512K RAM), and 320 bytes of EEPROM. On-board I/O
includes 8 digital I/O lines with counter/timer capabilities, 8 analog inputs, a fast synchronous SPI

Menu

Clear

On
Off

F1F5
F9 F2F6

F10 F3F7
F11 F4F8

F12

Shift
CAPS

Num
Lock

Shift
small

Enter

Ctrl Alt

Esc Bk
Delete

Home

End
Yes

Pg Up

Pg Dn
Insert

Display

Sound
No Backspace

PQRS

pqrs
7

TUV

tuv
8

WXYZ

wxyz
9

GHI

ghi
4

JKL

jkl
5

MNO

mno
6

TAB !°~`

@%^&²
1

ABC

abc
2

DEF

def
3

0
 _? ' "

<>{}

+–×÷=

. , : ; #
•

/\ |*$

()[]SYM

EXP

Programming the Handheld 3

serial interface, and dual RS232/485 ports. An optional real-time clock tracks the calendar and time
of day and battery backs the 128K RAM.

The processor is easily programmable in C, Forth or Assembly using any PC. Built-in programming
tools include an interactive debugger, a multitasking executive, comprehensive device-driver librar-
ies, and a toolkit to simplify displaying graphics and creating your user interface.

The Personality Board allows you to filter and protect the I/O lines and to route them to a custom-
izable DB25 connector on the bottom of the enclosure. The Personality Board also hosts up to 4 I/O
expansion modules called WildCards that you can mix and match depending on your application.
The easy to use WildCards stack onto 24-pin WildCard connectors on the Personality PCB.
WildCards implement a wide variety of communications, data acquisition and control capabilities.
Available WildCards include an octal 12-bit D/A and 16-bit A/D converters, a 24-bit resolution
analog data acquisition subsystem, Compact Flash card mass memory interface, fast buffered
RS232/485 dual UART, high voltage/high current isolated I/O, and AC or DC solid state relays.
You can select the WildCards that meet your needs to configure a cost-effective customized instru-
ment for your application.

In addition to powering the Handheld, the Power Board contains battery management circuitry for
six rechargeable 2100mAH nickel-metal hydride (NiMH) batteries. They can supply power for up
to 10 hours and recharge in only two hours.

The following subsections discuss the interdependent hardware and software aspects of your instru-
ment.

Programming the Handheld
You wouldn’t want to have to load an operating system into your desktop computer each time you
turn it on, and the same holds true for embedded computers. Importantly, all of Mosaic’s controllers
incorporate a full-time, on-board operating system called QED-Forth. QED-Forth is an interactive
programmable macro language encompassing a real-time operating system (RTOS), object oriented
graphical user interface (GUI) toolkit, debugging environment, an assembler and math library for
use within the Forth programming language, and a comprehensive set of pre-coded device drivers.

These built-in functions make it easy for you to get the most out of your board's computational and
I/O capabilities. You can fully program the Mosaic Handheld using only the QED-Forth program-
ming language, or you can program it using only the C language – all of the operating system’s
functions are accessible using either language.

This manual describes how to program your Mosaic Handheld using the Control-C programming
language, and how to use the built-in functions. Function glossaries provide an in-depth description
of every routine. If you prefer to program in the QED-Forth programming language full function
glossaries are available for that language too. The Mosaic Handheld’s extensive embedded firm-
ware reduces your time time-to-market – we’ve precoded hundreds of useful routines so you won’t
have to.

4 Chapter 1: Getting to Know Your Handheld Instrument

The RTOS in onboard Flash memory also manages all required hardware initializations and auto-
matically starts your application code. It provides warning of power failures so you can implement
an orderly shutdown, and provides the run-time security feature of a watchdog (COP - computer
operating properly) timer.

Programming is a snap using the interactive debugger and multitasking executive. The multitasker
allows conceptually different functions of your application to run independently in different tasks
while accomplishing their duties in a timely fashion.

Choice of Programming Languages

You can program the Mosaic Handheld using either the ANSI-standard C language or Mosaic’s
QED-Forth language. In either language, you can supplement your high-level code with assembly
code. Using either language, you have full access to all firmware functions.

The Control-C Programming Environment

Our Control-C™ cross-compiler was written by Fabius Software Systems and customized by
Mosaic Industries to facilitate programming the Mosaic Handheld in C. It is a full ANSI C compiler
and macro pre-processor; it supports floating point math, structures and unions, and allows you to
program in familiar C syntax. Extensive pre-coded library functions provide easy command of the
controller’s digital I/O, A/D, serial ports, memory manager, multitasker, and much more.

Using the Windows™ environment on your PC, you can edit your C program in the supplied Mo-
saic IDE, and with a single mouse click you automatically compile, assemble and link your pro-
gram, and generate an ASCII hex file ready for downloading. Clicking in the “Terminal” window
and sending the download file to the controller completes the process: you can then type main from
your terminal to execute your program. The interactive development environment also lets you
examine and modify variables and array elements, and call individual functions in your program one
at a time with arguments of your own choosing. This interactive environment greatly speeds the
debugging process!

QED-Forth High Level Language

For those who prefer to program in FORTH, no external compiler is needed. You interact with the
QED-Forth operating system (an RTOS, interpreter and compiler, all rolled into one) using your PC
as a terminal. When programming in Forth you can use the Mosaic IDE (or you can use any other
editor you prefer) to write your code and download the source code directly to the handheld where it
is compiled as it downloads. As we will see, even C programmers benefit greatly by the presence of
the QED-Forth operating system, as the built-in Forth language provides a quick and easy way to
interactively “talk to” your QED Board while debugging your C programs.

68HC11 Assembly Code

Both Control-C and QED-Forth include complete in-line assemblers that let you freely mix high
level and assembly code. This is sometimes useful when creating specialized time-critical functions
such as interrupt handlers.

Hardware Functionality 5

Hardware Functionality
The block diagram of Figure 1-1 provides a cogent summary of the hardware capabilities of the
Mosaic Handheld. Each of the hardware modules shown is described in the following sections.

Graphical User Interface: Keypad, LCD Display, Backlight

The Handheld features a keypad and LCD display for showing text and/or graphic images. Com-
bining a high-contrast 3.4” diagonal display and 4 column by 8 row keypad, it comes with software
that makes it easy to control your application using menus, graphs, and bitmapped images.

You can display your own custom graphics. Display screens and graphic objects are quickly devel-
oped with most Windows paint programs, such as PC Paintbrush, allowing you to create sophisti-
cated displays including your company logo, system diagrams, and icon-based control panels. Your
application’s startup screen executes automatically on power-up.

You can use as many screens as you need, each with software configurable menus. Onboard soft-
ware draws the screen graphics and responds to button presses for you, so you can focus on your
application rather than display maintenance.

The GUI Toolkit is described in a separate document titled Handheld GUI Toolkit Manual.

Dedicated ON/OFF Button

The lower right button of the keypad turns the instrument on and off. A press of the button turns the
instrument on, and holding it down in excess of three seconds turns it off.

Battery Power for Portability

The Handheld may be powered one of three ways:

◙ with a power adapter of 15-30 VDC;

◙ by six rechargeable NiMH 2100mAH batteries; or,

◙ through the DB25 connector on the bottom of the unit.

When operated on its batteries it lasts over ten hours with the backlight turned off, and six hours
with it turned on. If it is fully loaded with four WildCards and the backlight is continuously on, the
batteries last four hours. Whenever the power adapter is plugged in the batteries automatically
charge. They fast-charge to approximately 80% of full charge within 90 minutes, then trickle charge
the remainder over five hours.

The Handheld includes several high-efficiency switching regulators and extensive power line filter-
ing for EMI/RFI isolation. In tethered operation, it may be powered by applying any unregulated or
regulated DC input voltage between 15 and 30 volts. In either case, the onboard circuitry is isolated
by electromagnetic interference (EMI) suppression circuitry. This improves the reliability of the
electronics in harsh industrial environments.

6 Chapter 1: Getting to Know Your Handheld Instrument

When using an AC adapter, the power jack is located on the right side of the enclosure near the
bottom. The Handheld can be powered by any power supply that can deliver 15 to 30 volts at 20
watts. Of this, 17 watts is required for fast charging and all other instrument operations require only
3 watts. Consequently, if batteries are not used only 3 watts is required to power the instrument.

68HC11 Processor

Motorola’s 68HC11F1 programmable microcontroller provides the core capabilities of the Hand-
held. This chip integrates a central processing unit (CPU), communications, analog and digital I/O,
timing capabilities, and memory. In this document we will refer to the microcontroller chip as the
68HC11F1, the 68HC11, or simply the HC11.

The processor includes:

◙ An 8 bit timer-controlled digital I/O port called PORTA. The timer functions include “input
captures” that facilitate accurate measurement of pulse widths, “output compares” that make it
easy to generate pulse trains and pulse-width modulated waveforms, and a pulse accumulator.
These functions are backed up by interrupts that simplify real-time response to external events.
Two of the time lines, PA0 and PA1, may be used for detecting keypad button presses if de-
sired, or the keypad can be scanned without using these timer lines.

◙ An 8 channel input port (called PORTE) on the processor that can be configured to read either
analog or digital inputs. Analog inputs are converted to an 8 bit digital number by a built-in
analog to digital (A/D) converter.

◙ A built-in serial communications interface (SCI). The SCI is an asynchronous interface,
meaning that there is no clock transmitted with the data. Using the SCI, the Mosaic Handheld
can transmit and receive data at standard baud rates to 19200 baud, and at non-standard intra-
character rates as high as 250 Kbaud.

◙ A serial peripheral interface (SPI) capable of data transfer rates up to 2 megabits per second.
Many useful devices communicate via such a synchronous (clocked) serial interface. Multiple
peripheral devices can communicate on this interface as long as each device has a unique chip
select signal.

◙ A watchdog timer that can be configured to reset the processor if the application program fails
to execute properly.

◙ A clock monitor available to reset the processor if the clock fails.

◙ External interrupt request pins and a variety of interrupt functions for quick response to real-
time events.

◙ 512 bytes of nonvolatile, electrically erasable PROM (EEPROM). Of this, 192 bytes are used
by the operating system and 320 bytes are available for your application. EEPROM provides a
convenient way to store calibration constants and other information that must be periodically
updated.

◙ A 16 bit address bus and an 8 bit data bus. While the 68HC11’s native address space is 64
Kilobytes (equal to 65,536 bytes, and often written as 64K), the Mosaic Handheld expands the

Hardware Functionality 7

addressable memory space to 2 Megabytes by effectively adding 5 “page” bits to the address
bus. The memory architecture is optimized for fast execution, and the onboard operating sys-
tem makes page changing transparent to the user. Once you set up your starting memory map,
the operating system handles all of the details of accessing memory.

Learning More about the 68HC11

The Mosaic Handheld uses a version of the 68HC11 microcontroller called the 68HC11F1. Mo-
torola’s M68HC11 Reference Manual and MC68HC11F1 Technical Data Manual are included with
this documentation package as Adobe Acrobat Portable Document Format (*.pdf) files.

The M68HC11 Reference Manual thoroughly describes how to use microcontrollers of the 68HC11
variety, but it does not describe some of the enhanced features that appear in the F1 version. The
MC68HC11F1 Technical Data Manual provides details of the operation of the F1.

Memory and Mass Memory

The Handheld includes 512K Flash memory, 128K RAM (or 1 MB Flash and 512K RAM with the
expanded memory option), 512 bytes of EEPROM and an additional 1K RAM (on the processor).

Of the 512K of Flash memory, 448K is available for your application program and data storage; the
remaining 64K is used by the operating system. Of the 129K (513K, with expanded memory op-
tion) of RAM, 125K (509K) is available for application program use.

Like PROM, Flash memory is nonvolatile. That is, it retains its contents even when power is re-
moved, and provides an excellent location for storing program code. Simple write-cycles to the
device do not modify the memory contents, so the program code is safe even if the processor “gets
lost” and overwrites memory. But Flash memory is also re-programmable, and the Flash program-
ming functions are present right in the Handheld’s onboard software library.

Compact Flash

You can also add 64 MB, 128 MB, or more of removable mass memory by plugging in a Compact
Flash WildCard module. Pre-coded software supports a standard DOS- and Windows-style “FAT”
file system, allowing files to be created on a PC and read by the Handheld, or vice versa. Compact
Flash cards are easily inserted into a slot on the side of the Handheld. CF memory is now a com-
modity, so CF modules are easily obtained at low cost with ever increasing capacity.

For more information, consult the Compact Flash WildCard User’s Manual.

Measurement and Control

Before adding WildCards, the Mosaic Handheld provides a total of 17 I/O channels, distributed
among digital, analog and serial communications functions as shown in Table 1-1.

8 Chapter 1: Getting to Know Your Handheld Instrument

Table 1-1 I/O available on the Mosaic Handheld

I/O Type

Digital 6 Timer-controlled inputs or outputs including 3 input-capture, 3 output-compare, and a pulse
accumulator. (Two additional lines are available if the second serial port is not needed.)

Analog 8 8-bit, 0-5 V analog inputs at up to 100kHz sampling rate

1 Serial 1: RS232/485 hardware UART at up to 19.2 KBaud

1 Serial 2: RS232 software UART at up to 4800 BaudSerial

1 Synchronous Serial Peripheral Interface at 2 MBaud

17 Total I/O channels

For each of these I/O lines, pre-coded I/O drivers make it easy to do data acquisition, pulse width
modulation, motor control, frequency measurement, data analysis, analog control, PID control, and
communications. You may add additional I/O by mounting up to four WildCards within the Hand-
held enclosure.

Communications

Two serial ports and a fast synchronous serial peripheral interface (SPI) provide plenty of communi-
cations capability. A hardware UART with single character buffer drives RS232 or RS485 protocols
at up to 19.2 Kbaud (the default serial baud rate), and a software UART provides RS232 at up to
4800 baud. Onboard serial interface chips generate the logic levels necessary to implement either
the RS232 or RS485 protocol. Two serial ports allow you to program through one while your
instrument can still communicate with a third party through the other.

The RS485 communications port may be optionally terminated with a resistor or RC network.
Jumpers on the processor board allow for the insertion of RS485 network bias resistors.

If you need greater speed or more ports, UART Wildcards plug directly into the Handheld’s
Wildcard module bus, each providing two more full-duplex RS232/422/485 buffered serial commu-
nication ports at up to 56 Kbaud.

Real-Time Clock

A battery-backed real time clock (RTC) may be optionally included. If so, the RTC’s battery also
backs-up the 128K RAM. Note however that if the expanded memory option is chosen, providing
512K of RAM, then the RAM can only be battery-backed if the rechargeable batteries are installed.

Personality Board and Extensible I/O

Need even more I/O? A Personality Board provides at platform for you to add custom off-the-shelf
I/O modules or your own dedicated circuitry and components. You can also do point-to-point
wiring on the Personality Board to bring any I/O to the Handheld’s bottom-mounted DB25 connec-
tor or to a probe mounted on the top of the Handheld.

Getting to Know Your Hardware 9

WildCard I/O Modules

The Handheld hosts Mosaic’s WildCards™, small I/O modules for sophisticated and dedicated I/O.
Up to four WildCards can be stacked directly on the Handheld’s Personality Board. Available
WildCards include:

◙ Compact flash mass memory;

◙ Data Acquisition Subsystem with a 24-bit resolution programmable gain A/D;

◙ 16-bit A/D and 12-bit D/A;

◙ Optically isolated AC or DC solid state relays;

◙ Configurable general-purpose digital I/O;

◙ Fast, buffered RS232, RS422 or RS485 communications interfaces; or,

◙ High-voltage, high-current DC inputs and outputs.

Customizing Your Hardware

You may want to bring signals into to your handheld instrument. You can configure the DB-25
connector in the Handheld’s base with cross-point wiring on the personality board. In a special area
of the personality board you can include filtering or protection circuitry for any of the I/O lines and
choose which I/O lines to run to the DB-25 connector, or to a specialized probe connector.

The Handheld’s personality board also includes a prototyping area for you to add your own special-
ized circuitry. It includes mounting holes and power rails with ample room for you to add all kinds
of sensors and actuators.

Getting to Know Your Hardware
Handheld Starter Kit

If you purchased a Mosaic Handheld Starter Kit, you should have received the following. If you are
missing any of these items, please contact us immediately:

1. A Mosaic Handheld with

◙ -MM option – memory expanded to 1 MB Flash and 512K RAM (battery backed by the
NiMH battery pack),

◙ -RB option – real-time clock, and

◙ -BT option – high capacity NiMH batteries;

2. Serial cables including

◙ 9-pin DB-9 PC serial cable (Part No. PCC9-232),

◙ Dual 9-pin DB-9 to 10-pin IDC cable (Part No. QED-COM-CABLE-9), and,

10 Chapter 1: Getting to Know Your Handheld Instrument

◙ 25-pin DB-25M to 9-pin DB-9F serial adapter cable for connection to the Handheld’s
DB-25F (Part No. HHADAP-9F25M);

3. A 40-pin ribbon cable to connect the Handheld’s processor and power boards when the unit is
opened (HH-40-CABLE);

4. A 25V, 20W power adapter (Part No.PS-HH-24V);

5. A CD-ROM containing:

◙ The Mosaic IDE and the Control-C Compiler, integrated within the Mosaic IDE;

◙ Documentation;

◙ Program examples; and,

◙ Motorola M68HC11 Reference Manual and MC68HC11F1 Technical Data Manual (Part
No. MAN-HC11);

6. A User’s Guide on how to use the Kernel Extension Manager for additional Wildcard Drivers.

Opening and Closing the Handheld

Opening the Handheld is required to access the serial communications header, install new
WildCards, or customize the Personality Board.

Before attempting to open the enclosure, be sure all cables are removed from the enclosure includ-
ing the power cable and any DB-25 tether, and that the Handheld is off. If the Handheld is on,
holding down the ON/OFF key for longer than three seconds will turn it off. To open the enclosure,
turn the Handheld over so that the display is face down (but be careful not to scratch it). Remove
the six screws that fasten the battery compartment cover using a Phillips screwdriver and remove the
battery compartment cover. The battery compartment is located on the bottom of the Handheld on
the back of its handle. There are four additional screws located under the battery compartment
cover in addition to the four holes on the top of the Handheld. Remove these eight screws with a
Phillips screwdriver to open the enclosure.

You can then gently pull apart the two half shells. You’ll notice that the processor board, mounted
on the top shell just under the keypad, and the power board, mounted on the bottom shell just over
the battery compartment, had been connected together with a single high-density connector.

Once open, you can operate the Handheld by connecting a cable between the high-density connec-
tors on the processor and power boards. A 40-pin ribbon cable is supplied for that purpose. When
using it, be sure that the marked side of the ribbon cable connects to the pin 1 end of both connec-
tors. You can also connect the 10-pin serial cable to the processor board’s serial header, shown in
Figure 1-2.

Connecting Cables for Development

Once the enclosure is open, the handheld separates into two pieces. The top shell contains the Proc-
essor Board (including CPU, memory, and logic), Personality Board, CF WildCard or other installed
WildCards, Display, and Keypad. The bottom shell contains the Power Board and battery compart-
ment. To establish serial communication with the Handheld, connect the DB-9 serial cable to your

Getting to Know Your Hardware 11

PC. Next, connect the Handheld Serial Cable to the DB-9 Serial Cable and the dual row IDC con-
nector to the shrouded 10-pin serial header H4 on the Processor Board. You can also connect you
serial line to the external DB25 connector whether the Handheld is open or closed.

Carefully connect the male end of the 40-pin ribbon cable to the female connector on the Processor
Board. When inserting the male connector gently insert it dead center. If it is angled too far from
vertical it is very easy to permanently damage the connector on the Processor Board. Also, be sure
you connect pin 1 of the cable, as indicated by the red stripe, to pin 1 of the header, as indicated by
the silk screen on the Processor Board PCB. Be careful! The connector and the header are not
shrouded or polarized, and plugging in the cable incorrectly may damage the Processor Board, any
connected WildCards, or the Power Board. Next, connect the female end of the 40-pin ribbon cable
to the male connector on the Power Board. Finally, plug in the power supply into the power jack
(located on the side of the Power Board).

Turning on and Using the Handheld

With the Handheld open, you can still turn it on by pressing the ON/OFF button. With your serial
cables connected and the PC running the Mosaic Terminal program you should see the QED-Forth
“ok” prompt on the PC screen.

Reassembling the Enclosure

To reassemble the Handheld first turn it off and unplug power, then remove the interconnecting
cable and serial cable. Carefully fit the two halves together. If the halves are kept parallel as they
are fit together the connector between the Processor Board and the Power Board will mate properly.
Once the two halves are firmly pressed together you can reinstall the eight screws through the
Handheld’s back, then replace the battery cover and reinstall its six screws.

Why is there tape on the keypad?

You can customize the graphic used over your keypad. The keypad includes a clear plastic overlay
which forms a pocket into which you can place a paper graphic. When shipped from the factory, the
keypad is loosely attached with tape to the enclosure; the adhesive on the back of the keypad is not
used to securely fasten the keypad to the enclosure. This allows you to pull up the keypad and
install your own custom graphic. Once you have finalized your keypad design, you can remove the
backing on the keypad (exposing the adhesive) and permanently attach the keypad to the enclosure.
If you need help setting up your serial port or the Mosaic Terminal for communications, please refer
to Chapter 3, Your First Program.

A Tour of the Processor Board

Figure 1-2 shows a photo of the Processor Board, and diagrams the positions of the headers and
jumpers.

12 Chapter 1: Getting to Know Your Handheld Instrument

40-pin Connector to
Power Board

Serial Selection Jumpers,
J14 to J17

Personality Board mounts on
two high density connectors

Configuration Jumpers J1,
and J3 to J13 (left to right) Contrast Pot Serial Header Reset Button

Beeper

Flash
Socket

2
Flash

Socket
1

Jumper J2

Figure 1-2 Headers and Jumpers on the Handheld’s Processor Board.

The Communications Header Hosts Primary and Secondary Serial Ports

The primary serial port, designated Serial 1, can be configured for RS232 communication at stan-
dard rates up to 19,200 baud and nonstandard rates to 250,000 baud. The secondary serial port,
Serial 2, which can be used for peripheral devices such as a printer or a barcode reader, has a maxi-
mum baud rate of 4800 baud. Both serial ports bring out their transmit and receive pins to the
processor board’s communications header, H4. The primary serial port can be jumper configured
for RS485 operation; in that case, the XCVR± pins are used. On the Personality Board the serial 1
lines can also be jumpered to the bottom-mounted DB25 connector.

H4: Communications Header

Signal Pins Signal
/TxD1 – 1 2 – /RxD1
GND – 3 4 – GND

RS485 XCVR- – 5 6 – RS485 XCVR+
/TxD2 – 7 8 – /RxD2
GND – 9 10 – +5V

Piezoelectric Beeper

A piezoelectric beeper mounted on the Processor Board allows audio feedback for software events
such as button presses or alarms. Chapter 8, Using the Keypad and Display, discusses using the
beeper.

Contrast Pot

The contrast potentiometer (pot) adjusts the contrast of the monochrome LCD display and is located
next to the Configuration Jumpers. The contrast of the display is properly set before each unit is
shipped. If further adjustment is required, simply turn the pot with a small screwdriver. The con-

Getting to Know Your Hardware 13

trast is also software adjustable. Please consult the demo program for an example of programmati-
cally changing the contrast.

Configuring Jumpers on the Processor Board

Table 1-2 summarizes the purpose and default settings of each of the jumpers on the board.

Table 1-2 Processor Board Jumpers

Label Default
Setting

Description

J1 C Protect OFF Write protects memory page 0x0C. Useful for “bullet proofing” a kernel
extension to facilitate firmware upgrades.

J2 NiMH /
Li RAM BB

NiMH Chooses whether the RAM is battery-backed by the NiMH battery pack or the
real-time clock’s (RTC) Li battery. If a 512K RAM is installed, NiMH should be
chosen because the RAM draws too much current for the Li battery; if a 128K
RAM is installed and the RTC is installed, the Li-ion option may be chosen to
backup the RAM even when the NiMH battery pack is disconnected.

J3 Chrg Mon ON Enables monitoring the battery current through A/D input line PE6. Indicates
fast charge, trickle charge, and current consumption while discharging.

J4 Bat Mon ON Enables monitoring the battery voltage through A/D input line PE7.

J5 R Term OFF If J8 is installed, terminates the RS485 lines with 120Ω. If J5 is not installed
while J8 is installed, terminates with an RC combination of 120Ω and 0.1 µF.
RC termination is typically used in low power applications where purely
resistive termination would consume too much current.

J6 Bias+ OFF Pull-up biases the XCVR+ RS485 line with 1KΩ. Typically used to enhance
noise immunity when the transmitters are inactive. Must be used with J7.

J7 Bias- OFF Pull-down biases the XCVR- RS485 line with 1KΩ. Typically used to enhance
noise immunity when the transmitters are inactive. Must be used with J6.

J8 R / RC OFF Used with J5, enables R or RC termination of the RS485 lines. If not installed
the lines are unterminated and J5 has no effect.

J9 RS485 OFF Enables RS485 communication via Serial 1.

J10 (Boot) OFF Puts the 68HC11 into bootstrap mode for special diagnostics.

J11 Clean OFF Invokes special cleanup mode on the next power-up or reset. To return the
Handheld to its pristine, right-from-the-factory condition, install J11, install the
reset jumper (J12) or switch power OFF then ON, then remove both jumpers.

J12 Reset OFF Forces a processor reset; remove it to restore processor operation.

J13 Off Detect OFF Connects processor Port A pin PA0 to the ON/OFF key so that PA0 can be
used to detect an ON/OFF keypress, or to programmatically turn OFF the
Handheld.

J14 XCVR+_/RxD2 XCVR+ Selects whether XCVR+ or /RxD2 is connected to the Personality Board.

J15 XCVR-_/TxD2 XCVR- Selects whether XCVR- or /TxD2 is connected to the Personality Board.

J16 /RxD1_/RxD2 /RxD1 Selects whether /RxD1 or /RxD2 is connected to the Personality Board.

J17 /TxD1_/TxD2 /TxD1 Selects whether /TxD1 or /TxD2 is connected to the Personality Board.

14 Chapter 1: Getting to Know Your Handheld Instrument

A Tour of the Personality Board

WildCard Port 0

+5V Rail

DB-25 Connections

Ground Rail

WildCard Field 1
Connections

WildCard Field 2
Connections

WildCard Field 1

WildCard Field 2

WildCard Field 4

WildCard Field 3

WildCard Field 3
Connections

WildCard Field 4
Connections

Prototyping Area for
User-Configurable
I/O Protection or

Filtering
1.6 x 2.4 in.

Probe
Header

Prototyping Area:
1.45 x 2.8 in.

Mounting Holes:
1.20 x 2.535 in.

WildCard Port 1 WildCard Port
Connections

Ports A & E
Connections

Jumpers J1-J4

TVS Protection
Devices

TVS Protection
Devices

Figure 1-3 Headers and Jumpers on the Handheld’s Personality Board.

Figure 1-3 shows prototyping areas on the left and in the middle for you to place custom circuitry if
needed. Up to four WildCards stack on the Personality Board and ribbon cables connect their field
headers to corresponding headers on the board. All headers are mirrored with their own sea of holes
for point-to-point wiring. Any of the I/O signals from the WildCards or the Processor Board can be
wired directly to the Handheld’s DB-25 connector, or they can be wired through filters, protection
circuitry, or your own circuitry. On the center right of Figure 1-3 of you can see an area for a probe.
If you like, you can mount a probe on the center top of your Handheld and bring the signals through
this connection.

There are four jumpers on the Personality Board, described in Table 1-3, useful while you are
developing new software with the enclosure closed. Place jumpers at J1, J2 and J3 to route the
serial line to the external DB25 connector, and place a jumper at J4 to route the cold reset line to the
external connector.

Getting to Know Your Hardware 15

Table 1-3 Personality Board Jumpers.

Label Default
Setting

Description

J1 DB25 Serial ON Connects serial line /TXD1 or 2 (as chosen by J17 on the Processor Board) to
the DB25 pin 3. Place jumpers on J1, J2 and J3 to bring the serial line out to
the DB25 connector. Useful for developing software with the case closed.

J2 DB25 Serial ON Connects serial line /RXD1 or 2 (as chosen by J16 on the Processor Board) to
the DB25 pin 4. Place jumpers on J1, J2 and J3 to bring the serial line out to
the DB25 connector. Useful for developing software with the case closed.

J3 DB25 Serial ON Connects serial ground to the DB25 pin 5. Place jumpers on J1, J2 and J3 to
bring the serial line out to the DB25 connector. Useful for developing software
with the case closed.

J4 Cold ON Connects the cold reset line to the DB25 pin 6 so that the Handheld can be
reset externally. Useful for developing on the Handheld with the case closed.

Wildcard I/O Expansion Interface

The Personality Board’s WildCard Port Headers allow you to mount up to four WildCards simulta-
neously. Port 0 allows two WildCards at module addresses 01, 02, or 03. The Handheld’s display
and keypad use module number 0 so that kernel-resident software drivers can be used. Port 1 allows
two WildCards at module addresses 04-07. The 24-pin stackable go-through WildCard headers
provide the following signals:

H2 and H3: WildCard Port Headers

Signal Pins Signal
GND – 1 2 – +5V
/IRQ – 3 4 – V+Raw

SEL1_XMIT- – 5 6 – SEL0_XMIT+
MOSI_XCV- – 7 8 – MISO_XCV+

/RESET – 9 10 – SCK
/MOD.CS – 11 12 – 16 MHz

E – 13 14 – R/W
/OE – 15 16 – /WE
AD7 – 17 18 – AD6
AD5 – 19 20 – AD4
AD3 – 21 22 – AD2
AD1 – 23 24– AD0

A Tour of the Power Board

The Power Board contains high efficiency switching regulators to supply the various voltages
required by the Handheld, as well as charging and battery management circuitry for the NiMH

16 Chapter 1: Getting to Know Your Handheld Instrument

battery pack. Figure 1-4 shows the positions of various jumpers and connectors on the Power
Board.

Several jumpers on the power board allow you to configure its operation as described in Table 1-4.

Table 1-4 Power Board Jumpers

Label
Default
Setting Description

J1 DB25-1 / GND GND If installed closest to the edge of the board, connects pin 1 of the DB-25
to signal DB25_1 on the Personality Board; if it is installed closest to the
DB-25 connector, pin 1 of the DB-25 is instead connected to ground.

J2 DB25-2 / EXT_VIN EXT_VIN If installed closest to the edge of the board, connects pin 2 of the DB-25
to signal DB25_2 on the Personality Board; if installed closest to the DB-
25 connector, pin 2 of the DB-25 is instead connected to signal EXT_VIN
so that the Handheld may be powered through the DB-25 connector.

J3 Bright Backlight OFF Sets the LED backlight current to a software-chosen 510 mA or 285 mA;
when not installed sets it to software-chosen 255 mA or 140 mA.

J4 Force-On OFF Holds the Handheld in the ON state and can not be turned OFF.

J5 Auto-On ON Enables the Handheld to turn on automatically when power is applied to
the power jack or to the EXT_VIN line.

DB-25 Connector 40-pin Connector to
Processor Board

Battery
Connector

J5: Auto-OnJ4: Force-OnJ3: Bright Backlight

J1: DB25-1 / Gnd

Power JackJ2: DB25-2 / Ext Vin

Figure 1-4 Headers and Jumpers on the Handheld’s Power Board.

17

Chapter 2

Powering Your Handheld

The Mosaic Handheld provides an internal battery pack for portability. You can use a plug-in
power adapter to recharge the batteries, or to power your Handheld directly. While recharg-
ing you can continue to use the instrument. In tethered operation, you can also bring power in
through the Handheld’s DB-25 connector.

Controlling Power

Automatic Turn-On

When the Auto-On jumper, J5, on the Power Board is connected, the Handheld automatically turns
on when power is applied to either the external power jack or to the EXT_VIN signal. The
EXT_VIN signal appears on pin 1 of the Power Header, H3, of the Power Board. Power ground and
EXT_VIN may also be connected to pins 1 and 2 respectively of the Handheld’s DB-25 by setting
the jumpers on J1 and J2 to the position closest to the DB-25.

Manual Turn On and Off

The lower right button of the keypad is dedicated to turning the instrument on and off. Manually
pressing the button when the Handheld is OFF turns it ON, and holding it down in excess of three
seconds while it is ON turns it OFF.

Programmable Shut-Down

For orderly shutdown your software can intercept the press of the ON/OFF button, perform an
appropriate exit routine, and then shut down the instrument. Whether or not you shut down the
instrument programmatically, a keypress of the ON/OFF button of greater than three seconds will
force a hardware shutdown. Further, whether or not a user presses the ON/OFF button, you can
always programmatically shut down the instrument at any time.

To detect a keypress on the ON/OFF button, you must connect jumper J13 on the processor board.
Doing this connects processor Port A pin PA0 to the ON/OFF key. Configure PA0 as an input
capture (IC1) to evoke an interrupt on a rising edge. To enable programmatic shutdown, reconfigure
PA0 as an output, set it high for at least 10 microseconds, then set it low. This action will cause an
immediate shutdown.

18 Chapter 2: Powering Your Handheld

Continuously ON

The Handheld is held continuously ON whenever external or battery power is present by connecting
jumper J4 on the Power Board. With this jumper installed the Handheld can not be turned OFF
short of removing all sources of power.

Using Battery Power
The Handheld may be powered by six rechargeable size AA NiMH 2100mAH batteries for the times
shown in Table 2-1. The battery pack provides 15 watt-hours of energy between charges. The
batteries are specified with a nominal cell voltage of 1.2 V (for a pack voltage of 7.2 v) and actually
range from 1.375 for a fully charged but unloaded cell to 1.0 V at full discharge.

Table 2-1 Typical Battery Operation Times Using Six 2100 mAH Cells.

Service Time
(Hours)

Conditions

10 Backlight OFF 0 WildCards installed.

6 Backlight ON 0 WildCards installed.

5 Backlight OFF 4 WildCards Installed

4 Backlight ON 4 WildCards installed.

Replacing the Batteries

The batteries are replaced by first removing the battery cover which is held in place with six Phillips
machine screws. A battery holder is permanently affixed to the Handheld. The batteries are a tight
fit in the holder, but they can be carefully removed and replaced by lifting them up at the center,
where each series pair of AA cells meet. When replacing them you must be sure to insert them with
the correct polarity; + and – signs are inscribed in the aluminum holder.

Charging the Batteries

The batteries charge automatically when the power adapter is plugged in, whether the instrument is
ON or OFF at the time. There are two charging states, fast-charge (at a 1.3 A rate) and trickle
charge (at a 72 mA rate). Whenever the power adapter is plugged in the batteries charge at either of
these two rates, with the charger automatically switching between rates.

When power is first applied, the batteries fast-charge to approximately 80% of full charge within 90
minutes, then trickle charge for the remainder of their capacity over five hours. At high ambient
temperatures the fast charge is terminated earlier to prevent battery overheating, so more time is
required for trickle charging.

The Handheld starts fast-charging the batteries when they are first installed and the power adapter is
plugged in, or when the power adapter is first plugged in. It switches to trickle-charge when any of
the conditions of Table 2-2 are met. For safety, fast-charge is inhibited as long as the battery tem-

Using Battery Power 19

perature is less than 1°C; fast-charge commences when the battery temperature rises above the 1°C
threshold, and always ends if the batteries reach 52.5°C.

Table 2-2 Conditions for Fast-Charge Termination.

Parameter Value at Termination

Fast-Charge Time Limit > 132 minutes

High and Low Temperature Limits <1°C or > 52.5°C

Max Rate of change of Temperature (dT/dt) > 1°C per minute

High and Low Battery Voltage limits <1.05 V/cell or > 1.84 V/cell

Change in Battery Voltage (-dV/dT) < −5 mV/cell per minute

Be Careful !

Use Only Size AA NiMH Batteries:

When using battery power you must use only nickel metal hydride (NiMH) size
AA batteries. Different sized batteries, or alkaline, nickel cadmium (NiCad), or
lithium ion (Li-Ion) batteries, can not be charged safely in the Handheld and may
overheat, burst, catch on fire or otherwise damage the Handheld.

Don’t Trickle Charge Too Long:
To get optimum life from your batteries they should not be left on trickle charge
for longer than needed. So your instrument should not be left plugged in to a
power source when it is not used. Instead, it should be trickle charged for a
maximum of 12 hours (typically, 5-7 hours are needed), then unplugged.

Battery Lifetime

NiHM batteries are a great battery technology to use in handheld instruments. They are more
reliable and have much better cycle life than NiCAD batteries. Although they aren’t as light as
Lithium batteries, they are an order of magnitude less costly and have much greater lifetime. The
shelf life of NiMH batteries is reliably several years if they are maintained between 10°C and 30°C
and if they are charged at least once each year. They are conservatively specified by their manu-
facturer at a one-year shelf life at temperatures from -20°C to +35°C. Do not store them where the
temperature fluctuates or is ever less than -20°C or greater than +45°C.

The cycle life of NiMH batteries depends on the conditions under which they are charged and
discharged. Ideally, they should be charged at temperatures between 10°C and 30°C, where they
charge most efficiently. Charging should not be initiated at temperatures less than 0°C or greater
than 40°C, nor continue at temperatures greater than 55°C. The Mosaic Handheld limits fast-charge
to battery temperatures between 1°C and 52.5°C.

20 Chapter 2: Powering Your Handheld

Under ideal conditions state-of-the-art NiMH batteries lose only 10-20% of capacity over 500
charge cycles. Significantly reduced service time despite proper charging means that the life of the
battery has been attained, and the batteries should be replaced. Normally the batteries should last at
least 2 years if not overcharged or undercharged.

Tethered Operation
In tethered operation, the Handheld may be powered by applying any unregulated DC input voltage
between 15 and 30 volts. If you power the board with an unregulated DC supply, the onboard
circuitry is protected by a built-in surge protector and electromagnetic interference (EMI) suppres-
sion circuitry. This improves the reliability of the electronics in harsh industrial environments. The
Handheld requires 20 watts. Of this, 17 watts is used for fast charging and all other instrument
operations need only 3 watts. Consequently, if batteries are not used only 3 watts is required to fully
power the instrument.

You can supply power to the Handheld by connecting jumpers J1 and J2 on the Power Board. If
these jumpers are installed closest to the edge of the board, pins 1 and 2 of the DB-25 are connected
to the Personality Board; if they are installed closest to the DB-25 connector, pins 1 and 2 of the
DB-25 can be used to supply ground and power (EXT_VIN) so that the Handheld may be powered
through the DB-25 connector as well as through its power jack.

Using the Power Adapter
The AC adapter provided with your Handheld supplies 24-28V at 20 W. Plug the adapter into the
jack located on the right side of the enclosure near the bottom.

Power Metering
The Handheld can measure its own battery voltage and current.

Monitoring Battery Current

The current is converted to a voltage and presented as a signal named MON_CHARGER. This
signal is routed to the Processor Board where it can be connected to PE6 (one of the processor’s 8-
bit A/D inputs) by installing Processor Board jumper J3. The relationship between this voltage and
the battery current is given in Table 2-3.

Table 2-3 MON_CHARGER Voltage as a function of battery current.

MON_CHARGER Voltage Battery Current Condition

0.8 -1.3 A Battery is fast charging at 1.3 A

0.58 -.071 A Battery is trickle charging at 71 mA

0.564 to 0.291 0 to 1.5 A Battery is discharging during operation

V I = (0.564 – V) / 0.182 Battery is discharging during operation

Power Metering 21

The battery current, Ibat, is related to the MON_CHARGER voltage as,

Eqn. 2-1 Ibat = (0.564 – MON_CHARGER) / 0.182

This current is negative during charge, and positive during discharge.

Monitoring Battery Voltage

The battery voltage is monitored through an attenuating (by a factor of 4) resistive voltage divider
and presented as a signal named MON_BATT/4. This signal is routed to the Processor Board where
you can connect it to PE7 by installing Processor Board jumper J4. The measured voltage is
roughly one quarter of the battery voltage. However the battery is in series with a 0.22 ohm resistor,
so that the measured voltage is actually the sum of the battery voltage and the small voltage drop
across the resistor. Consequently, the actual battery voltage is given by,

Eqn. 2-2 Vbat = 4 x MON_BATT/4 + Ibat x 0.22 , or,
Vbat = 4 x MON_BATT/4 + 0.22 x (0.564 – MON_CHARGER) / 0.182

in which Ibat is the signed battery current of Eqn. 2-1. For example, while the battery is fast-
charging the actual battery voltage is four times the measured MON_CHARGER/4 minus 0.286V.

For an example of how to measure battery voltage take a look at the source code of the demo appli-
cation that shipped with your Handheld.

22 Chapter 2: Powering Your Handheld

23

Chapter 3

Your First Program

This Chapter will get you started using the Control-C language to program your Handheld. It
will guide you through the installation of the Mosaic IDE, an integrated editor, compiler, and
terminal, and you’ll start up and talk with your controller. You’ll also:

Compile and download your first program using an example multitasking program that
performs calculations using floating point math, stores data in arrays in the Handheld's
extended memory space, and prints the results to the terminal;

Selectively execute any program function using the Handheld’s on-board debugging en-
vironment (called QED-Forth);

Use the Handheld’s built-in operating system to access extended memory;

Use the terminal to interact with a running multitasking application; and,

See how easy it is to set up a multitasking application.

Installing the Mosaic IDE and Control-C Compiler
The Mosaic IDE, which includes the Control-C Compiler, a full-featured editor and communications
terminal, is provided on an installation CD-ROM. To install it onto your PC, first insert the Instal-
lation CD-ROM into your CD Drive. If the installer does not launch automatically, browse to your
computer’s CD drive using the ‘My Computer’ icon and double click on ‘Setup.exe’ to manually
launch the installer.

We recommend that you use the default installation directory (“C:\Mosaic\”) and choose ‘Typical
Setup’ when asked. If you wish to install into a different directory, you may type in any pathname
provided that it does not contain any spaces. The ‘Custom’ setup option can be used if another
version of either TextPad (the editor used within the Mosaic IDE), the Mosaic Terminal (previously
called QED-Term), or an earlier version of the Mosaic IDE has already been installed. However, the
Mosaic IDE requires all of its components to work properly. Please call us at (510) 790-8222 if you
have any questions.

When the installation is complete, you will need to restart your computer unless you are installing
onto a Windows 2000 machine. Be sure to choose ‘Yes’ when asked to restart – if you don’t, the
installation may not complete properly. If you choose ‘No’ and restart later we recommend that to

24 Chapter 3: Your First Program

assure a full restart you fully shutdown your computer and then turn it back on; lesser restarts don’t
always restart fully.

You are now ready to talk with your Handheld!

Turning on Your Handheld
Familiarize yourself with the locations of the power and serial connectors as shown in Chapters 1
and 2. After finding them follow these steps to turn on your system and establish communications
with it:

1. Connect your PC serial cable to the Handheld. You can use the 10-pin-socket-to-DB9 cable to
connect to the Handheld’s internal serial header (on the Processor Board with the instrumetn
open and the two halves connected with the high-density interconect cable) or you can use the
DB25-to-DB9 cable to connect to the DB25 connector on the bottom of the Handheld. Con-
nect the female end of the 9-Pin serial communications cable to your computer terminal’s RS-
232 serial communications port. You can use any of your PC’s COM ports. COM2 is usually
available, but some PCs only have COM1 available. If your computer does not have an RS-
232 serial port, low cost USB-to-RS-232 serial cables are available; contact Mosaic Industries
for details.

2. Power up your PC computer or terminal.

3. You should check the configuration of your Windows communications drivers:

1. On your PC go to the device manager dialog box by double clicking “System” in the
“Control Panel”, clicking the “Hardware” tab, and clicking the “Device Manager” button.

2. In the list of devices open up the list of “Ports” and double click on “Communications
Port (COM2)”. (If COM2 is tied up with another service, such as a fax/modem, you may
want to use COM1 instead.)

3. You’ll now have a dialog box called “Communications Port (COM2) Properties”. Click
the general tab and make sure you have these settings:

Property Value

Baud Rate 19200

Data Bits 8

Parity None

Stop Bits 1

Flow Control Xon/Xoff

4. We recommend that you use Mosaic Terminal, the terminal program that comes with the Mo-
saic IDE. You can start the terminal by double clicking the Mosaic IDE executable (the pri-
mary application of the Mosaic IDE) and choosing the terminal toolbar button which looks like
this:

Turning on Your Handheld 25

(The appearance of this and other toolbar icons may change in subsequent versions of the Mo-
saic IDE.) You can also start the terminal by double clicking the application “MosaicTermi-
nal.exe”.

The terminal starts using COM2 by default at a speed of 19200 baud, no parity, and 1 stop bit.
Xon/Xoff flow control is enabled, and the file transfer options are set so that the terminal waits
for a linefeed (^J) character before sending each line (this is very important). You can use any
other terminal program, but it must be configured with these same settings. If you use another
terminal program, you must specify that it use the linefeed character as its prompt character.
It might be denoted as LF, ^J, ascii decimal 10, or ascii hex A.

If your PC is set up to use a COM port other than COM2 Mosaic Terminal will respond with a
warning box saying “Invalid port number”. If so, just go to the Mosaic Terminal menu item
“Settings→Comm→Port” and choose the COM port you chose when configuring Windows in
step 3. above.

5. Verify the baud rate of the Mosaic Terminal by going to “Settings→Comm→Baud Rate” and
making sure that 19200 is selected. This is the baud rate used to communicate with the
QScreen Controller. If the baud rate is incorrect, garbled characters may appear in the terminal
when you try to communicate with the controller.

6. Plug the Handheld’s power adapter into a 110 VAC outlet. European users will need a power
transformer for changing European 220 VAC to 110 VAC. Insert the power supply output
plug into the power jack on the side of the Handheld and turn it ON by pressing the ON/OFF
keypad button in the lower right corner of the keypad.

1. If no application program is running you should now see the following response:
Coldstart QED-Forth V4.4x

2. If there is a demonstration program running and if you hit the enter key while the cursor
is in your terminal window you should see the Handheld respond with,

ok

The serial communications responses indicate that your Handheld is now working!

If Something Doesn’t Work

If no message appears on your terminal there’s something wrong, so:

1. Verify that power is being properly applied to the controller.

2. Verify that the serial cable is properly connected.

3. Check the terminal configurations of the Mosaic Terminal (using the menu item “Settings →
Comm”), and recheck the communications properties of the Windows communications port.

4. Perform a “special cleanup”.

26 Chapter 3: Your First Program

Doing a “Special Cleanup”
If you ever need to return your Handheld to its factory-new condition, just do a Special
Cleanup: With the power on, install jumper J11 on the processor board, install and re-
move the reset jumper, J12, then remove J11. This procedure will remove any applica-
tion programs and reinitialize all operating system parameters to their factory-new
condition. Note that this procedure removes any demo programs too.

If you still are having trouble, email or give us a call.

Using the Mosaic IDE

Using the Editor and Compiler

The Mosaic IDE has two main components, the TextPad editor, which includes the Control-C com-
piler, and the Mosaic Terminal serial terminal program, both of which you’ll find in the default
directory “C:\Mosaic\”:

◙ TextPad is a fully featured and highly configurable text and program editor. You’ll use it to
write and compile your code. All of the functions of the C compiler tools are available through
the controls in TextPad. You can launch TextPad from the ‘Mosaic IDE’ group in the ‘Pro-
grams’ section of your Windows ‘Start’ menu. For convenience, you may want to place a
shortcut to it on your desktop or on your Windows Taskbar.

◙ Mosaic Terminal is a serial communications terminal that allows you to interactively control
your controller over its RS-232 interface. You’ll also use it to download your compiled C pro-
grams into the memory of the Handheld. Mosaic Terminal may be launched from the ‘Mosaic
IDE’ group within ‘Start→Programs’, but it is also available from within TextPad, either from
the ‘Tools’ dropdown menu or by clicking the terminal icon on TextPad’s toolbar.

You can type characters directly into the terminal window, and they will be accepted by the
Handheld’s line editor and interpreter. This mode of interaction is convenient when debugging
or typing short code fragments. If you are sending source code to the Handheld, it is best to
create a file first. The file can be saved to disk to provide a record of your work, and the ter-
minal program can be used to download the file to the Handheld. You can also use the termi-
nal to record your debugging sessions and save them as a file on disk.

The TextPad Tool Bar

Along with the standard tools you expect in a text editor you’ll find some custom tools available in
the toolbar that you’ll use to compile and download your programs. Each of these tools is also ac-
cessible in the ‘Tools’ dropdown menu of TextPad. For C programmers the Debug icon calls the C
compiler and assembler only, the Single-Page Compile icon performs a standard build of your pro-
gram, and the Multi-Page Compile icon performs a multi-page memory model build of your pro-
gram. Forth programmers won’t need to use these tools. Both C and Forth programmers will find
the Terminal icon useful; it launches the Mosaic Terminal program. Each of these tools is described
in more detail below.

Using the Mosaic IDE 27

The ‘Debug Tool’ Finds Syntax Errors in C Programs

The Debug Tool, designated by the “Magnifying Glass” icon, invokes the compiler and
assembler only – it does not produce downloadable code. Use it to quickly check the syntax of

a program and find compilation errors without performing the full build which would be needed to
download the program into the microcontroller.

The ‘Single-Page Compile Tool’ Compiles and Makes a Downloadable Single-
Page C Program

The Single-Page Compile Tool, designated by the “Single-Page” icon, performs a standard,
single-page memory model build of your program. If you are compiling a program whose

compiled size does not exceed 32 Kbytes of memory you should use this mode for fastest execution.
Although this program size is sufficient for many applications, you may need to use the multi-page
build if your application grows beyond 32 K. If you see the following warning printed in the com-
piler output, then you must switch to the multi-page memory model build (using the Multi-Page
Make icon):

WARNING: Input section “.doubleword” from ‘progname.o11’ is not used !

The ‘Multi-Page Compile Tool’ Compiles and Makes a Downloadable Long C
Program

The Multi-Page Compile Tool, designated by the “Multi-Page” icon, invokes the C compiler’s
multi-page build mode. Programs compiled in this mode may be many pages in length limited

only by the amount of FLASH installed in the Handheld. It is always a good programming practice
to break large projects into multiple smaller source code files for organization, and the multi-page
build also uses this organization for distributing the compiled program across multiple 32 Kbyte
pages. Thus, no source code file may contain more than 32 Kbytes worth of compiled source code
or the above warning will be issued and the program will not run. A more detailed description of
this behavior is available in Chapter 4.

You may wonder why there are both “Single-Page” and “Multi-Page” compile modes. The reason is
that C function calls between pages take just a little longer to execute (calls to functions on a differ-
ent page take 49 microseconds while those on the same page or to common memory take only 11.5
or 13.75 microseconds, respectively). Because most function calls are to functions on the same page
or to common memory, page changes are rare; the average execution speed of multi-page C appli-
cations is still quite fast.

‘Mosaic Terminal’ Communicates with Your Product

The Terminal icon launches the communications program, Mosaic Terminal. When you
launch Mosaic Terminal for the first time, check the communications settings

(Settings→Comm) to verify that the serial port is set correctly for your computer.

28 Chapter 3: Your First Program

Your First C Program
Now that we’ve learned about the Handheld's hardware, established serial communications, and
installed the Mosaic IDE on the PC, it’s time to compile, download and execute a C program. We’ll
also explore the Handheld’s on-board operating system and use it to interactively debug a program.

Compiling a Program

In this section we'll be running a simple program that does some computation and communicates its
results on the serial port. The program is one of several examples for use with the Control-C IDE in
the “\Mosaic\Demos_and_Drivers\Misc\C Examples” directory. Let’s compile, download, and run
it.

Start TextPad, and open the source-code file “getstart.c” from the C_Examples directory. You
should see the source code in an open window – browse through it to get a feel for it. You’ll see
that the final routine in the file is called main(); it’s the top-level executable program. The first
routine within main() that is called when the program starts is InitVars(). Note that in the run-
from-place applications of embedded systems it’s important to initialize all variables with a run-time
procedure when the program starts. Variables that are initialized when the program is compiled are
not automatically initialized when the program runs; you should have a runtime routine in your code
that does that.

Clicking on the Single-Page Compile icon will compile and produce a downloadable form of the
program, named “getstart.dlf”. A new window named ‘Command Results’ will appear so that you
can watch the compilation process. When compilation has finished, you can scroll the Command
Results window up and look for warnings, which don’t prevent creating a valid download file, and
errors, which do. You should see two warnings near the beginning:

GETSTART.C(126): Warning: Expression is always TRUE !

GETSTART.C(197): Warning: Symbol 'unused_variable' is never used in function 'main' !

We deliberately inserted into ‘main’ a variable named unused_variable that is never used in the
function. If you double click on an error or warning line in the command results, TextPad will jump
to the corresponding line in the affected source file. Despite the warnings, the program should have
compiled successfully; the command results will end with:

Qcc-> Creating QED Download File: getstart.dlf

Tool Completed Successfully

You can quickly switch between the Command Results window and your source code file either by
hitting Ctrl-Tab, or by clicking on the file tabs at the bottom of the TextPad window.

The file named “getstart.dlf” is ready to be downloaded to the microcontroller using the Mosaic
Terminal program.

Downloading and Running the Program

If it is not already open, launch Mosaic Terminal either from the ‘Start’ menu or using the TextPad
toolbar or dropdown menu. It’s most convenient to use the Terminal icon on the TextPad toolbar.

Your First C Program 29

You should be able to hit enter at the Mosaic Terminal prompt and see the ‘ok’ response with the
microcontroller plugged in and turned on. If this is not the case, check your communications set-
tings and cabling.

Now, select ‘File Send File’ from the Mosaic Terminal menu and enter the
“\Mosaic\Demos_and_Drivers\Misc\C Examples” directory, or wherever you compiled the program.
Set the file type to “Download Files (*.dlf)” and select “getstart.dlf”. You will see various
commands and hex data scrolling on the screen as the file is downloaded to the microcontroller.
When the download is complete, the text will turn from gray to green to indicate that it is finished.
Now, it’s time to run your program.

To execute the top level function of your code, simply type ‘main’ and press enter,
main

The ‘Enter’ key is represented by the symbol in the line above.

The getstart program will respond with:
Starting condition:

The radius is 0; the circular area is 0.

 ok

While on its face that doesn’t seem a very impressive response, you’re running your first program!
This particular example program uses multitasking. The program runs a background task called
CalculationTask continuously, incrementing a radius variable and using it to compute a new
area. The program is running in its own task, leaving the communications task free so you can con-
tinue to interact with the controller.

You will notice that you can hit enter, and use the interactive debugging capabilities even though the
program is still running. For example, try executing the following function interactively from the
terminal:

Announce()

Note that you must type the space after the (character. Each time you execute this function you’ll
notice that the output is different, as the radius is being continuously incremented by the background
task. Now try executing,

Nap()

which puts the background CalculationTask ASLEEP. If you again execute
Announce()

several times, you will notice that the radius and area are no longer being updated by the
CalculationTask. To wake up the CalculationTask again, type

Wakeup()

and notice that the calculation is again being performed by the task.

You may want to stop the program; in particular you’ll need to stop it before attempting any new
downloads. This can be done most easily by simply entering ‘warm’ at the microcontroller’s

30 Chapter 3: Your First Program

prompt. The warm restart causes a soft reset to occur, terminating any background tasks that may be
running.

After having run this program, you may want to play with the other example programs in the
“\Mosaic\Demos_and_Drivers\Misc\C Examples” directory. We strongly recommend that you
compile these programs and work through the examples as suggested in the text of this manual.
This will provide you with a thorough “hands-on” introduction to the Control-C programming envi-
ronment.

Interactively Debugging Your Program

We have seen how to interactively call the main() function from the terminal to execute our entire
program; most C development environments let you do this. But the Handheld’s operating system
makes it easy to interactively execute any designated function in your program. By simply preced-
ing a function definition or prototype with the _Q keyword (we chose “_Q” as a unique keyword that
suggests QED), you can ensure that the function will be interactively callable from your terminal.

An example: Announce() Displays an Area and Radius

For example, to display a summary of the current values of the radius and calculated circular area
variables, we would like to call the function Announce().

Using the editor, look near the top of the GETSTART.C file and you’ll see that its definition is:

_Q void Announce(void)
{ printf(“\nThe radius is %6u; the circular area is %5.4g.\n”,radius,area);
}

The void keywords indicate that the Announce() function does not return a value, and does not
expect any input parameters to be passed to it.

The _Q declarator instructs the compiler that we want to be able to interactively call this function
using the on-board QED-Forth interpreter. The names and execution addresses of all functions
defined with the _Q designator are placed in the .DLF download file so that QED-Forth will recog-
nize them and will be able to interactively execute them.

The printf() function invoked in Announce() prints the specified string to the serial1 port.
The parameters of the printf() function are well defined by the ANSI standard, and are described
in many excellent texts. Briefly, the \n is an escape sequence that instructs printf to insert a
newline at the designated places in the string. The % characters are formatting symbols that tell the
compiler to substitute the listed arguments (in this case, the radius and area) for the % sequences at
runtime. The %6u sequence tells the compiler to display the radius as an unsigned decimal number
with a minimum field width of 6. The %5.4g sequence tells the compiler to display the area using
either decimal or exponential notation with a precision of 4 decimal places to the right of the deci-
mal point, and a minimum field width of 5.

The printf() function in Control-C differs from the ANSI standard in one respect: the maximum
length of a printed string is limited to 80 characters instead of the standard 255 characters. This
limitation also applies to the related functions named sprintf() (which writes a string to a buffer)

Your First C Program 31

and scanf() (which inputs a string). Of course, you can handle strings longer than 80 characters by
using multiple calls to these functions.

Interactively Calling Announce()

To interactively call this function, simply type at your terminal
Announce()

followed by a carriage return (indicated by the arrow above). Spaces are important to the QED-
Forth interpreter which processes this command; make sure that there is no space between the func-
tion name Announce and the opening parenthesis (, and there must be at least one space after the
opening parenthesis. If QED-Forth does not recognize your command, it will repeat what you typed
followed by a “?” character and wait for another command, so you can try again. The case of the
letters does not matter: you can use all uppercase, all lowercase, or any combination when typing
commands for the QED-Forth interpreter.

 After calling Announce(), you should now see the message
The radius is 0; the circular area is 0.

on your screen, except that the printed values of the radius and area will correspond to the values
they had when you executed the “WARM” command to stop the calculations. Then you will see an
additional line of text starting with “Rtn:” that summarizes the return value of the function in sev-
eral formats, followed by the “ok” prompt. Because the Announce() function has no return value,
the return value summary is not relevant. The “ok” prompt indicates that QED-Forth has success-
fully called the function and is now ready to execute another command.

If you make a mistake while typing a command, just type “backspace” or “delete” to erase as many
characters as necessary on the current line. Once you’ve typed a carriage return, though, QED-Forth
executes your command. You can’t edit a command that was entered on a previous line. If you type
an incorrect command and then type a carriage return, you may receive the “?” error message which
means that QED-Forth does not understand the command you typed. If this happens, you can usu-
ally just re-type the command line and continue.

Area Calculation

The next function defined in GETSTART.C is called IncrementRadius(). This simple function
increments the radius variable, and resets it to 0 when it exceeds the MAX_RADIUS constant. As
described below, IncrementRadius() is called from the infinite loop in CalcForever(); this
results in the radius taking on all integer values between 0 and 1000.

The next function defined in the GETSTART.C file calculates the area of a circle; its definition is:

_Q float CalcArea(uint radius)
{ return PI * radius * radius;
}

As described above, the _Q designator flags this function as one that can be called interactively. The
“float” keyword declares that the function returns a floating point value, and the parameter list tells
us that the function expects a single unsigned integer (uint) as its input. (Note: uint and other

32 Chapter 3: Your First Program

useful type abbreviations and declarations are defined in the TYPES.H header file in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory.)

To interactively test this function with an input radius of 5, type at your terminal
CalcArea(int 5)

followed by a carriage return. QED-Forth uses spaces as delimiters; consequently, you must type at
least one space after the (character and after the “int” keyword. You should see something like
the following response at your terminal:

Rtn: 17053 5242 =0x429D147A=fp: 78.54

This line summarizes the returned value in several formats, including decimal or hexadecimal 16-bit
values, 32-bit hexadecimal, and floating point. Because the CalcArea() function returns a floating
point (fp) value, the final number on the line, labeled

=fp: 78.54

is the relevant return value. Indeed, 78.54 is the area of a circle that has the specified radius of 5.
You can execute the function with any integer input as the radius, and verify that it returns the cor-
rect circular area. This capability enables interactive testing of the function over its allowed range
of input values. Such thorough function-by-function testing of a program facilitates rapid develop-
ment of reliable programs.

In the next chapter the interactive debugging process will be explored in more detail. You will learn
how to examine the values of static variables and Forth arrays, pass parameters by value or by refer-
ence, generate hexadecimal and ascii dumps of memory contents, and modify the contents stored in
variables and Forth arrays.

Restrictions on the Use of _Q

Nearly every function in the many sample programs in the
\MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory is declared with the _Q keyword
to facilitate easy debugging. There are, however, two restrictions associated with the use of the _Q
declarator.

First, a function defined using the _Q keyword cannot use

...

(ellipsis) in its parameter list; rather, the number of input parameters must be specified when the
function is defined. (If you try to define the _Q function with an ellipsis as an input parameter, the
compiler will issue a warning and remove the _Q specifier, so you will not be able to interactively
call the function during debugging.)

The second restriction is that the _Q function cannot be called via a function pointer if the function
accepts input parameters. In other words, do not use the _Q declarator if:

a. You need to call the function using a function pointer; and,

b. The function accepts input parameters.

Your First C Program 33

This restriction does not affect many functions. Any function declared using _Q can always be
called in the standard way (that is, by invoking the function name followed by parentheses that
contain any input parameters). Moreover, any _Q function can be called indirectly via a function
pointer (by passing its name without any parentheses) if the function’s input parameter list is
“void”.

An Introduction to Extended Memory

The Handheld’s onboard operating system, called QED-Forth, provides numerous run-time services,
including providing a heap memory manager. Using this memory manager we can access the con-
troller’s extended memory.

1 Megabyte Addressable Memory Space

The standard 68HC11 processor can address 64 kilobytes of memory using 16-bit addressing. The
Handheld expands the address space to 1 Megabyte, addressing the lower 32 Kbytes of the proces-
sor’s memory space by means of a 5-bit “Page Latch” that selects one of 32 pages. The 32 pages
times 32 Kbytes per page yields 1 Megabyte of addressable memory. The upper 32 Kbytes of the
68HC11’s address space is called the “common memory”. This address space is always accessible,
regardless of the contents of the Page Latch.

Available Common RAM

The ANSI C compiler supports the standard 16-bit addressing scheme via its small memory model.
It also supports a medium memory model that allows functions to be called on any specified page
using a 24-bit address (16-bit standard address plus an 8-bit page). All C variables and C arrays,
however, must be accessible using a simple 16-bit address. For practical purposes, this means that
variables and C arrays must reside in the Handheld’s available 8 kilobytes of available common
RAM located at addresses 0x8E00 to 0xADFF. In multitasking applications, this RAM is also used
for task areas; each task requires 1 Kbyte of common RAM area.

You are of course free to use ANSI-standard C arrays located in the variable area in common RAM.
These arrays allow you to use standard C pointer arithmetic, and their use is explained in all of the C
textbooks. However, if you need to store a lot of data, the available 8K of common RAM may not
be sufficient. But don’t worry – you can still use all the memory.

Built-in Array Library Routines Manage Access to Paged Memory

The FORTH_ARRAY routines that reside in ROM on the Handheld provide an efficient means of
accessing the large paged address space for storage of data. The pre-defined DIM() macro makes it
easy to dimension a 2-dimensional array to hold signed or unsigned characters, integers, longs, or
floating point values. Other pre-defined library functions handle storing, fetching, and copying data
to and from the arrays. These QED-Forth functions are callable from C, and provide access to a
large contiguous memory space that is very useful for real-time data storage and analysis.

Each array is referred to using a named 16-bit pointer to a “parameter field” structure in common
RAM. Once the array has been “dimensioned”, this structure holds the number of rows and col-
umns, data size, and a pointer to the QED-Forth heap where the array is allocated. The ROM-

34 Chapter 3: Your First Program

resident heap manager allocates and deletes the arrays in real time under the control of the C pro-
gram, thereby maximizing the effective use of available paged RAM.

This section introduces the use of the arrays, and as we’ll see in a later chapter, they are very useful
for storing data from the Handheld’s A/D convertors. The header file named ARRAY.H in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory contains all of the function and macro definitions
that are used to access Forth arrays, including the DIM(), FARRAYFETCH() and FARRAYSTORE()
macros that are mentioned in this section.

Declaring and Dimensioning a FORTH ARRAY

Let’s look at the example code in the GETSTART.C file. Approximately 1/3 of the way into the file,
you’ll find a section called “Array Dimensioning, Storing and Fetching”. The first command in this
section is:

FORTH_ARRAY circle_parameters;

which declares a new FORTH_ARRAY named circle_parameters and allocates storage for the structure
in the variable area in common RAM. FORTH_ARRAY is a struct typedef (see the ARRAY.H
file) that specifies how the dimensioning information for the array is to be stored. Whenever we
want to call a function to operate on this array, we will pass the pointer

&circle_parameters

as an argument to the function.

After using #define directives to define some dimensioning constants, we encounter the following
function definition:

_Q void DimAndInitFPArray(float value,int rows,int cols,FORTH_ARRAY* array_ptr)
{ int r,c;
 DIM(float, rows, cols, array_ptr); // dimension; allocate in heap
 for(c = 0; c < cols; c++) // for each column
 for(r=0; r< rows; r++) // for each row
 FARRAYSTORE(value,r,c,array_ptr); // store in array
}

The function dimensions a FORTH_ARRAY and initializes all elements of the array to have a specified
floating point value. The inputs are the floating point value, the number of rows and columns, and a
pointer to the FORTH_ARRAY structure in common memory. After declaring the automatic variables
r and c, the DIM() macro is invoked to emplace the dimensioning information in the
FORTH_ARRAY structure, and allocate memory for the array in the heap.

The first parameter expected by DIM() is a type specifier; type definitions and abbreviations are
defined in the TYPES.H file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory. Valid type
arguments for DIM() include the following:

char unsigned char uchar
int unsigned int uint
long unsigned long ulong
float xaddr

The next two input parameters expected by DIM() are the number of rows and columns, and the
final input parameter is a pointer to the FORTH_ARRAY structure. The nested for() statements

Your First C Program 35

cycle through each row and column element in the array, calling the macro FARRAYSTORE() to
store the specified value into the array element. FARRAYSTORE() expects a floating point value,
row and column indices, and a pointer to the FORTH_ARRAY as its inputs.

 The starting “F” in the name FARRAYSTORE() means “floating point”; a parallel macro named
ARRAYSTORE() is used for arrays that contain signed or unsigned char, int, or long data.

The SaveCircleParameters() function in the GETSTART.C file calls the macro
FARRAYSTORE() to store the radius and area as floating point values in their respective columns of
the circle_parameters array. Then it increments the row_index variable, handling overflow
by resetting the row_index to zero to implement a circular storage buffer.

The next function in GETSTART.C is called PrintFPArray() which prints an array of floating
point values to the terminal. Its definition is as follows:

_Q void PrintFPArray(FORTH_ARRAY* array_ptr)
{ int r, c;
 putchar(‘\n’);
 for (r = 0; r < NUMROWS(array_ptr); r++) // for each row
 { for (c = 0;c < NUMCOLUMNS(array_ptr);c++) // for each col
 printf(“%9.4g “,FARRAYFETCH(float,r,c,array_ptr));
 // min field width=9;precision=4;g=exp or decimal notation
 putchar(‘\n’); // newline after each row is printed
 PauseOnKey(); // implement xon/xoff output flow control
 }
}

As usual, the _Q declarator allows this function to be called interactively from the terminal.
PrintFPArray() expects a pointer to a FORTH_ARRAY as its input parameter, and uses 2 nested
for() statements to print the contents of the array one row at a time.

The printf() statement invokes the Forth library macro FARRAYFETCH() to fetch the contents of
the array at the specified row and column. FARRAYFETCH() returns the value stored in the array; it
expects a type specifier (used to cast the return value to the required type), row and column indices,
and a pointer to the FORTH_ARRAY as its inputs.

The %9.4g argument to printf() specifies that the number should be printed using either decimal
or exponential formatting (whichever displays better precision), with 4 digits to the right of the
decimal point and a minimum field width of 9 characters. The putchar(‘\n’) statement inserts a
newline character after each row is printed. The PauseOnKey() function is a handy library routine
that serves 2 purposes:

◙ It implements XON/XOFF output flow control to avoid “inundating” the terminal with char-
acters faster than the terminal can process them, and

◙ It allows the user to abort the printout by typing a carriage return from the terminal.

For further details, please consult the definition of PauseOnKey() in the Control-C Glossary.

 To see how the DimAndInitFPArray() function is called, scroll down to the function named
CalcForever() in the GETSTART.C file. The first statement in the function is:

DimAndInitFPArray(0.0,CIRCLE_ROWS,CIRCLE_COLUMNS,&circle_parameters);

36 Chapter 3: Your First Program

where 0.0 is the floating point value to be stored in each element, the constants CIRCLE_ROWS and
CIRCLE_COLUMNS specify the number of rows and columns in the array, and
&circle_parameters is a pointer to the FORTH_ARRAY.

Interactively Dimension, Initialize and Print the Array

It is easy to interactively call the functions that we’ve examined. The syntax that we’ll type at the
terminal looks similar to an ANSI C function prototype, with one of the following type declarators
being used before input parameters that are passed by value:

char int long float
char* int* long* float*

When passing the address of a variable or a structure, use only the name of the variable or structure,
without any additional declarators or & operators. All of this is explained in detail in a later Chapter;
for now, the goal is see how easy it is to use the interactive function calling tools.

For example, to interactively dimension and initialize the circle_parameters array to have 10
rows, 2 columns, with each element initialized to a value of 34.56, type the following line at your
terminal:

DimAndInitFPArray(float 34.56,int 10,int 2,circle_parameters)

Remember to type at least one space after the (character, and after the float and int keywords.
QED-Forth will respond to your command with a line of text that summarizes the return value of the
function, followed by the “ok” prompt. We can ignore the return value summary, because this
function does not return a value.

Now to verify that the initialization was performed correctly, we can type at the terminal:
PrintFPArray(circle_parameters)

and, as always, we make sure that there is a space after the (character. Note that we do not use the
& (address-of) operator before the circle_parameters argument; it turns out that
circle_parameters has already been defined in QED-Forth as the base address of the
FORTH_ARRAY structure.

QED-Forth calls the function which prints the contents of the circle_parameters array, and then
summarizes the return information (which we can ignore in this case). You can verify that the value
of each array element is the same one that you specified when you called the
DimAndInitFPArray() function. (Slight differences in the values are due to rounding errors in
the floating point conversion and printing routines.) Using this interactive method, you can test each
function with a variety of dimensioning and initialization information.

An Introduction to Multitasking

Many instrumentation and automation applications can be logically conceived of in terms of a set of
distinct “tasks” that cooperate to solve the problem at hand. For example, a program that manages a
hand-held sensing instrument might have one task that acquires sensory data, another that performs
calculations to process the data, and a third task that displays the results on a liquid crystal display.

Your First C Program 37

Using the Handheld’s built-in multitasking executive confers significant advantages when designing
real-time systems. Breaking up a complex program into easily understood modular tasks speeds
debugging, improves maintainability, and prevents source code modifications of one task from ad-
versely affecting the required real-time performance of another task.

The Task Activation Routine

In a multitasking environment, a “task” is an environment capable of running a program. After
declaring (naming) a new task (which also allocates a 1 Kbyte task area), its environment is “built”
by initializing its required stacks, buffers and pointers in the 1 Kbyte task area. Then the task is
“activated” by associating it with an “activation routine” that performs a specified set of actions.

A typical task activation routine is the CalcForever() function in the GETSTART.C file. Its defi-
nition is straightforward:

_Q void CalcForever(void)
// this infinite loop function can be used as a task activation routine
{ DimAndInitFPArray(0.0,CIRCLE_ROWS,CIRCLE_COLUMNS,&circle_parameters);
 while(1) // infinite loop
 { IncrementRadius(); // updates radius variable
 area = CalcArea(radius); // updates area variable
 if(radius%10 == 0) // on even multiples of 10...
 SaveCircleParameters(); // save data in FORTH_ARRAY
 Pause(); // give other tasks a chance to run
 }
}

The first thing that this function does is to dimension and initialize the circle_parameters array.
Then it enters an infinite loop that increments the radius variable, calculates the corresponding cir-
cular area and stores it in the area variable, and saves the radius and area in the
circle_parameters array if the radius is an even multiple of 10. The function calls Pause() on
every pass through the loop. Pause() is a multitasking function that instructs the multitasking
executive to change to the next task (if any) in the round-robin task list. This enables “cooperative
multitasking”, in which a task willingly lets other tasks run by executing Pause(). The other type
of multitasking, also supported by the Handheld, is “pre-emptive multitasking”, in which an inter-
rupt-driven timeslice clock forces a task switch on a periodic basis.

In summary, the CalcForever() function is an infinite loop that manages the calculation and
storage of the radius and circular area. This function can be the “activation routine” for a stand-
alone task running in a multitasking environment.

 Declare, Build and Activate a Task

The short section titled “Multitasking” in the GETSTART.C file demonstrates how easy it is to set up
a task using the pre-defined macros. First we declare the new task as:

TASK CalculationTask;

The TASK typedef allocates a 1 Kbyte task structure named CalculationTask in the common
RAM.

The function SetupTask() builds and activates the new task; its definition is:

38 Chapter 3: Your First Program

void SetupTask()
{ NEXT_TASK = TASKBASE; // empty task loop before building
 BUILD_C_TASK(HEAP_START,HEAP_END,&CalculationTask); // private heap
 ACTIVATE(CalcForever, &CalculationTask); // define task’s activity
}

The first statement empties the round-robin task loop by setting the NEXT_TASK pointer in the task’s
user area to point to the task’s own TASKBASE. The next statement invokes the BUILD_C_TASK()
macro which expects starting and ending addresses for the task’s heap, and the address at which the
task is located. We have defined the constants HEAP_START and HEAP_END to specify a task-
private heap occupying 1 Kbyte on page 0. The task base address is simply &CalculationTask.
BUILD_C_TASK() sets up all of the stacks, buffers and pointers required by the task.

The final statement in SetupTask() invokes the ACTIVATE() macro which expects a pointer to
the activation function (which is CalcForever) and the TASKBASE address (which is
&CalculationTask).

Multiple tasks can be declared, built and activated in the same way.

Putting a Task Asleep

A “sleeping” task remains in the round-robin task loop, but is not entered by the multitasking ex-
ecutive. The status of a task can be changed from AWAKE to ASLEEP and back again by simply
storing the appropriate constant in the user_status variable in the task’s USER_AREA. The
USER_AREA is a task-private structure initialized by BUILD_C_TASK() that contains the pointers
that a task needs to operate; it is defined in the USER.H file in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory. The USER_AREA structure is the first element in
the TASK structure.

The Nap() function in GETSTART.C is a simple function that puts the CalculationTask asleep:

_Q void Nap(void) // put calculation task asleep
{ CalculationTask.USER_AREA.user_status = ASLEEP;
}

This function simply stores the ASLEEP constant into the user_status variable in the
CalculationTask’s USER_AREA structure. A similar function named Wakeup() stores the
AWAKE constant into user_status to wake up the task. We’ll see how to use these functions in the
next section.

The main Function Gets Us Going

The main() function is the highest level routine in the program. Its definition is:

void main(void)
// Print starting area and radius, build and activate CalculationTask.
{ int unused_variable; // an example of how warnings are handled!
 InitVars();
 printf(“\nStarting condition:”);
 Announce(); // print starting values of radius and area
 SetupTask(); // build and activate the CalculationTask
}

Your First C Program 39

As you recall, the declaration of the unused_variable was inserted to demonstrate how the Con-
trol-C IDE highlights the source code line associated with compiler errors and warnings.
InitVars() performs a runtime initialization of the variables used by the program; this is very
important, because compile-time initializations won’t ensure that variables are properly initialized
after the program has run once, or after the processor is restarted.

After initializing the variables, main() announces the starting values of radius and area and then
calls SetupTask() to build and activate the CalculationTask. To execute the program, simply
type at your terminal:

main

You’ll see the following message:
Starting condition:

The radius is 0; the circular area is 0.

ok

The “ok” prompt lets you know that QED-Forth is ready to accept more commands. We have set up
a two-task application: the default startup task (named the FORTH_TASK) is still running the QED-
Forth interpreter, and the CalculationTask that we built is running the CalcForever() activa-
tion routine. At any time we can monitor the current values of radius and area by interactively call-
ing the function:

Announce()

Remember to type a space after the (character, and you may have to type slowly so that the multi-
tasking program does not miss any of the incoming characters from the terminal. To view the con-
tents of the circular buffer array named circle_parameters, type the command:

PrintFPArray(circle_parameters)

To suspend the operation of the CalculationTask, type:
Nap()

Now notice that successive invocations of:
Announce()

all show the same values of the radius and area; this is because the CalculationTask is no longer
updating them. To re-awaken the CalculationTask, simply type:

Wakeup()

To abort the multitasking program altogether and return to a single task running the QED-Forth
monitor, you can perform a “warm” restart by typing:

WARM

The QED-Forth startup message will be displayed.

Of course, if you want to run the program again, you can type main or any of the interactively call-
able function names at any time. Remember to type

WARM

or

40 Chapter 3: Your First Program

COLD

before trying to download another program file; the Handheld can’t run multiple tasks and accept a
download file at the same time. (Both WARM and COLD re-initialize the system, but COLD performs a
more thorough initialization and causes QED-Forth to immediately “forget” the definitions of the C
functions that were sent over in the .DLF download file).

Autostarting Your Application

You can configure QED-Forth to automatically execute a specified application program after every
reset, restart, and ABORT. This makes it easy to design a production instrument based on the
Handheld; the instrument will automatically perform its required function when it is turned on or
reset.

QED-Forth provides two functions named AUTOSTART and PRIORITY.AUTOSTART that allow
you to specify a startup routine. Both write a pattern in memory that instructs QED-Forth to execute
a user-specified program. AUTOSTART stores the pattern in EEPROM which is inside the
68HC11 processor chip, and PRIORITY.AUTOSTART stores the pattern near the top of page 4
which is typically in PROM in a final turnkeyed system. The EEPROM-based AUTOSTART func-
tion is convenient during program development and debugging, or in the development of one-of-a-
kind systems. But because the startup pattern is stored in EEPROM inside the 68HC11, it is cannot
be automatically transferred with the application program to a different board.

The PRIORITY.AUTOSTART routine should be used for PROM-based production systems. It
installs the startup pattern in PROM, so simply reproducing the PROM and plugging it into any
Handheld turns that board into a turnkeyed instrument controller. In other words, the startup in-
structions are stored in the same PROM as the application program itself.

Let’s assume that you want to want to run the main routine every time you turn on, reset, or restart
the Handheld. The following command:

CFA.FOR main AUTOSTART

leaves the extended code field address (cfa) of main on the stack. AUTOSTART then writes a pat-
tern into EEPROM comprising a 16-bit flag (equal to 1357H) followed by the 32-bit extended cfa of
the specified startup program. All subsequent resets and restarts will call the specified application
program after QED-Forth initializes the system.

To specify the startup vector so that it can eventually reside in PROM, we would execute a different
command:

CFA.FOR main PRIORITY.AUTOSTART

PRIORITY.AUTOSTART writes a pattern starting at 7FFAH on page 4 comprising a 16-bit flag
(equal to 1357H) followed by the 32-bit extended cfa of the specified startup program. All subse-
quent resets and restarts will call the specified application program after QED-Forth initializes the
system.

The priority autostart and autostart locations are checked each time QED-Forth executes ABORT,
which is called after every reset, COLD or WARM restart, or error. ABORT first checks the prior-

Your First C Program 41

ity autostart location at 7FFAH\4, and if 1357 is stored there it executes the program whose xcfa is
stored in the four bytes starting at 7FFCH\4. If the priority autostart pattern is not present, or if the
specified priority startup program finishes executing and “returns”, ABORT then checks the
autostart pattern at AE00H in common memory. If 1357 is stored there it executes the program
whose 32-bit xcfa is stored in the four bytes starting at AE02H.

To remove the autostart pattern or patterns, execute:

NO.AUTOSTART

This command clears the priority startup pattern at 7FFAH\4 and the startup pattern at AE00H.

Summary

Now you’ve worked through the GETSTART.C program in detail. You know how to compile,
download and execute programs, perform simple floating point calculations, print formatted strings
and numbers to the terminal, dimension and access FORTH_ARRAYs in paged memory, define a
multitasking application with an interactive terminal interface, and autostart an application. That’s
pretty good considering that this is your first C program on the Handheld!

42 Chapter 3: Your First Program

43

Chapter 4

The IDE: Writing, Compiling, Downloading and
Debugging Programs

In this Chapter we’ll explore the Handheld’s tools for writing, editing, downloading and de-
bugging your application program. You’ll learn:

How to efficiently use the editor and compiler to write and compile both short and long
programs;

Coding and file-naming conventions;

How to access the Handheld’s onboard funcitons; and,

How to interactively debug your programs.

Writing Programs

Using the Editor/Compiler

In the prior Chapter we introduced the Mosaic IDE and the tools you can use to edit, compile, and
download your program. Briefly, the text pad toolbar provides the following buttons:

The Debug Tool invokes the compiler and assembler only – it does not produce downloadable
code. Use it to quickly check the syntax of a program and find compile errors.

The Single-Page Compile Tool performs a standard, single-page memory model build of your
program for programs that do not exceed 32 Kbytes of memory. If you see the following

warning printed in the compiler output, then you must switch to the multi-page memory model build
(Multi-Page Make icon):

WARNING: Input section “.doubleword” from ‘progname.o11’ is not used !

The Multi-Page Compile Tool invokes the C compiler’s multi-page build mode for long
programs. Still, each source code file should be less than 32 Kbytes worth of compiled source

code or the above warning will be issued and the program will not run.

The Terminal icon launches the communications program, Mosaic Terminal, which is used to
download your compiled program to the Handheld.

44 Chapter 4: The IDE: Writing, Compiling, Downloading and Debugging Programs

Sylistic Conventions

Code Comments

At the top of the GETSTART.C source code file are some comments that tell what the program does.
Single- or multi-line comments can be enclosed in the standard

/* */

delimiters. The double-slash

//

token means that the remainder of the line is a comment. Note that the editor colors all comments
differently to make it easy to distinguish comments from source code. C keywords are also colored
differently than user-defined routines. You can change the default colors if you like.

Style Conventions

The example programs on your CD-ROM follow several stylistic conventions. Here is a brief sum-
mary:

◙ Macros and constants are spelled with CAPITAL_LETTERS.

◙ Variable names are spelled with small_letters.

◙ Function names use both capital and small letters, with capital letters indicating the start of a
new subword within the function name. For example:

void SaveCircleParameters(void)

To minimize the need to skip from one file to another, we have decided not to group all #define
statements in a header file that is separate from the program being compiled. Rather, the #define
statements are defined close to where they are used in the program file that is being compiled.

File Naming Conventions

For backward compatibility with DOS and Windows 3.1, all filenames have 8 or fewer characters.
C source code files have the .C extension, and header files have the .H extension. When you use the
Make Tool utility to compile a source code file with the filename,

NAME.C

several files with the extensions shown in Table 4-1 are created:

Table 4-1 Files Created by the C Compiler.

FILENAME.ext Description

NAME.C Source code text file created by you, the programmer

NAME.A11 Assembled output text file created by C11 compiler

NAME.O11 Object code binary file created by ASM11 assembler

Writing Programs 45

FILENAME.ext Description
NAME.LCF Linker command text file created by CC or CCM batch file

NAME.S S-record (raw download ascii file) created by linker

NAME.DLF Final download file created by CC or CCM batch file; includes S records and definitions
for QED-Forth

NAME.MAP Map file listing created by linker

NAME.MEM Symbols map file

NAME.USE Memory usage summary

NAME.BAK Backup file sometimes created by the editor

While this list may seem overwhelming, you won’t have to worry about most of these files. You’ll
create your NAME.C and .H source code and header files in a directory of your choice, run the auto-
mated Make Tool by clicking on the Make icon, and send the resulting NAME.DLF download file to
the Handheld using the Terminal program. In fact, unless you tell it otherwise, the editor’s “File”
menu will typically show you only files with the .C and .H extensions (“Source Files”); you won’t
have to wade through the files with the other extensions. Similarly, the Mosaic Terminal typically
lists only files with the .DLF extension, so it will be easy to select the download file to send to the
Handheld.

Using Function Prototypes

This stylistic convention deserves its own section. We strongly urge that you define or prototype
each function before it is called. If the compiler generates a warning that a function has been called
without a prototype, we recommend that you check your source code and insert the required func-
tion prototype, or move the definition of the function so that it is defined before it is called.

A prototype is a declaration that specifies the function name and the types of its return value and
input parameters. For example, the following is a valid function prototype:

_Q float CalcArea(unsigned int radius);

This declaration specifies that CalcArea() is a function that expects one unsigned integer input
and returns a floating point value. As discussed below, the _Q tags the function as one that is inter-
actively callable during debugging. The CalcArea() function can then be defined later in the
source code file. If a function is prototyped in one file and defined in another, add the extern
specifer before the prototype.

You can preface any function prototype with the _Q tag if you want to interactively call the function
from the terminal. The Handheld’s onboard operating system maintains a list, called the dictionary,
of the names of functions tagged with the _Q so that it can recognize them when you send a com-
mand line from your terminal.

46 Chapter 4: The IDE: Writing, Compiling, Downloading and Debugging Programs

Prototype and Declare the Parameter Types of Every Function
Defining or prototyping a function before it is called allows the compiler to help find pa-
rameter passing errors, and it also prevents unnecessary promotion of parameters that can
render the code slower and defeat the Handheld’s interactive function-calling capability.
To avoid unwanted promotion and runtime errors, each and every parameter in the func-
tion prototype or function definition must be preceded with a type specifier. For exam-
ple, leaving out the unsigned int keywords in the prototype for CalcArea() above
would lead to promotion of the input parameter, possibly resulting in a runtime error
message from the compiler or linker.
Using function prototypes and definitions that explicitly specify the type of each and
every input and output parameter results in more readable and reliable code.

Accessing the Standard (Kernel) Library Functions

The command

#include < \mosaic\allqed.h >

near the top of the GETSTART.C file is a preprocessor directive that includes all of the relevant
header files for the Handheld, and all of the standard C header files (such as stdio.h, math.h,
float.h, string.h, etc.) We strongly recommend that this statement be placed at the top of each
C program file that you write. It gives you access to all of the pre-coded library routines that reside
on the Handheld. These routines let you control the A/D converters, digital I/O, serial ports, real-
time clock, and many other useful functions. The ALLQED.H file also gives you access to the Hand-
held’s multitasking and paged memory capabilities, as well as the standard ANSI C library functions
including printing and string conversion routines such as printf() and sprintf(). Including
these files is very efficient; it generates almost no additional runtime code while giving you access
to very powerful capabilities.

You can call any of these functions from within your C code. There is one limitation however:

Do not nest functions of the type _forth.

Many functions that are callable from C are actually of the _forth type. This includes functions
that are in the kernel on the Handheld, or are part of software distributions such as the Graphical
User Interface (GUI) Toolkit. A call to one of these _forth functions may not be made from within
the parameter list of a call to another _forth function.

There is always a straightforward way of avoiding such nesting of function calls: simply use a vari-
able to hold the required intermediate return value/parameter. For example, if you need to use the
_forth function FetchChar() to fetch the first character from the extended address returned by
the _forth function DisplayBuffer() in paged memory, you could execute the following state-
ments:

static xaddr buffer_xaddress = DisplayBuffer();
FetchChar(buffer_xaddress);

Compiling Programs 47

This code is correct, while nesting the call to DisplayBuffer() inside the parameter list of
FetchChar() would be incorrect.

Initializing Variables

Caution:
RAM-Resident Variables & Arrays Must Be Initialized Within Functions

A common mistake made when creating application programs for embedded sys-
tems is the use of compile-time initialization for RAM-based quantities such as vari-
ables and arrays. While this approach of initializing quantities outside of function
definitions may work during program development, it fails when the device goes
into production because the variables and arrays are not properly initialized when
power is cycled.
Only run-time initialization, i.e., initializations that are performed within functions
(which are in turn called by the autostart program), will occur reliably in an em-
bedded application.
Even users with battery-backed RAM in their systems should always perform ini-
tializations within functions. This approach will avoid hard-to-diagnose field fail-
ures that result from corrupted data in a battery-backed RAM that is never re-
initialized to valid values.

Feel free to call Mosaic Industries for help with this or other programming issues.

Compiling Programs

Compiling Multiple Source Code Files

When writing large programs it is often useful to break up the program into multiple source code
files. The Make Tool allows you to accomplish this in one of two ways.

1. First, you can designate one of your source code files as the primary file, and insert into this
file statements of the form,

#include “\path\filename”

to include the other source code functions, where \path is the standard DOS path specification
that allows the file to be located. The primary file must have a .C extension.

2. Second, you can split your source code into several files that start with the same sequence of
characters, such as:

CODE.C // this is the primary file that you compile
CODE1.C // CODE1.C and CODE2.C are subsidiary files that are automatically
CODE2.C // compiled and linked when CODE.C is compiled

All of these files must have the .C extension. Then, when you compile CODE.C using the Make
Tool (by clicking on the Hammer icon), all of the files with a .C extension whose name starts with
CODE (namely, CODE.C, CODE1.C and CODE2.C) will be compiled and linked together. Note that

48 Chapter 4: The IDE: Writing, Compiling, Downloading and Debugging Programs

the Make Tool cannot handle filenames that start with a numeral or filenames that contain the dash
character; thus a source code file named 1CODE.C or MY-CODE.C cannot be compiled.

Finally, note that one and only one of the program files must include a function named main().

Using the Interactive Debugger
In the prior chapter, you gained experience using the debugging environment that lets you interac-
tively execute any designated function with input arguments of your own choosing. Now we’ll look
more closely at the operation of the debugging environment, and explain how to use it to examine
and manipulate the values of static variables, Forth Array elements, and memory locations.

The interactive debugging environment conveys several advantages. First, you can test each func-
tion of a program individually without changing the main() function and recompiling. This saves
compilation and download time. Second, the environment makes it easy to test each function with a
wide range of input parameters, allowing you to isolate bugs that might otherwise be missed until
later in the program development cycle. Such thorough function-by-function testing of a program
facilitates more rapid development of reliable programs.

We’ll start by learning how to use the interactive environment to examine the values of static vari-
ables. The explanation of how this works involves taking a brief high-level look at the interactive
QED-Forth language that is built into the Handheld. Understanding how QED-Forth operates will
empower you to take full advantage of the debugging capabilities of the Handheld.

Overview of the Forth Language and Programming Environment

The QED-Forth interactive environment makes it easy to examine the contents of static variables. A
brief overview of how the Forth language works will help clarify the procedure.

The Forth Data Stack

Forth is a stack-oriented high level language that combines the interactive benefits of an interpreter
with the speed of a compiler. Unlike C, FORTH is implemented as a two-stack language. In addi-
tion to the return stack that most languages use to keep track of function calls and returns, FORTH
has a data stack that is used to pass parameters. All arithmetic, logical, I/O, and decision operations
remove any required arguments from the data stack and leave the results on the data stack. This
leads to postfix notation: the operation is stated after the data or operands are placed on the stack.
This is the same notation used by Hewlitt Packard’s RPN (reverse polish notation) calculators.

Unlike C, Forth uses spaces as delimiters to distinguish different keywords and tokens. For exam-
ple, a C compiler can easily parse the addition expression:

5+4

as three distinct tokens: 5, +, and 4. But because the above expression was typed without any
spaces, Forth would interpret the expression as a single token, assume it’s the name of a function,
and would try to find it in its dictionary. In Forth the expression must be entered as:

Using the Interactive Debugger 49

5 4 +

which includes the required spaces and uses postfix notation to add the numbers and leave the result
on the data stack.

To see how this works, we’ll talk to the interactive QED-Forth interpreter on the Handheld. To
start, enter the terminal now: if the terminal program is already active, click on its window or hold
down the “Alt” key and press “Tab” until the terminal announcement appears on your screen. If you
haven’t started the terminal program yet during this session, double-click on the Mosaic Terminal
icon to start it up. Connect and power up your Handheld; pressing the Return key should cause
QED-Forth’s ok prompt to appear in the terminal window.

To start, we’ll ensure that the current number base is decimal by typing the command,
DECIMAL

from the terminal. With each character you type QED-Forth echoes the character in you terminal
window. The back arrow in the line above indicates that you pressed the Enter key which sends a
carriage return character; but you won’t see it as an echoed character on your screen. QED-Forth
executes this command when the terminating carriage return is received. Also recall that QED-
Forth case-insensitive, so you can freely mix upper and lower case letters. Now we can put some
numbers on the QED-Forth data stack by typing :

5 7

followed by a carriage return. QED-Forth responds:
ok (2) \ 5 \ 7

We have underlined QED-Forth’s response for clarity. QED-Forth is showing a picture of its data
stack. The (2) means that there are two items on the stack. Each of the items is listed, and items
are separated by a \ character, which can be read as under. So we could describe the stack right
now as 5 under 7; the 7 is on top of the stack, and the 5 is under it. If there are more than 5 items on
the stack, the stack print displays the number of stack items and the values of the top 5 items.

The stack print that shows what’s on the data stack is a feature of the debugging environment. To
disable the stack print, you could execute (that is, type at your terminal) the DEBUG OFF command.
It is not recommended that you do this, though; it’s very helpful to keep track of the items on the
data stack while developing your program.

To multiply the numbers that are now on the stack, type the multiply operator which is a * charac-
ter:

*

and QED-Forth responds:
ok (1) \ 35

The QED-Forth * operator removes the two operands 5 and 7 from the stack, multiplies them, and
puts the result of the multiplication on the stack. To subtract 5 from the number on the stack, type:

5 -

which produces the response:

50 Chapter 4: The IDE: Writing, Compiling, Downloading and Debugging Programs

ok (1) \ 30

The QED-Forth - (minus) operator takes the 35 and the 5 from the stack, subtracts, and puts the
result on the data stack.

To print the result to the terminal, we could simply type the printing word:
.

(that’s right, the command is simply a dot, the period on your keyboard) which prints the response:
30 ok

The printing word . removes the 30 from the stack and prints it. The stack is now empty, so QED-
Forth does not print a stack picture after the ok.

Notice that throughout this exercise QED-Forth has been interpreting and executing commands
immediately. This is because the Forth language is interactive. The results of executing commands
can be immediately determined. If they are incorrect, the command can be changed to correct the
problem. This leads to a rapid iterative debugging process that speeds program development. This
interactive function execution has been harnessed to speed development of C programs for the
Handheld.

QED-Forth Numeric Printing Functions

There are a variety of QED-Forth printing functions, and some related functions that set the current
number base and clean up the data stack. Here is a short list of useful functions that can be executed
interactively:

Function Description

. Prints a 16 bit signed integer in the current number base

U. Prints a 16 bit unsigned integer in the current number base

D. Prints a 32-bit signed long in the current number base

PrintFP Prints an ANSI-C floating point number

HEX Sets the number base to hexadecimal

DECIMAL Sets the number base to decimal

SP! Clears all items off the stack without printing anything

Each of the printing routines removes a number from the data stack and prints it to the terminal.
Because characters are promoted to unsigned int in Forth, the . (dot) function is also used to print
8-bit character data. The PrintFP function was specifically written to display floating point nu-
meric output from C programs, as internally QED-Forth uses a non-ANSI floating point representa-
tion for its own floating point numbers.

The default QED-Forth number base after a COLD restart is DECIMAL. The number base can be
changed to hexadecimal by executing HEX. All non-floating-point numbers typed at the terminal or
printed by QED-Forth are converted using the current number base (corresponding to the most re-
cent execution of DECIMAL or HEX). Floating point numbers are always converted using the decimal
number base.

Using the Interactive Debugger 51

Displaying the Values of Static Variables

Now that we understand how the Forth data stack works, the procedure for examining variables will
make sense. The examples presented here use code from the GETSTART.C program that we’ve
already discussed in detail. If you have already downloaded the program, you are ready to go. If
your board is presently running a multitasking application and you want to download a new file,
type

WARM

to stop the program so that a new download file can be accepted.

If you have not yet compiled the GETSTART.C program and you want to do the exercises here, first
compile it by opening \MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES\GETSTART.C in the
TextPad editor, click on the Make Tool, and after the compilation, enter the Mosaic Terminal and
use the “Send Text File” menu item to send GETSTART.DLF to the Handheld. To run the program,
type

main

at your terminal – this initializes all the pointers and variables. After typing main, let’s type
Nap()

to put the calculation task asleep; remember to type at least one space after the (. This stops the
variables from being updated in the background.

Let’s start by initializing the contents of the radius variable to 5 by interactively executing (typing)
from the terminal:

SetRadiusAndArea(int 5)

Remember to type at least one space after the (character and after int. This function is defined in
GETSTART.C as:

_Q SetRadiusAndArea(uint r)
{ radius = r;
area = CalcArea(r);
}

It assigns the specified input parameter to the unsigned integer radius variable, and assigns the
corresponding circular area to the floating point area variable.

Now we can check the value of radius. The following interactive command places the contents of
the integer variable named radius on the Forth data stack:

int radius

QED-Forth responds with:
ok (1) \ 5

Because radius is defined as an unsigned integer, we use the unsigned integer printing routine
named U. (U-dot) to remove the value from the Forth data stack and print it. Type

U.

to print the radius an unsigned integer. QED-Forth responds with:

52 Chapter 4: The IDE: Writing, Compiling, Downloading and Debugging Programs

5 ok

To speed things up, we can type the entire command sequence on one line so that QED-Forth im-
mediately prints the result. Type:

int radius U.

and QED-Forth responds with:
5 ok

To interactively examine the contents of the floating point area variable, type the command se-
quence:

float area PrintFP

and QED-Forth responds:
78.54 ok

which is indeed the area of a circle whose radius equals 5.

Extracting the Value Referenced by a Pointer

Sometimes C programs add an additional layer of indirection, referencing a value by means of a
pointer. An example of this technique appears in the GETSTART.C program in the form of the static
variables radius_ptr and area_ptr; they are defined as:

static uint* radius_ptr;
static float* area_ptr;

In the InitVars() function near the end of the program, these pointers are initialized as follows:

radius_ptr = &radius;
area_ptr = &area;

In other words, radius_ptr holds the address of a variable that represents the radius, and
area_ptr holds the address of a variable that represents the area. Given the radius_ptr and
area_ptr, we want to be able to extract the value of radius and area. The following keywords can
be executed interactively to accomplish this:

char* int* long* float*

Note that there cannot be any spaces before the * in each keyword, and there must be at least one
space after the * and before any subsequent number or variable name.

For example, to print the radius you can type:
int* radius_ptr U.

The int* keyword fetches the 16-bit address from radius_ptr and from that location fetches the
integer contents. U. then prints the answer to the terminal. Similarly, to print the area you can type:

float* area_ptr PrintFP

The float* keyword fetches the 16-bit address from area_ptr and from the resulting location
fetches the floating point contents. PrintFP then prints the result.

Using the Interactive Debugger 53

Signed versus Unsigned Numbers

Note that the type specifier used above does not specify signed versus unsigned numbers; rather, the
printing function determines whether the number is interpreted as signed or unsigned. For example,
type the following two command lines from the terminal and see how QED-Forth responds:

65535 U.

65535 .

In the first instance, QED-Forth prints 65535, while in the second instance, QED-Forth prints -1
(we’re assuming that you have not changed the number base to HEX). The same binary pattern (in
this case, all 16 bits of the number are set) can represent either 65535 or -1 depending on how the
number is interpreted and printed. Thus by choosing the printing function, you can control whether
a number is displayed as a signed or unsigned quantity.

Summary

In summary, to display the contents of a simple static variable, type a command of the form:

type variable_name print_function_name

where type is one of the following keywords:

char int long float

To display the contents of a static variable that is pointed to by a pointer, type a command of the
form:

type pointer_name print_function_name

where type is one of the following keywords:

char* int* long* float*

Use Type Keywords To Interactively Call C Functions

The same family of familiar C type-declaration keywords that we used to fetch the contents of vari-
ables is also used to facilitate interactive calling of C functions. Recall that these keywords are:

char int long float
char* int* long* float*

We have seen that these keywords are used in two different contexts while debugging. In the prior
chapter we used them to declare the type of an input parameter while interactively calling a function.
For example, we can interactively type from the terminal:

CalcArea(int 5)

where the int keyword is used with the same syntax as an ANSI-C function prototype to declare the
input arguments to the called function.

Second, we used the type keywords in this chapter to extract the value from a variable, as in the
interactive QED-Forth command

int radius U.

54 Chapter 4: The IDE: Writing, Compiling, Downloading and Debugging Programs

which prints the contents of the radius variable as an unsigned integer.

These two contexts for the use of the int keyword are related. For example, to calculate the area
corresponding to the current value of the radius variable, we can interactively execute:

CalcArea(int radius)

and QED-Forth prints the resulting floating point area in its summary of the return value. The int
keyword serves two complementary purposes here: it tells QED-Forth that the input parameter is a
16-bit integer, and it extracts the value of the radius variable so the variable is passed by value.

When interactively calling a function, all parameters that are passed by value should be preceded by
the appropriate type keyword. However, when passing the address of a variable or a structure, sim-
ply state the variable or structure name without any type specifiers or & (address-of) operators.

For example, the function prototype for the DimAndInitFPArray() function in GETSTART.C is:

Q void DimAndInitFPArray(float val,int rows,int cols,FORTH_ARRAY* array_ptr)

and the program includes the array declaration:

FORTH_ARRAY circle_parameters;

which declares circle_parameters as a FORTH_ARRAY structure in memory. As we shall see,
executing (typing) the name circle_parameters in QED-Forth leaves the address of the array
structure on the stack, so there is no need for additional type declarators or & operators. Thus to
interactively dimension the array to have 10 rows, 2 columns and a initialization value of 12.34, we
type from the terminal:

DimAndInitFPArray(float 12.34,int 10,int 2,circle_parameters)

To verify that this worked, you can execute:
PrintFPArray(circle_parameters)

which displays the contents of the newly initialized circle_parameters matrix.

Displaying the Values of FORTH_ARRAY Elements

The same type specifier keywords that let you examine static variables can also be used to examine
any specified element in a two-dimensional FORTH_ARRAY. The syntax is parallel to what we have
already used; the difference is that we now append the row and column indices in square brackets
after the array name to specify which element should be fetched.

For example, recall that circle_parameters is a FORTH_ARRAY that is dimensioned to hold 10
rows and 2 columns of floating point data. To print the contents of the first element in the array at
[row=0, col=0], we type:

float circle_parameters[0, 0] PrintFP

and QED-Forth prints the result. While this array notation is not exactly like the standard C syntax,
it is straightforward. To print the element whose row index is 5 and whose column index is 1, type:

float circle_parameters[5, 1] PrintFP

Using the Interactive Debugger 55

As you might expect, there must not be a space before the [character, and there must be at least
one space after the [character. This is because

circle_parameters[

is defined as a space-delimited QED-Forth function in the GETSTART.DLF file, as explained later in
this chapter.

All of the keywords that we learned about above can be used to fetch the contents of appropriately
dimensioned arrays. Arrays that are dimensioned to hold character, integer, long, or float data are
accessed using the char, int, long and float keywords, respectively, in front of the array name.
If for some reason you use a FORTH_ARRAY to hold 16-bit pointers , the char*, int*, long* and
float* keywords can be used in a manner exactly analogous to the description in the earlier section
of this chapter.

Assigning Values to Static Variables and FORTH_ARRAY Elements

You can interactively change the contents of any static variable or FORTH_ARRAY element using
the following assignment keywords:

=char =int =long =float

Each of these keywords expects to be preceded by the address of a variable or FORTH_ARRAY ele-
ment, and expects to be followed by a valid number, variable name, or FORTH_ARRAY element
specifier. As expected, the value of the right hand side is assigned to the variable or array element
on the left hand side of the assignment expression.

For example, to change the current value of radius to 22, simply type:
radius =int 22

This syntax was designed to be similar to a C statement that assigns the value 22 to the radius vari-
able. As you might guess, =int is a single keyword defined in QED-Forth, so there cannot be any
spaces between = and int. Similarly, the other tokens in the expression must be separated by
spaces; thus there is at least one space after radius and at least one space before 22.

To set the current value of the floating point area variable to 1520. type:
area =float 1520.

To assign the current value of the area variable to element [0, 1] in the FORTH_ARRAY
circle_parameters, you can execute:

circle_parameters[0,1] =float area

To check that these operations actually worked, we can execute the following commands to examine
the contents of the affected variables and array elements:

int radius U.

float area PrintFP

float circle_parameters[0,1] PrintFP

56 Chapter 4: The IDE: Writing, Compiling, Downloading and Debugging Programs

Under the Hood of the QED-Forth Interactive Debugger

This section is for the curious among you; you need not read or understand this section to use the
QED-Forth interactive debugger. However, it will give you additional insight into the debugging
environment.

Variable Declarations

In the example above, radius is defined in the GETSTART.DLF download file as a QED-Forth con-
stant whose value is the address of the radius variable. To see for yourself, use you editor to open
the GETSTART.DLF file. Select “Open” from the editor’s “file” menu, set the “List Files of Type”
option to either “Text Files” or “All Files”, and double click on GETSTART.DLF in the
\MOSAIC\DEMOS_AND_DRIVERS\MISC\C_EXAMPLES directory. The top portion of the file is the
hexadecimal dump of the compiled C code in the Motorola S2 record format. Near the bottom of
the file you’ll see some CONSTANT declarations. Among them is the declaration:

008E03 CONSTANT radius

which defines radius as a QED-Forth constant that places the hexadecimal value 8E03 on the stack.
You can verify this by clicking on the Terminal window and typing:

HEX radius U.

DECIMAL

from the terminal. This command sequence instructs QED-Forth to print the hexadecimal address of
the radius variable, and then return to decimal base. Note that if you want to pass the address of the
radius variable as a parameter to a function (also known as passing a pointer or passing by refer-
ence), you leave out the int keyword before radius in the parameter list.

The keyword int is actually a QED-Forth function that examines the next token in the input stream;
if it is already a number such as 5 or 3.2, int simply converts it to the nearest integer. If the next
token is a variable address (such as radius), int extracts the 16-bit contents stored at the address.
To see this behavior for yourself, try the following commands at your terminal:

int 5 U.

int 5.45 U.

int radius U.

These three statements all yield identical results if the value of radius is still 5.

Function Declarations

Returning to the GETSTART.DLF file that you opened in the editor, scroll to the area just above the
list of CONSTANT definitions and you will see a set of lines starting with the : (colon) character. In
Forth, the : character marks the start of a new definition (function or subroutine), and the ;
(semicolon) marks the end of the definition. These are the function definitions that tell QED-Forth
the names and execution addresses of each function in GETSTART.C that was preceded by the _Q
declarator. Among these functions you will find some familiar ones including:

SetRadiusAndArea(
CalcArea(
DimAndInitFPArray(

Using the Interactive Debugger 57

PrintFPArray(

The body of each of these Forth definitions defines the compilation address and invokes the routine
CALL.CFN (meaning call-C-function). CALL.CFN accepts an optional list of comma-delimited pa-
rameters terminated by a closing) and then sets up the stack frame and calls the function.

So when you type the interactive command
CalcArea(int radius)

with a terminal enter key, here’s what happens:

1. When QED-Forth accepts the carriage return, it starts interpreting the command line that has
been entered. It looks for the first space-delimited token, and it finds the token:

CalcArea(

2. It looks in its dictionary, and sure enough, it finds that this token has been defined; the defini-
tion was compiled when the GETSTART.DLF download file was sent to the Handheld.

3. When QED-Forth executes the CalcArea(token, it executes the CALL.CFN routine which
starts looking for a terminating) character, and processes any tokens that are present.

4. The next space-delimited token found is int, which looks for the next token (in this case,
radius). Because radius is not a number, int assumes that it is a variable and extracts the
16-bit contents from the address that is left on the Forth data stack by radius. The contents
are left on the Forth data stack.

5. The terminating) is found, so the CALL.CFN routine pushes the items on the Forth data stack
onto the C stack in the proper order to make a legal C stack frame, and then executes the
CalcArea() function as defined in the C program at the specified execution address.

6. When the CalcArea() function returns, QED-Forth traps its return value from the 68HC11’s
registers and prints the value using integer and floating point formats.

FORTH_ARRAY Declarations

Near the bottom of the GETSTART.DLF file you can find the definition of circle_parameters[
that facilitates examining and modifying any element of this array. The QED-Forth definition is:

: circle_parameters[
 circle_parameters DO[]
;

As described above, the : character marks the start of a new definition, and the ; marks the end of
the definition. The body of the definition is simple: the constant circle_parameters leaves the
base address of the FORTH_ARRAY structure on the stack, and DO[] does the rest of the work. DO[] is
defined in the QED-Forth kernel; it searches for a row index followed by a comma, and a column
index followed by a terminating] character. Then it passes the specified row, column, and array
parameter field address to the Forth function named [] (brackets) which places the 32-bit extended
address of the array element on the stack. This extended address can be used as the argument to the
familiar keywords that we have discussed such as char, int, long, float, =char, =int, =long,
=float, etc. Thus all of the following are legal debugging commands:

58 Chapter 4: The IDE: Writing, Compiling, Downloading and Debugging Programs

float circle_parameters[3,0] PrintFP

circle_parameters[2,1] =float area

circle_parameters[5,0] =float 345.

Some of you may have noticed that CalculationTask[is also declared to QED-Forth as a potential
FORTH_ARRAY in the GETSTART.DLF download file; yet we know that CalculationTask is a
task identifier, not a FORTH_ARRAY. The reason for this is that Make Tool always declares the last
variable allocated in the common RAM as a potential FORTH_ARRAY; it does this because there it
can’t determine the allocated size of the last variable. The extra definition of CalculationTask[
does no harm (as long as we don’t try to use it improperly).

Summary

The Make Tool calls the QCC.EXE executable program to create the QED-Forth debugging declara-
tions that appear at the bottom of the .DLF download file. This program has to decide whether each
compiler symbol in the .OUT file is a callable function, a variable, or a FORTH_ARRAY. The Make
Tool identifies callable functions by detecting the _pascal? tag that the compiler places there in
response to the _Q specifier, and in response prints the functionname(definition into the .DLF
file. The Make Tool identifies variables by detecting whether the corresponding address lies in the
common RAM area, and in response prints a QED-Forth CONSTANT declaration into the .DLF file.
Finally, it tentatively identifies FORTH_ARRAYs by checking the size of each variable; if there are
exactly 18 bytes allocated to one item in the common RAM, it decides that the associated name
should also be declared as a FORTH_ARRAY by printing the name[definition in the .DLF download
file. To be safe, the Make Tool always declares the last variable as a FORTH_ARRAY because it
cannot be sure of its allocated size.

Other Useful QED-Forth Functions

QED-Forth is a complete language that includes over a thousand pre-defined functions, all of which
reside in ROM on the Handheld. Many of these functions are declared in the header files in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory, and so are callable from C. The names and de-
scriptions of these functions are detailed in the Control C Glossary in the documentation package.
But there are also additional routines described there that are useful while debugging; these allow
you to:

◙ Modify the contents of EEPROM on the 68HC11 processor.

◙ Dump the contents of a specified region of memory in hex and ascii format using the DUMP
command.

◙ Specify a new baud rate for the serial port to speed downloads using the BAUD1.AT.STARTUP
command.

◙ Configure the Handheld to execute a specified program each time a reset or restart occurs
using the AUTOSTART or PRIORITY.AUTOSTART command.

◙ Dump out a replica of the board’s program memory space in Intel Hex or Motorola S2 record
format to archive your production code.

The Handheld Kernel vs. Prior Kernels 59

In sum, the versatile QED-Forth language enhances the power of Control C by providing many
operating system functions as well as an interactive debugging environment that speeds program
development and testing.

The Handheld Kernel vs. Prior Kernels
The Handheld, QCard and QScreen products use a QED-Forth operating system kernel denoted as
V4.4x, where the ‘x’ may take on any numeric value. There are several minor differences between
V4.4x and the V4.0x kernel used on the QED Board, Panel-Touch Controller, and QVGA Controller
products. Briefly, five functions have been added to the V4.4x kernel, and 19 device functions have
been removed. The removed functions are device drivers associated with hardware that is not im-
plemented on the Handheld/QCard/QScreen products. In addition, the V4.4x kernel boots up at a
default serial baud rate of 19,200 baud, compared to 9600 baud on prior kernels.

Table 4-2 lists the new functions, and Table 4-3 lists the removed functions. Descriptions of the
new functions are provided in the glossary below and in the function reference document that ac-
companies the Handheld, QCard and QScreen products.

Table 4-2 Functions added to V4.4x kernel

C Name: Forth Name:

Buffer_To_SPI() BUFFER>SPI

Bytes_To_Display() BYTES>DISPLAY

Calc_Checksum() CALC.CHECKSUM

Clear_Boot_Vector() CLEAR.BOOT.VECTOR

Set_Boot_Vector() SET.BOOT.VECTOR

C programmers must include the files named v4_4update.c and V4_4update.h to gain access to the
five new functions. These files are located in the

\Mosaic\Fabius\Include\Mosaic\v4_4Update
directory in the software distribution CD. Simply #include both the v4_4update.h and v4_4update.c
files in one of your source files, and also #include v4_4update.h in any other source files that use
these new kernel routines.

Table 4-3 Summary of functions deleted from V4.4x.

C Name: Forth Name:

InitPIA() INIT.PIA

PIAStore() PIA.C!

PIAFetch() PIA.C@

PIAChangeBits() PIA.CHANGE.BITS

PIAClearBits() PIA.CLEAR.BITS

PIASetBits() PIA.SET.BITS

PIAToggleBits() PIA.TOGGLE.BITS

60 Chapter 4: The IDE: Writing, Compiling, Downloading and Debugging Programs

C Name: Forth Name:
ClearHighCurrent() CLEAR.HIGH.CURRENT

SetHighCurrent() SET.HIGH.CURRENT

PPA_ADDRESS PPA

PPB_ADDRESS PPB

PPC_ADDRESS PPC

FastSetDAC() (>DAC)

FastAD12Multiple() (A/D12.MULTIPLE)

FastAD12Sample() (A/D12.SAMPLE)

SetDAC() >DAC

AD12Multiple() A/D12.MULTIPLE

AD12Sample() A/D12.SAMPLE

InitAD12andDAC() INIT.A/D12&DAC

Summary of Modified Memory Map Functions

The Kernel’s internal memory map functions have been modified to be aware of the Handheld,
QCard and QScreen’s memory. In the “standard map”, the Handheld has flash at pages 4-7 that
swaps with RAM on parallel pages 1-3, plus flash at hex pages 10-17 that swaps with RAM on
parallel hex pages 18-1F. In the “download map”, flash and RAM are swapped: flash is present on
pages 1-3 and 18-1F, and RAM is present on pages 4-6 and 10-17. The C development environment
transparently handles the loading of program code into flash, so C programmers typically do not
have to be concerned with these issues.

61

Chapter 5

Making Effective Use of Memory

The Handheld contains plenty of memory for your application. The standard Handheld pro-
vides 512K Flash for your program, and 128K of battery-backed RAM for variable storage.
An enhanced memory option is available to provide up to 1 MB Flash and 512K RAM.
EEPROM is also available for long-term nonvolatile data storage. This chapter:

Provides the memory map – that is, the addressable locations for each type of memory;

Shows you how to address memory using the C programming language; and,

Shows you how to efficiently use memory by using arrays.

The Handheld’s Memory Map
In its standard configuration the Mosaic Handheld hosts 512K Flash and 128K RAM.

Expanded Memory Option

The total RAM on the standard configuration, or “128K”, Handheld is actually 129K, comprising a
128K SRAM memory chip and 1K of onboard RAM on the 68HC11 processor. An expanded
memory option is available that provides a 512K SRAM in place of the 128K SRAM. The default
memory option’s 128K memory chip may be battery backed using a Li battery if the real time clock
option is also chosen. If the expanded memory option is chosen, the memory can be battery backed
by the NiMH battery pack.

Pages Expand the Processor’s Addressable Memory

The Handheld uses a paged memory system to expand the processor’s 64Kbyte address space to 2
Megabytes of addressable memory. The top half (32 Kbytes) of the address space (at addresses
0x8000 to 0xFFFF) addresses a common memory page that is always visible (i.e., accessible using
standard 16-bit addresses) to any code running, no matter where it resides in the memory space. The
bottom half (32 Kbytes) of the address space (at addresses 0x0000 to 0x7FFF) is duplicated many
times and addressed through the processor’s 16-bit address bus augmented by a 6-bit page address.
Together the address and page are held in a 32-bit data type, an xaddress.

A subroutine on any page can fetch or store to any address on the same page or in the common
memory, or transfer control to another routine there. It “sees” a 64K address space comprising its
own page at addresses from 0x0000 to 0x7FFF and the common memory at addresses 0x8000 to

62 Chapter 5: Making Effective Use of Memory

0xFFFF. To address memory on another page, or to call a routine on another page, special memory
access routines are used to change the page. The heap memory manager and array routines allow
you to think of the paged memory as contiguous memory for data storage. The operating system
automatically handles function calls and returns among the pages. There is very little speed penalty
associated with changing pages.

Figure 5-1 below illustrates the memory map of the Handheld. Briefly, the upper 32K of the
68HC11's address space, the common memory, is always accessible without a page change. In the
lower 32K of the processor’s address space, the operating system creates 64 pages of memory se-
lected by an 6 bit on-chip port, with each page containing 32 Kbytes. The 32K of common memory
at addresses 0x8000 to 0xFFFF (the upper half of the processor’s memory space) is always accessi-
ble without a page change. Up to 64 pages (32K per page) occupy the paged memory at addresses
0x0000 to 0x7FFF. The first 10 pages of the Handheld’s 20 pages of installed memory are shown in
the figure. The expanded memory option provides a total of 48 pages of memory.

32K Common Memory Page
Addresses: 8000 – FFFF

32K Extended Memory Pages, Addresses: 0000 – 7FFF

Page: 00 01 02 03 04 05 06 07 0C

K
er

ne
l

Fl
as

h

0000 0000 0000 0000 0000 0000 0000 0000 0000

7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF 7FFF

K
er

ne
l

Fl
as

h

K
er

ne
l

Fl
as

h

A
pp

lic
at

io
n

R
A

M

A
pp

lic
at

io
n

R
A

M

A
pp

lic
at

io
n

Fl
as

h

A
pp

lic
at

io
n

R
A

M

A
pp

lic
at

io
n

Fl
as

h

A
pp

lic
at

io
n

Fl
as

h

7FFF

C100–FFFF Kernel Flash
C000–C0FF Memory mapped Wildcard I/O
B400–BFFF Kernel Flash
B3F0–B3FF Real Time Clock Buffer
B3E0–B3EF Kernel RAM
B3D0–B3DF Kernel C/Forth ISR vectors
B200–B3CF Application RAM, Flash buffers
B000–B1FF Application ONCHIP_RAM
AEC0–AFFF Application EEPROM
AE00–AEBF Kernel EEPROM
8E00–ADFF 8K Application RAM
8500–8DFF Kernel buffers and stacks
8400–84FF Kernel Forth user area
8100–83FF Kernel buffers and stacks
8060–80FF Onboard hardware
8000–805F Processor Control Registers

Figure 5-1 The paged memory space of the Handheld.

The Handheld’s Memory Map 63

Table 5-1 Partition of Flash and RAM among Kernel and Application Functions

Function Size Memory
Page

Memory
Address Physical Location

Kernel Flash (64K)
Kernel 32K 00 0000 – 7FFF Handheld Flash Socket 1
Kernel 1K 0E Various Handheld Flash Socket 1
Kernel 19K common B400 – FFFF Handheld Flash Socket 1
Kernel 12K 0F 0000 – 2FFF Handheld Flash Socket 1
GUI Toolkit 2K 7 0000 – 1F4A Handheld Flash Socket 1

Kernel RAM (4K)
Kernel 3.5K common 8000 – 8DFF Handheld RAM
Kernel 0.5K 0E Various Handheld RAM
RTC 48 bytes B3D0 – B3FF 68HC11
GUI Toolkit 75 bytes 8E00 – 8E4B Handheld RAM
GUI Toolkit Heap
Programmer specifies location in RAM
dedicated to the GUI Heap

variable variable variable Handheld RAM

Flash write-buffer, available for an
application at run-time

464 bytes common B200 – B3CF 68HC11

Kernel EEPROM (192 bytes)
Kernel 192 bytes common AE00 – AEBF 68HC11

Application Flash (448K or 960K)
Application code 96K 04 – 06

(01– 03)
0000 – 7FFF Handheld Flash Socket 1

Kernel Extensions 96K 07,0C,0D 0000 – 7FFF Handheld Flash Socket 1
Application code and data 256K 10 – 17

(18 – 1F)
0000 – 7FFF Handheld Flash Socket 1

Application code and data available with
the extended memory option

512K 20 – 2F 0000 – 7FFF Handheld Flash Socket 2

Application RAM (125K to 509K)

C Variables 512 bytes common B000 – B1FF 68HC11
C Variables, available at runtime but used
during download as a Flash write buffer

464 bytes common B200 – B3CF 68HC11

C Variables and task area, some used by
GUI Toolkit, optionally battery-backed

8K common 8E00 – ADFF Handheld RAM

Arrays and heap memory, programmer
specifies location of heap used by GUI
Toolkit, optionally battery-backed

20K 0F 3000 – 7FFF Handheld RAM

Arrays and heap memory,
optionally battery-backed

96K 01 – 03
(04 – 06)

0000 – 7FFF Handheld RAM

Arrays and heap memory,
available with extended memory option

128K 08-0B 0000 – 7FFF Handheld RAM

Arrays and heap memory,
available with extended memory option

256K 18 – 1F
(10 – 17)

0000 – 7FFF Handheld RAM

Application EEPROM
EEPROM Variables 320 bytes Common AEC0 – AFFF 68HC11

Notes:
1. Pages not enclosed in parentheses indicate the standard, or run-time memory map; pages in parentheses indicate

the addressing of the memory during program download, i.e., the download memory map.
2. Only the 128K RAM on the Handheld may be battery-backed. The Handheld that comes with the Starter Kit has

512K of non-battery backed RAM.
3. Application code is free to reside on pages 04-06 and 10-17.
4. Addresses from 8000 through FFFF comprise common memory that is visible to code on all pages.

64 Chapter 5: Making Effective Use of Memory

Table 5-1 on page 63 shows the distribution of Flash and RAM among kernel services and your
application program, providing addresses and page numbers for each memory block. The Hand-
held’s onboard operating system uses some of the Flash, RAM and EEPROM, but most remains
available for your application program.

The Flash, RAM and EEPROM are distributed among the common memory, which is limited to
32K, and the paged memory, which is limited only by available hardware. The following sections
discuss the important addresses and pages in these two memory areas.

Kernel vs Application Memory Space

Of the Handheld’s 512K of Flash memory, 448K is available for your application program and data
storage. The remainder is used by the QED Forth Kernel for its multitasking operating system,
debugger, interactive Forth compiler, assembler, and hundreds of pre-coded device driver functions.
Of the 129K of RAM, 125K is available for application program use. In the “standard map”, the
pages are distributed among Kernel and Application Flash and RAM as: Kernel Flash (page 00 and
parts of the common page, 0E and 0F); Kernel RAM (parts of the common page, 0E and 0F); Appli-
cation Flash (pages 04 to 07, 0C to 0D, and 10 to 17); and Application RAM (pages 01 to 03 (and
pages 08 to 0B and 18 to 1F with the expanded memory option).

Most of the Flash memory is available as two blocks of contiguously addressable memory on pages
04-06 and 10-17. RAM for your application program is also available in the paged memory in one
contiguously addressable chunk, filling pages 01-03. There is also 20K available RAM on page 0F,
and approximately 9K in the common memory. This 9K is particularly important because it is used
to hold C variables and task space for each separate task your application program sets up.

The Standard and the Download Memory Maps

The Handheld has an alternate memory map called the “download map” that is used to facilitate the
loading of code. To download code into the board the RAM and Flash addresses are swapped.
Code is then downloaded into RAM that is addressed where Flash usually resides. Then the code is
copied into the Flash, and the RAM and Flash addresses swapped back to the standard map.

In the download map, hex pages 4-7 and 10-17 are RAM, while hex pages 1-3 and 18-1F are Flash.
In other words, the blocks of RAM at hex pages 1-3 and 18-1F in the standard map become Flash in
the download map, and the blocks of Flash at hex pages 4-6 and 10-17 in the standard map become
RAM in the download map.

The Handheld’s Memory Map 65

C programmers never have to worry about the download map; the C development envi-
ronment transparently handles the downloading process and automatically loads the code
into flash memory for you.
The functions ALL.TO.FLASH and ENABLE.DOWNLOAD make it easy for Forth pro-
grammers to manage the download process for compiled applications up to 96 Kbytes
long.

Common Memory

The common memory is also partitioned between the operating system and application program.
Table 5-2 on page 66 shows the common memory addresses used by the operating system, and in
boldfaced type those addresses available to the application program.

Referring to Table 5-2 on page 66, there are four unencumbered common memory areas your appli-
cation can use:

0x8E00 – 0xADFF: These 8 Kbytes are available for your application. The Control-C com-
piler uses this area for static variables, arrays, task areas, etc.

0xAEC0 – 0xAFFF: The processor’s on-chip EEPROM (Electrically Erasable Programmable
Read Only Memory) is located at 0xAE00 – 0xAFFF. Locations 0xAE00 – 0xAEBF are re-
served by the operating system for use by the SAVE and RESTORE utilities, and for interrupt
vectors. EEPROM at 0xAEC0 – 0xAFFF is available to your programs.

0xB000 – 0xB1FF: The 68HC11’s 1 Kbyte of on-chip RAM is located at 0xB000 – 0xB3FF.

◙ Locations 0xB000 – 0xB1FF are totally unencumbered and always available for your use
(this area is named ONCHIP_RAM in the C linker command file; C programmers can lo-
cate data in this area using a #pragma directive).

◙ Locations 0xB200 – 0xB3CF are reserved for the flash programming routines.

◙ Locations 0xB3D0-0xB3DF are reserved for support of Forth interrupt service routines
called from C-compiled programs; and,

◙ Locations 0xB3F0 – 0xB3FF are reserved for the real-time clock buffers.

0xB200 – 0xB3CF: These 464 bytes are also available for run-time variable storage, but are
used by the kernel during download as a Flash buffer, or anytime that TO.FLASH is used,
even at run time.

The remainder of the common memory area is used by either the processor or the kernel. The proc-
essor’s registers are located at 0x8000 – 0x805F, onboard hardware occupies addresses through
0x80FF, and the operating system reserves memory through location 0x8DFF for user areas, buffers,
and stacks. For example, the default user area that runs the interactive Forth interpreter occupies
0x8400 – 0x84FF. Locations 0xB3D0-0xB3EF are reserved for support of Forth interrupt service
routines called from C-compiled programs, and locations 0xB3F0 – 0xB3FF are reserved for the
real-time clock buffers. Locations 0xB400 – 0xBFFF and 0xC100 – 0xFFFF contain kernel code.
A notch at 0xC000 – 0xC0FF is not decoded by any onboard devices, but is used for addressing
WildCards. The Handheld does not bring out the processor’s address/data bus for do-it-yourself

66 Chapter 5: Making Effective Use of Memory

memory mapped peripherals; instead, a direct interface to WildCard modules at addresses 0xC000-
C0FF on pages 0-7 provides for versatile off-the-shelf I/O expansion.

Table 5-2 Partition of the Common Memory

Address Size
(bytes)

Type Function

C100 – FFFF 16128 Flash Kernel – code
C000 – C0FF 256 I/O Memory mapped I/O
B400 – BFFF 3072 Flash Kernel – code
B3F0 – B3FF 16 RAM Kernel – Real Time Clock Buffer
B3E0 – B3EF 16 RAM Kernel
B3D0 – B3DF 16 RAM Kernel – C/Forth ISR vectors
B200 – B3CF 464 RAM Application – C variables at runtime, Flash write buffer during

program download
B000 – B1FF 512 ONCHIP_RAM Application – C variables
AEC0 – AFFF 320 EEPROM Application – nonvolatile storage
AE00 – AEBF 192 EEPROM Kernel
8E00 – ADFF 8192 RAM Application – C Variables and multitasking task areas, optionally

battery-backed
8500 – 8DFF 2304 RAM Kernel – buffers and stacks
8400 – 84FF 256 RAM Kernel – Forth user area
8060 – 83FF 928 RAM Kernel – buffers and stacks
8000 – 805F 96 RAM Kernel – processor Control Registers

Shaded and bold entries indicate memory available for application programs.

Locations 0xB400 – 0xBFFF and 0xC100 – 0xFFFF contain kernel code. A notch at 0xC000 –
0xC0FF is not decoded by any onboard devices; this location is used to communicate with the
Wildcards.

Paged Memory

Occupying this memory space are 512K or 1MB Flash and 129K or 513K RAM. Of the Handheld’s
maximum of 1M of Flash memory, all but 64K is available for your application program and data
storage. The 64K of flash is used by the QED Forth Kernel for its multitasking operating system,
debugger, interactive Forth compiler, assembler, and hundreds of pre-coded device driver functions.

Of the 513K of RAM, 509K is available for application program use. A smaller memory option of
128K RAM is available that allows the RAM to be battery backed.

Table 5-1 illustrates the partitioning of the onboard memory between the operating system (Kernel)
and your application functions. Most of the Flash memory is available as three blocks of contigu-
ously addressable memory on pages 4-6, 10-17, and 20-2F. RAM for your application program is
also available in three chunks, filling pages 1-3, 8-B, and 18-1F. There is also 20K available RAM
on page 0F, and approximately 9K in the common memory. This 9K is particularly important be-
cause it is used to hold C variables and task space for each separate task your application program
sets up.

Software Development Using Flash Memory 67

Addressing Memory in C

Although 6-bits are sufficient to address the 64 possible pages, the page is padded out to a more
standard 16-bit date type so that the full address, lower 16 bits plus 16-bit page, occupies 32 bits.
We’ll refer to this full address as an xaddress (32-bit extended addresses). Three macros are avail-
able in the \MOSAIC\FABIUS\INCLUDE\MOSAIC\types.h file to simplify the manipulation of
xaddresses and their constituent 16-bit addresses and pages. These C macros are:

TO_XADDR
XADDR_TO_ADDR
XADDR_TO_PAGE

Multi-page C programs rely on a “page change” routine in the common kernel memory to call func-
tions on other pages. Unlike the Forth compiler, the C compiler is not “page smart”, and does not
know at compile time whether a page change is needed. In fact, page changes are rarely needed,
because most functions call other functions that are located on the same page or in common mem-
ory. Calls to functions on the same page or to common memory take only 11.5 or 13.75 microsec-
onds, respectively, while function calls to other pages require just under 49 microseconds. Because
page changes are rare, the average execution speed of multi-page C applications is not significantly
impacted by the need for page changes.

Addressing Flash

Flash memory is nonvolatile, like PROM. Thus it retains its contents even when power is removed,
and provides an excellent location for storing program code. Simple write cycles to the device do
not modify the memory contents, so the program code is fairly safe even if the processor “gets lost”.
But flash memory is also re-programmable, and the flash programming functions are present right in
the Handheld's onboard software library. These functions invoke a special memory access sequence
to program the flash memory contents “on the fly”. This allows you to modify your operating soft-
ware (for example, to perform system upgrades). You can also store data in the flash device. You
can program from 1 byte up to 65,535 bytes with a single function call using the pre-coded flash
programming routine. Programming time is approximately 60 milliseconds per kilobyte.

Six special functions facilitate access to Flash memory. Their function names are:

DownloadMap() PageToFlash() PageToRam()
StandardMap() ToFlash() WhichMap()

The FLASH programming functions use a buffer in the 68HC11's on-chip RAM starting at hex
addresses B200-B3CF. The remaining on-chip RAM at B000 to B1FF is available to you. Also,
because FLASH programming is generally not done at run-time, you can still use the Flash buffer
for run-time variables.

Software Development Using Flash Memory
Because code cannot be downloaded or compiled directly into flash memory, the flash memory map
implements page swapping to provide a mechanism for getting the compiled code into the flash
memory. There are two page-swap modes: one is called the Standard Map and the other is called
the Download Map. As the names suggest, the Standard Map is used during run-time, and the

68 Chapter 5: Making Effective Use of Memory

Download Map is used during downloading C-compiler S-records from the PC to the Handheld.
The two maps are very similar; the effect of changing from the Standard to the Download map is to
swap the locations of pages between the Flash and the RAM.

Table 5-4 Addressing the Flash and RAM in
Standard and Download Memory Maps

Flash Pages RAM Pages

Standard Address Map 04 – 06 10 – 17 01 – 03 18 – 1F

Download Address Map 01 – 03 18 – 1F 04 – 06 10 – 17

In normal operation the Flash memory is addressed on pages 04-06 and 10-17, and the RAM is
addressed on pages 01-03 and 18-1F. During download their addresses are swapped, so that the
Flash is addressed at pages 01-03 and 18-1F and the RAM at pages 04-06 and 10-17.

To see how it works let’s consider a hypothetical download. Suppose you have compiled code
intended to load into the Flash and run from it at addresses on page 4. Automated commands con-
tained in the download file establish the download map, load the code into RAM, transfer the code
to flash, and re-establish the standard map. In this case, the download file would:

1. Swap the addresses of the RAM and Flash (by executing the command DOWNLOAD.MAP) so that
the RAM is now addressed on page 04;

2. Download the code to its proper addresses on page 04;

3. Copy the code (using the command PAGE.TO.FLASH) from page 04 into the Flash addressed on
page 01; then,

4. Swap the RAM and Flash addresses back (by executing the command STANDAD.MAP) so that
the Flash is now addressed on page 04, and the RAM on page 01 is available for run-time use
by your program.

You can now execute your programs on page 04.

The Control-C download file does all this for you so you don’t need to worry about the details. But
if you’re interested, just peruse the download file in the editor where you’ll see the commands it
uses to manage memory during the download process.

You can now run the program by typing
MAIN

or any function name that was preceded with the _Q designator. (By the way, the _Q does not com-
promise performance in any way; it simply makes it possible for the PC-resident batch routines to
send out the execution addresses of the designated functions to the Handheld to simplify debug-
ging).

Locating Nonvolatile Data in EEPROM 69

Locating Nonvolatile Data in EEPROM
The Handheld’s built-in EEPROM provides an ideal place to store calibration constants or other
data that must be changed from time to time, but that must be retained even when power is removed.
The EEPROM (Electrically Erasable Programmable Read-Only Memory) can be modified up to
10,000 times before it loses its ability to retain data. The ANALOGIO.C file presents an example of
how to locate a static “variable” in EEPROM.

You can read from EEPROM locations just as you would from any other memory location. But
writing to them is done using special kernel functions. These functions take approximately 20 milli-
seconds per byte to reprogram the EEPROM cell. The EEPROM variable should be declared as an
un-initialized static variable; these are located by the linker in the “data” section, which normally
points to system RAM where normal variables are stored. By following the syntax presented here,
you can relocate the data section to point to EEPROM while defining the EEPROM variables, and
then restore the data section to its standard RAM location. To define an EEPROM variable, use the
following code:

#pragma option data=.eeprom // put the following variables in eeprom
static uchar numsamples;
static int nonvolatile_int;
static float calibration_value;
#pragma option data=.data // restore the data area to RAM

The #pragma statements are pre-processor directives that are interpreted by the linker. In the code
fragment above, we located three nonvolatile variables in EEPROM; note that we did NOT include
initializers in the declaration statements. Initializers don’t make any sense for EEPROM variables,
because special functions must be called to store values into EEPROM, so initialization can’t be
accomplished by placing initialization data in the download file. These EEPROM variables must be
initialized programmatically at run-time.

To store data into the EEPROM variables, use the following functions which are declared in the
XMEM.H file in the \FABIUS\INCLUDE\MOSAIC directory:

void StoreEEChar(char value, char* addr)
void StoreEEInt(int value, int* addr)
void StoreEELong(long value, long* addr)
void StoreEEFloat(float value, float* addr)

To learn how to interactively modify the contents of EEPROM variables, read the glossary entries
for these functions in the Control-C Glossary.

These EEPROM storage functions are easy to use. For example, to store the value 123 into the
character variable numsamples, you would place the following statement in your program:

StoreEEChar(123, &numsamples);

To avoid wearing out the EEPROM by executing unneeded write cycles, these functions check
whether each EEPROM byte already holds its specified contents. If so, the write is not performed.
Thus there is no penalty for redundant execution of commands that initialize particular locations in
EEPROM.

70 Chapter 5: Making Effective Use of Memory

While EEPROM variables must initialized programmatically at run-time the first time they are used,
they don’t need to be re-initialized each time the processor starts up because the nonvolatile
EEPROM retains the data. Even so, initializations can be performed every time the processor starts
up, with no adverse effects on the life span of the EEPROM. For example, initialization code in an
autostart routine could execute ATTACH functions to ensure that all needed interrupt vectors are
properly initialized each time the processor restarts. If the EEPROM cells have been corrupted for
some reason, the ATTACH command installs the correct contents, but if the specified interrupt
vector information is already in the EEPROM, the memory cells are not needlessly rewritten.

Interrupts are disabled during writes to EEPROM
All of the EEPROM storage routines globally disable interrupts while each EEPROM
byte is being programmed, and it takes 20 milliseconds to program each byte. Thus you
should avoid storing values in EEPROM while time-critical events are being serviced by
interrupts.
For experts and the curious: Interrupts are disabled during stores to EEPROM because
QED-Forth vectors all interrupts via the EEPROM, and the 68HC11 hardware does not
allow any EEPROM cells to be read while a single EEPROM cell is being written to.
Thus if an interrupt occurs while one of the EEPROM storage functions is writing to
EEPROM, the interrupt will not be able to read the instruction code in the interrupt vec-
tor. Disabling interrupts prevents this error, but the interrupt service is delayed until the
EEPROM write is finished.

Write-Protecting EEPROM

It is possible to write-protect locations within the EEPROM to ensure the integrity of calibration
constants or other vital information. This is done using the EEPROM block protect register named
BPROT (MC68HC11F1 Technical Data Manual mc68hc11f1.rev3.pdf, p.4-13). Four blocks of size
32, 64, 128, and 288 bytes may be individually protected by storing an appropriate configuration
value to BPROT. The contents of the BPROT register may be changed using the C function
InstallRegisterInits; please consult its glossary entry for details.

To make a turnkeyed application maximally “bullet-proof” and fail-safe, consider using the BPROT
register to protect the first three blocks in the EEPROM totaling 224 bytes. This protects the on-
board kernel’s configuration region (the first 32 bytes in EEPROM) plus the interrupt vectors (the
next 160 bytes in EEPROM) plus an additional 32 bytes available the programmer. The remaining
288 bytes of EEPROM then remain available for modification by the application program.

Using C Arrays and Forth (Kernel) Arrays

Storing Data Acquisition Results in C Arrays and Forth Arrays

Programs written in Control-C use space in common memory to store variables. You may store
simple variables or arrays of variables there using standard C syntax. However, common memory is
a limited to approximately 9K. It can get used quickly in multitasking systems because each task
requires a task area of about 1K. Consequently, the programmer may require access to additional

Using C Arrays and Forth (Kernel) Arrays 71

RAM. Access is provided through the use of Kernel Arrays, also called Forth Arrays. Using Forth
Arrays you may dynamically dimension arrays of virtually any size in the extended address space –
and their memory allocation is automatically handled by the kernel’s heap memory manager.

The code presented in the sample program ANALOGIO.C uses a C array and a FORTH_ARRAY to
store the results of multiple A/D conversions. This section uses that code as an example to discuss
some interesting features of both C Arrays and FORTH_ARRAYs.

Declaring a C Array

The use of C arrays is discussed in detail in all standard C texts. In this program, the one-
dimensional 16-element character array named results_8 is declared and allocated in RAM using
the statement:

uchar results_8[DEFAULT_NUMSAMPLES];

where DEFAULT_NUMSAMPLES is a constant equal to 16. The arrays are easy to use. For example,
the following C statement assigns the last element in the array to a static variable named
my_variable:

my_variable = results_8[15];

To see another simple example that demonstrates how C arrays are accessed, look at the
InitAnalog() function in the ANALOGIO.C file. The results_8 array is zeroed by executing
the following statement:

for(i=0; i< DEFAULT_NUMSAMPLES; i++)
results_8[i] = 0; // zero the array

Note that this array is dimensioned and allocated by the compiler and linker. In contrast,
FORTH_ARRAYS are dimensioned and allocated dynamically by the run-time program itself.

Converting a 16 Bit Address to a 32 Bit xaddress

The AD8ToCArray() function that we just used provides an interesting example of type conversion.
The definition of the function is:

_Q void AD8ToCArray(int channel)
{ EXTENDED_ADDR buffer;
buffer.sixteen_bit.addr16 = results_8;
buffer.sixteen_bit.page16 = 0;
AD8Multiple(buffer.addr32,0,DEFAULT_NUMSAMPLES,channel);
}

The purpose of AD8ToCArray() is to properly call AD8Multiple() which is defined in the
ANALOG.H file. AD8Multiple() is optimized to use a FORTH_ARRAY buffer, and so expects a 32
bit buffer xaddress instead of a simple 16 bit buffer address. To convert the simple 16 bit address
returned by results_8 into a 32 bit extended address, we take advantage of the EXTENDED_ADDR
union defined in the TYPES.H file in the \FABIUS\INCLUDE\MOSAIC directory. The union is
defined as:

typedef union{ xaddr addr32;
struct{ uint page16;
char* addr16;

72 Chapter 5: Making Effective Use of Memory

} sixteen_bit;
} EXTENDED_ADDR;

To convert a 16 bit address into a 32 bit xaddress, we use the EXTENDED_ADDR typedef to declare an
instance of the union (named “buffer” in this example), store the 16 bit address into the
buffer.sixteen_bit.addr16 element, and store 0 (the default page) into the
buffer.sixteen_bit.page16 element. Then we reference the corresponding 32 bit xaddress
via the buffer.addr32 element of the union. While it is rare that you will have to convert from
16 bit to 32 bit address types, this example provides a template for how to do it.

A Review of FORTH ARRAYs

FORTH_ARRAYs have two key advantages. First, they are allocated in paged memory, so they allow
your program to access the large 1 Megabyte memory space of the Handheld. In contrast, C arrays
must reside in the available common RAM which is limited to approximately 9 kilobytes on the
Handheld. Second, they can be dynamically dimensioned, re-dimensioned and de-allocated (de-
leted) while your program is running; this boosts efficiency by maximizing the use of the available
memory.

To define a new Forth Array, simply use the FORTH_ARRAY typedef followed by a name of your
choice. For example, in the ANALOGIO.C file the following declaration appears:

FORTH_ARRAY results_12;

Before the FORTH_ARRAY can be accessed at runtime, it must be dimensioned. This is typically
accomplished by calling the DIM() macro defined in the ARRAY.H header file. For example, to
dimension the results_12 array to have 10 rows and 1 column of integer data, we would execute:

DIM(int, 10, 1, results_12);

In the ANALOGIO.C file, the pre-defined macro named DIM_AD12_BUFFER() invokes the DIM()
routine for us (its definition is in the ANALOG.H file in the \FABIUS\INCLUDE\MOSAIC directory).

After the FORTH_ARRAY is dimensioned, it can be accessed by a family of macros and functions that
are defined in the ARRAY.H header file and are described in the Control-C Glossary. These include
functions that fetch from, store to, and calculate the address of individual elements, swap and copy
entire arrays, fill an array with a specified character, and delete the array so that it no longer requires
memory in the heap. The PrintForthArray() and InitAnalog() functions in ANALOGIO.C
provide examples of how to call a few of these functions.

Printing the Contents of a FORTH ARRAY

The PrintForthArray() function presented in ANALOGIO.C is a more general version of the
PrintFPArray() function in GETSTART.C as discussed in an earlier chapter. The function is
defined as follows:

_Q void PrintForthArray(int float_flag, FORTH_ARRAY* array_ptr)
// works for FORTH_ARRAYS dimensioned using the standard DIM() macro.
// float_flag is true if array holds float numbers, false otherwise.
{ int r, c;
putchar(‘\n’);
for (r = 0; r < NUMROWS(array_ptr); r++) // for each row

Using C Arrays and Forth (Kernel) Arrays 73

{ for (c = 0; c < NUMCOLUMNS(array_ptr); c++) // for each column
if(float_flag)
printf(“%9.4g “,FARRAYFETCH(float,r,c,array_ptr));
else
printf(“%9ld “,ARRAYFETCH(long,r,c,array_ptr));
putchar(‘\n’); // newline after each row is printed
PauseOnKey(); // implement xon/xoff output flow control
}
}

After calling putchar() to output a newline character, we enter nested for() statements that print
the contents of each element. Because the compiler treats floating point numbers differently than
numbers stored in other formats, we use FARRAYFETCH() to access floating point arrays, and
ARRAYFETCH() to access char, int or long arrays. The PauseOnKey() function is called once
per row to suspend the Handheld’s printed output if the terminal program has sent the XOFF hand-
shake character; the printout resumes when the terminal sends the XON character. PauseOnKey()
also gives the user the ability to terminate the printout by typing a carriage return character from the
terminal.

This function can be tailored to meet the detailed needs of your application. You can change the
printf() formatting, or insert extra carriage returns to confine the printout to one screen width.

74 Chapter 5: Making Effective Use of Memory

77

Chapter 6

Real Time Programming

This chapter provides an introduction to real time programming. You’ll learn:

About the timeslice clock and how to use it;

All about interrupts, and how to use them to respond to events.

The Timeslicer and Task Switching
The Built-In Elapsed Time Clock

The Handheld’s multitasking executive maintains an elapsed time clock whenever the timeslicer is
active. Please consult the TIMEKEEP.C program in the \MOSAIC\DEMOS_AND_DRIVERS\MISC\C
EXAMPLES directory for examples of using the elapsed time clock.

Your program can start the timeslice clock by calling the function:

StartTimeslicer()

The timeslicer increments the long variable named TIMESLICE_COUNT each timeslice period. The
default timeslice period is 5 milliseconds (ms), and this can be modified by calling

ChangeTaskerPeriod()

as described in the Control-C Glossary. The function

InitElapsedTime()

sets TIMESLICE_COUNT equal to zero. The function

ReadElapsedSeconds()

returns a long result representing the number of elapsed seconds since InitElapsedTime() was
called.

To attain the full 5 millisecond resolution of the elapsed time counter, we can write a simple func-
tion that converts the TIMESLICE_COUNT into elapsed seconds as well as the number of millisec-
onds since the last integral second. For example, let’s examine some code from the TIMEKEEP.C
file in the \MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory:

#define DEFAULT_TIMESLICE_PERIOD 5 // {ms}; system default

78 Chapter 6: Real Time Programming

#define MS_PER_SECOND 1000
static long start_time; // saves starting count of TIMESLICE_COUNT
_Q void MarkTime(void)
{ start_time = TIMESLICE_COUNT;
}
_Q void PrintElapsedTime(void)
{ long elapsed_ms =
DEFAULT_TIMESLICE_PERIOD*(TIMESLICE_COUNT - start_time);
long seconds = elapsed_ms / MS_PER_SECOND;
int ms_after_second = elapsed_ms % MS_PER_SECOND;
printf(“\nTime since mark is: %ld seconds and %d ms.\n”,
seconds, ms_after_second);
}

The MarkTime() function simply stores the TIMESLICE_COUNT in the start_time variable. The
timeslicer is continually incrementing its counter, and when you later call PrintElapsedTime(),
start_time is subtracted from the latest TIMESLICE_COUNT and multiplied by the timeslice pe-
riod to calculate the elapsed number of milliseconds. This is converted into the elapsed seconds by
dividing by 1000, and the remainder is the number of milliseconds since the last integral elapsed
second.

To try it out, use the Mosaic IDE’s editor to open the TIMEKEEP.C file in the
\MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory, click on the Make Tool to com-
pile the program, and use the terminal to send TIMEKEEP.DLF to the Handheld. At your terminal,
type:

main

to start the timeslicer and initialize the program. Now at any time you can mark a starting time by
typing at the terminal:

MarkTime()

and you can print the elapsed seconds and ms since the last mark by typing:
PrintElapsedTime()

which will produce a response of the form:
Time since mark is: 3 seconds and 45 ms.

Using Interrupt Service Routines (ISRs)
The on-chip resources of the 68HC11 include an A/D converter, timer system, pulse accumulator,
watchdog timer, serial communications port, high speed serial peripheral interface, and general
purpose digital I/O. The 68HC11’s 21 interrupts can enhance the performance of these facilities.
Interrupts allow rapid response to time-critical events that often occur in measurement and control
applications. For example, you can use an interrupt to create a pulse-width modulated (PWM) out-
put signal.

Interrupt Recognition and Servicing

68HC11 interrupts fall into two main categories: nonmaskable and maskable.

Using Interrupt Service Routines (ISRs) 79

Maskable Interrupts

Maskable interrupts may be freely enabled and disabled by software. They may be generated as a
result of a variety of events, including signal level changes on a pin, completion of predetermined
time intervals, overflows of special counting registers, and communications events.

Recognition and servicing of maskable interrupts are controlled by a global interrupt enable bit (the
I bit in the condition code register) and a set of local interrupt mask bits in the hardware control
registers. If a local interrupt mask bit is not enabled, then the interrupt is “masked” and will not be
recognized. If the relevant local mask bit is enabled and the interrupt event occurs, the interrupt is
recognized and its interrupt flag bit is set to indicate that the interrupt is pending. It is serviced
when and if the global interrupt bit (the I bit) is enabled. An interrupt that is not in one of these
states is inactive; it may be disabled, or enabled and waiting for a triggering event.

When an interrupt is both recognized and serviced, the processor pushes the programming registers
onto the stack to save the machine state, and automatically globally disables all maskable interrupts
by setting the I bit in the condition code register until the service routine is over. Other maskable
interrupts can become pending during this time, but will not be serviced until interrupts are again
globally enabled when the service routine ends. (The programmer can also explicitly re-enable
global interrupts inside an interrupt service routine to allow nesting of interrupts, but this is not
recommended in multitasking applications). Non-maskable interrupts (reset, clock monitor failure,
COP failure, illegal opcode, software interrupt, and XIRQ) are serviced regardless of the state of the
I bit.

When an interrupt is serviced, execution of the main program is halted. The programming registers
(CCR, ACCD, IX, IY, PC) and the current page are pushed onto the return stack. This saves the
state of execution of the main program at the moment the interrupt became serviceable. Next, the
processor automatically sets the I bit in the condition code register. This disables interrupts to pre-
vent the servicing of other maskable interrupts. The processor then fetches an address from the
“interrupt vector” associated with the recognized interrupt, and starts executing the code at the
specified address. It is the programmer’s responsibility to ensure that a valid interrupt service rou-
tine, or “interrupt handler” is stored at the address pointed to by the interrupt vector.

The CPU then executes the appropriate interrupt handler routine. It is the programmer’s responsi-
bility to ensure that a valid interrupt service routine is stored at the address pointed to by the inter-
rupt vector. The interrupt vectors are near the top of memory in the onboard ROM. The ROM
revectors the interrupts (using jump instructions) to point to specified locations in the EEPROM.
The ATTACH() routine installs a call to the interrupt service routine at the appropriate location in the
EEPROM so that the programmer’s specified service function is automatically executed when the
interrupt is serviced. ATTACH() also supplies the required RTI (return from interrupt) instruction
that unstacks the programming registers and resumes execution of the previously executing pro-
gram.

An interrupt handler must reset the interrupt flag bit (not the mask bit) by writing a 1 to it, and per-
form any tasks necessary to service the interrupt. When the interrupt handler has finished, it exe-
cutes the RTI (return from interrupt) assembly code instruction. RTI restores the CPU registers to
their prior values based on the contents saved on the return stack. As explained below, this also re-

80 Chapter 6: Real Time Programming

enables interrupts by clearing the I bit in the CCR (condition code register). Thus other interrupts
can be serviced after the current interrupt service routine has completed.

Nonmaskable Interrupts

Six of the 68HC11F1’s 21 interrupts are nonmaskable, meaning that they are serviced regardless of
the state of the global interrupt mask (the I bit in the CCR). Events that cause nonmaskable inter-
rupts include resets, clock monitor failure (triggered when the E-clock frequency drops below 10
kHz), Computer-Operating-Properly (COP) failure (triggered when a programmer-specified timeout
condition has occurred), execution of illegal opcodes, execution of the SWI (software interrupt)
instruction, and an active low signal on the nonmaskable interrupt request pin named /XIRQ.

Three types of interrupts initiate a hardware reset of the 68HC11:

◙ Power-on or activation of the reset button

◙ Computer-Operating-Properly (COP) timeout

◙ Clock monitor failure

These are the highest priority interrupts, and are nonmaskable. Serviced immediately, they initialize
the hardware registers and then execute a specified interrupt service routine. QED-Forth sets the
interrupt vectors of these interrupts so that they execute the standard startup sequence. The service
routines for all but the main reset interrupt may be changed by the programmer with the Attach()
utility.

If a nonmaskable interrupt is enabled, it is serviced immediately upon being recognized. The im-
portance of these interrupts is reflected by the fact that most cause a hardware reset when serviced.
The following table gives the name of each nonmaskable interrupt and a description of its operation.
They are listed in order of priority from highest to lowest:

Table 6-1 Nonmaskable Interrupts.

Interrupt Name Description

Reset Recognized when the /RESET (active-low reset) pin is pulled low, this highest priority
nonmaskable interrupt resets the machine immediately upon recognition and
executes the standard QED-Forth restart sequence.

Clock Monitor Failure Enabled or disabled via the CME (clock monitor enable) bit in the OPTION register,
this interrupt is recognized if the E-clock frequency drops below 10 kHz. It resets the
processor hardware and executes a user-defined service routine. QED-Forth installs
a default service routine for this interrupt that performs the standard restart sequence.

COP Failure After enabling the computer operating properly (COP) subsystem, failure to update
COP registers within a predetermined timeout period triggers this interrupt which
resets the processor and executes a user-defined service routine. QED-Forth installs
a default service routine for this interrupt that performs the standard restart sequence.

Illegal Opcode Trap This interrupt occurs when the processor encounters an unknown opcode. QED-
Forth installs a default service routine for this interrupt that performs the standard
restart sequence.

Using Interrupt Service Routines (ISRs) 81

Interrupt Name Description
SWI Software interrupts are triggered by execution of the SWI opcode. After being

recognized, an SWI interrupt is always the next interrupt serviced provided that no
reset, clock monitor, COP, or illegal opcode interrupt occurs. SWI requires a user-
installed interrupt handler.

/XIRQ Enabled by clearing the X bit in the condition code register, an /XIRQ interrupt is
recognized when the /XIRQ (active-low nonmaskable interrupt) pin is pulled low. This
interrupt is serviced immediately upon recognition. It requires an appropriate user-
installed interrupt handler.

The service routine for the reset interrupt cannot be modified by the programmer. The service rou-
tines for the clock monitor, COP failure, and illegal opcode trap interrupts are initialized to perform
the restart sequence, but this action may be changed by the programmer (see the Glossary entry for
InitVitalIRQsOnCold() for more details). No default actions are installed for the SWI and
/XIRQ interrupts, so before invoking these interrupts the user should install an appropriate interrupt
service routine using the ATTACH() command.

Servicing Maskable Interrupts

Maskable interrupts are controlled by the I bit in the condition code register (M68HC11 Reference
Manual, mc68hc11rm.rev4.1.pdf, Sections.5.7 and 5.8). When the I bit is set, interrupts are dis-
abled, and maskable interrupts cannot be serviced. When clear, interrupts can be serviced, with the
highest priority pending interrupt being serviced first. In sum, a locally enabled maskable interrupt
is serviced if:

it has been recognized, and

it has the highest priority, and

the I bit in the condition code register is clear.

If a maskable interrupt meets these criteria, the following steps are taken to service it. First, the
programming registers and page are automatically saved on the return stack. Note that the condition
code register, CCR, is one of the registers saved, and that the saved value of the I bit in the CCR is
0. Next, the CPU automatically sets the I bit to 1 to temporarily prevent maskable interrupts from
being serviced. Control is then passed to the interrupt handler code, which you must provide and
post using ATTACH(). The interrupt handler clears the interrupt flag bit set by the trigger event and
performs any tasks necessary to service the interrupt. It terminates with an RTI instruction which
restores the saved values to the programming registers. Execution then resumes where it left off.

Recall that when the interrupt service began, the processor’s first action was to store the program-
ming registers on the return stack. At that time, the I bit in the CCR equaled 0 indicating that inter-
rupts were enabled, and the bit was stored as 0 on the return stack. After stacking the machine state,
the processor set the I bit to disable interrupts during the service routine. When the programming
registers are restored to their prior values by RTI, note that the I bit is restored to its prior cleared
state, indicating that interrupts are again enabled. In this manner the processor automatically dis-
ables interrupts when entering a service routine, and re-enables interrupts when exiting a service
routine so that other pending interrupts can be serviced.

82 Chapter 6: Real Time Programming

Nested Interrupts

While the programmer can explicitly clear the I bit inside an interrupt service routine to allow nest-
ing of interrupts, this is not recommended as it can cause crashes in multitasking applications.

Interrupt Priority

Multiple pending interrupts are serviced in the order determined by their priority. Interrupts have a
fixed priority, except that the programmer may elevate one interrupt to have the highest priority
using the HIPRIO register. Nonmaskable interrupts always have the highest priority when they are
recognized, and are immediately serviced. The following table lists the fifteen available maskable
interrupts in order of highest to lowest priority:

Table 6-2 Maskable Interrupts, from Highest to Lowest Priority.

Interrupt Name Description

/IRQ /IRQ is an active-low external hardware interrupt which is recognized when the
signal on the /IRQ pin of the 68HC11 is pulled low (MC68HC11F1 Technical Data
Manual, p.2-5).

Real Time Interrupt The RTI provides a programmable periodic interrupt (MC68HC11F1 Technical
Data Manual, p.5-5).

Input Capture 1 An IC1 interrupt is recognized when a specified signal transition is sensed on port
A, pin 2 (MC68HC11F1 Technical Data Manual, p.9-1 ff.).

Input Capture 2 An IC2 interrupt is recognized when a specified signal transition is sensed on port
A, pin 1 (MC68HC11F1 Technical Data Manual, p.9-1 ff.).

Input Capture 3 An IC3 interrupt is recognized when a specified signal transition is sensed on port
A, pin 0 (MC68HC11F1 Technical Data Manual, p.9-1 ff.).

Output Compare 1 An OC1 interrupt is recognized when the main timer’s count becomes equal to
OC1’s timer compare register (MC68HC11F1 Technical Data Manual,p.9-6 ff.).

Output Compare 2 An OC2 interrupt is recognized when the main timer’s count becomes equal to
OC2’s timer compare register (MC68HC11F1 Technical Data Manual,p.9-6 ff.).

Output Compare 3 An OC3 interrupt is recognized when the main timer’s count becomes equal to
OC3’s timer compare register (MC68HC11F1 Technical Data Manual, p.9-6 ff.).

Output Compare 4 An OC4 interrupt is recognized when the main timer’s count becomes equal to
OC4’s timer compare register (MC68HC11F1 Technical Data Manual, p.9-6 ff.).

I4O5 Depending on its configuration, an I4O5 (input capture 4/output compare 5)
interrupt is recognized when a specified signal transition is sensed on port A, pin
3, or when I4O5’s timer compare register is equal to the main timer’s count
(MC68HC11F1 Technical Data Manual, p.9-1 ff.).

Timer Overflow A TOF interrupt occurs when the free-running count in the TCNT (timer count)
register overflows from FFFFH to 0000H (MC68HC11F1 Technical Data Manual,
p.9-1).

Pulse Accum Overflow A PAOVF interrupt occurs when the PACNT (pulse accumulator count) register
overflows from FFH to 00H (MC68HC11F1 Technical Data Manual, p.9-15 ff.).

Pulse Accum Edge A PEDGE interrupt occurs after a signal edge is detected on port A, pin 7
(MC68HC11F1 Technical Data Manual, p.9-15 ff.).

Using Interrupt Service Routines (ISRs) 83

Interrupt Name Description
SPI Event Interrupt An SPI (serial peripheral interface) interrupt occurs after a byte transfer is

completed, or a write collision or a mode fault is detected (MC68HC11F1
Technical Data Manual, p.8-1 ff.).

SCI Event Interrupt An SCI (serial communications interface) interrupt occurs when the transmit data
register is empty, or the transmission is complete, or the receive data register is
full, or an idle line is detected. The handler must determine which of these four
events caused the interrupt (M68HC11 Reference Manual, Section 9.5.2).

Elevated Priority

After being recognized, a locally enabled maskable interrupt will be serviced when the I bit is clear,
and when it has the highest priority among the pending interrupts. Note that interrupts are not nec-
essarily serviced in the order in which they are recognized, but in order of priority among those
pending.

You can elevate one maskable interrupt at a time to receive highest priority servicing. This is ac-
complished by configuring four priority-selection bits named PSEL0, PSEL1, PSEL2, and PSEL3
located in the HPRIO (high priority) register (MC68HC11F1 Technical Data Manual, p.5-7). The
default highest priority maskable interrupt is /IRQ. A table in MC68HC11F1 Technical Data Man-
ual, p.5-8 lists the states of the priority selection bits needed to elevate an interrupt’s status to the
highest priority.

Interrupt Flag and Mask Bits

Each maskable interrupt is enabled and disabled by a local mask bit. An interrupt is enabled when
its local mask bit is set. When an interrupt’s trigger event occurs, the processor sets the interrupt’s
flag bit.

The local mask bit should be used to enable and disable individual interrupts. In general, you should
avoid setting the global I bit in the condition code register (CCR) using DISABLE_INTERRUPTS()
unless you are sure that you want to disable all interrupts. Time-critical interrupt service routines
such as the timesliced multitasker cannot perform their functions when interrupts are globally dis-
abled.

Some of the Handheld’s library functions globally disable interrupts for short periods to facilitate
multitasking and access to shared resources. A list of these functions is presented in the Control-C
Glossary document.

Interrupt trigger events can occur whether or not the interrupt is enabled. For this reason, it is com-
mon for flag bits to be set before an interrupt is ready to be used. Unless an interrupt’s flag bit is
cleared before it is enabled, setting the local mask bit will force the system to recognize an interrupt
immediately. Unfortunately, the event which set the interrupt’s flag bit occurred at an unknown
time before the interrupt was enabled. Depending on the interrupt handler’s task, this can cause
erratic initial behavior, collection of an incorrect initial data point, or begin an improper sequence of
events (for example, cause a phase shift in an output waveform). To avoid these problems, it is
recommended that you enable an interrupt by first clearing its flag bit and then immediately setting
its mask bit.

84 Chapter 6: Real Time Programming

! An Interrupt Flag Bit Is Cleared By Writing a 1 to it !
Although mask bits can be set and cleared by storing the desired value in them, flag
bits are unusual. Since flag bits are set by trigger events, it is not possible to set
them via software. In order to clear an interrupt flag bit, a logical one must be
stored into the flag bit’s location – that clears it to zero!

To clear a specified flag bit, write a pattern to the flag register with a 1 in the bit position of the flag
that must be cleared. All of the other flag bits in the flag register then remain unchanged. See
M68HC11 Reference Manual Section 10.4.4 for examples.

External Hardware Interrupts /IRQ and /XIRQ

Two external interrupts, /IRQ (active-low interrupt request) and /XIRQ (active-low nonmaskable
interrupt request) allow external hardware to interrupt the 68HC11F1 (M68HC11 Reference Man-
ual, Section 2.4.6). The / prefix to each of these names indicates that the signals are active-low.
Pull-up resistors on the Handheld hold these signals high during normal operation, and an interrupt
is recognized when either signal is pulled low by an external source. The /IRQ input is maskable
and is not serviced unless the I bit in the condition code register is clear. If the CPU is servicing an
interrupt when the /IRQ line goes low, the external interrupt will not be recognized until the inter-
rupt being serviced has been handled. Unlike all the other maskable interrupts, /IRQ does not have a
local interrupt mask. The /XIRQ external interrupt is not available on the Handheld.

The /IRQ pin is accessed and controlled via the Wildcard Port Header (for pin locations see Appen-
dix A). It operates as an active-low input to the processor. An external device can drive the line
LOW to signal an interrupt. Alternatively, several open-collector devices can be wired together on
the same line, so that any one of them can interrupt the processor by pulling the request line low.
This is called “wired-or” operation. In either case, the external device must pull the line low long
enough to be detected by the CPU.

Note that the PORTA input capture lines can also be configured to interrupt the processor when an
external event occurs.

Configuring /IRQ Interrupts

In its default state, after each reset or restart, the /IRQ pin is configured as an edge-triggered input.
In this mode, the 68HC11 latches the falling edge, causing an interrupt to be recognized. This frees
peripheral devices from having to hold the /IRQ line low until the CPU senses the interrupt, and
prevents multiple servicing of a single external event.

The disadvantage of this configuration is that multiple edge-triggered interrupts cannot be reliably
detected when used with wired-OR interrupt sources. If you are using multiple wire-or /IRQ inputs,
you can specify level-sensitive interrupt recognition by clearing a bit named IRQE (IRQ edge-
sensitive) in the OPTION register (M68HC11 Reference Manual, Section 5.8.1). IRQE is a “pro-
tected bit” in OPTION that must be written within the first 64 E cycles after a reset. The QED-Forth
word InstallRegisterInits() (described in the glossary) may be used to specify a value that is
automatically stored into OPTION upon each reset.

Using Interrupt Service Routines (ISRs) 85

Using /IRQ

To use the /IRQ external interrupt, define an interrupt handler and install it using the pre-defined
identifier IRQ.ID and the interrupt Attach utility, as described in the Glossary entry for Attach.

If interrupts have not yet been enabled globally, then execute:
ENABLE_INTERRUPTS

Whenever /IRQ is pulled low, your interrupt handler will be executed. Note that there is no local
interrupt mask for the /IRQ interrupt, so your interrupt handler routine need not clear an interrupt
request flag.

Routines that Temporarily Disable Interrupts

Certain kernel routines temporarily disable interrupts by setting the I bit in the condition code regis-
ter. These routines are summarized in the “Library Functions that Disable Interrupts” chapter of the
Control-C Glossary. A review of that list will assist you in planning the time-critical aspects of your
application.

Interrupt Latency

The time required between the processor’s initiation of interrupt servicing and the execution of the
first byte of the specified service routine is called the interrupt latency. Most of the 68HC11’s inter-
rupts have an inherent latency of 12 machine cycles during which the registers are saved on the
return stack and the interrupt vector is fetched. This corresponds to 3 microseconds (µs). QED-
Forth’s interrupt latency is longer because the interrupts are re-vectored via the EEPROM to allow
the programmer to modify the vectors, and because the page must be changed. The latency of serv-
ice routines installed with ATTACH() is 34 machine cycles, or 8.5 µs. That is, the first opcode of the
user’s service routine is executed 8.5 µs after interrupt service begins. After the service routine’s
concluding RTS executes, an additional 20 cycles (5 µs) lapses before the originally interrupted
program resumes execution. 12 of these cycles are accounted for by the RTI instruction, and the
other 8 cycles are required to restore the original page.

Interrupt Latency
Time to Enter an Interrupt Service Routine: 8.5 µsec

Time to Leave an Interrupt Service Routine: 5.0 µsec

Writing Interrupt Service Routines

Maskable interrupts have a local mask bit which enables and disables the interrupt, and a flag bit
which is set when a trigger event occurs. For maskable interrupts, an interrupt triggering event is
recognized when the flag and mask bits are both set. In order to avoid premature recognition of a
maskable interrupt, it should be enabled by first clearing its flag bit and then setting its mask bit.
Once an interrupt has been recognized, it will be serviced if it is not masked by the I bit in the CCR.
Multiple pending interrupts are serviced in the order determined by their priority. Interrupts have a
fixed priority, except that the programmer may elevate one interrupt to have the highest priority.

86 Chapter 6: Real Time Programming

Nonmaskable interrupts always have the highest priority when they are recognized, and are immedi-
ately serviced.

When an interrupt is serviced, the machine state (specified by the programming registers) is saved
and the I bit in the CCR register is set. This prevents other pending interrupts from being serviced.
The CPU then executes the appropriate interrupt handler routine. The interrupt handler is responsi-
ble for clearing the interrupt flag bit. For most interrupts this is accomplished by writing a one to
the flag bit. After completing its tasks, the interrupt handler executes an RTI instruction to restore
the machine state, subsequently clearing the I bit in the CCR. The CPU is now ready to service the
next, highest priority, pending interrupt. If there is none, processing of the main program continues.

To use interrupts you need to create and post an interrupt service routine using the ATTACH()
macro. We’ll look at this process in detail, then discuss how interrupts are implemented on the
68HC11.

To use an interrupt to respond to events, follow these four steps:

1. Use #define to name all required bit masks related to servicing the interrupt, and look in the
Motorola 68HC11F1 documentation and the QEDREGS.H file (in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory) to find the names of all registers that relate
to the interrupt. These bit mask and register names will simplify the creation of a readable
service routine.

2. Use C or assembly code to define an interrupt service routine which will be executed every
time the interrupt occurs. The function must have a void stack picture; it cannot return a
value or expect input parameters. This function must reset the interrupt request flag (by writ-
ing a 1 to it!) and perform any necessary actions to service the interrupt event. Note that the
service routine is a standard function; it is not defined using the _interrupt keyword.

3. Write a function that installs the interrupt service routine using the ATTACH() command.
ATTACH() initializes the interrupt vector in EEPROM to call the specified service routine, and
ATTACH() also supplies the RTI (return from interrupt) instruction that correctly terminates
the service routine.

4. Write functions to enable and disable the interrupt. Enabling the interrupt is accomplished by
clearing the interrupt’s flag bit by writing a 1 to it, and then setting its mask bit. It may also be
necessary to clear the I bit in the CCR to globally enable interrupts. This can be accomplished
by executing ENABLE_INTERRUPTS().

ATTACH() Makes It Simple

It is easy to define an interrupt service routine and ATTACH it to a specified interrupt. You define
your service routine in either assembly code or in high level C. Thus the service routine can be
debugged just like any other C function. You then call ATTACH() to bind the service routine to the
interrupt.

The following constants have been defined as identifiers for the 68HC11 interrupts in the
INTERUPT.H file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory:

Using Interrupt Service Routines (ISRs) 87

Table 6-3 68HC11 Interrupts.

Identifier Interrupt description

SCI_ID Serial communications interface

SPI_ID Serial peripheral interface

PULSE_EDGE_ID Pulse accumulator edge detection

PULSE_OVERFLOW_ID Pulse accumulator overflow

TIMER_OVERFLOW_ID Timer overflow

IC4_OC5_ID Timer input capture 4/output compare 5

OC4_ID Timer output compare 4

OC3_ID Timer output compare 3

OC2_ID Timer output compare 2

OC1_ID Timer output compare 1

IC3_ID Timer input capture 3

IC2_ID Timer input capture 2

IC1_ID Timer input capture 1

RTI_ID Real-time interrupt

IRQ_ID IRQ external pin

XIRQ_ID IRQ external pin (pseudo-nonmaskable)

SWI_ID Software interrupt

ILLEGAL_OPCODE_ID Illegal opcode trap

COP_ID COP failure (reset)

CLOCK_MONITOR_ID Clock monitor failure (reset)

The ATTACH() macro expects as inputs a function pointer to your service routine, and an interrupt
identifier. It sets up the interrupt vector in EEPROM so that subsequent interrupts will execute the
specified service routine. The code installed by ATTACH includes the RTI instruction that terminates
the interrupt service sequence. The StartFunctionTimer() routine presented earlier shows how
ATTACH() is called.

Implementation Details

The interrupt vectors near the top of memory are in ROM; locations that cannot be modified by the
programmer. The contents of these locations point to a series of locations in the EEPROM (at
AE20-AEBFH) which can be modified and, if desired, write-protected using the BPROT register.
ATTACH() writes some code at the EEPROM locations corresponding to the specified interrupt.
This code loads the code field address of the user’s service function into registers and jumps to a
routine that saves the current page, changes the page to that of the user’s service function, and calls
the service function as a subroutine. When the user-defined service function returns, the code in-
stalled by ATTACH() restores the original page and executes RTI (return from interrupt) to complete
the interrupt service process. This calling scheme ensures that the interrupt service will be properly
called no matter which page the processor is operating in when the interrupt occurs. And because

88 Chapter 6: Real Time Programming

the interrupt calling routine which is installed by ATTACH() ends with an RTI, your service routine
can end with a standard RTS, return or } which makes debugging much easier.

The following sections explain how to define and install interrupt service routines that enhance the
usefulness of many of the 68HC11’s hardware features.

The following example illustrates how to write and use an interrupt service routine.

An Example: Periodically Calling a Specified Function

Many times a program needs to execute a specified action every X milliseconds, where X is a speci-
fied time increment. We can use an output compare interrupt to accomplish this. We’ll set up an
interrupt service routine that executes once per millisecond (ms), and maintains a ms_counter
variable that is incremented every millisecond. The variable time_period specifies the time in-
crement, in ms, between calls to the specified function which is named TheFunction(). For this
simple example, TheFunction() inverts the contents of the static variable named
action_variable.

Listing 6-1 TIMEKEEP.C, An Example of an Interrupt Service Routine
#define OC3_MASK 0x20 // used to set/clear OC3 interrupt flag and mask
#define ONE_MS 500 // 500 counts of 2us TCNT = 1 ms
#define DEFAULT_TIME_PERIOD 1000 // Execute once per second

static int ms_counter; // runs from 0 to 65535 before rolling over
static uint time_period; // specifies time in ms between function calls
static int next_execution_time; // next scheduled value of ms_counter
static int action_variable; // state is toggled by TheFunction()

_Q void TheFunction(void) // the function simply complements
{ action_variable = !action_variable; // a variable
}

_Q void FunctionTimer(void)
// This interrupt service routine is called by an OC3-based clock interrupt and
// simply calls TheFunction periodically.
{ ms_counter++;
 if(ms_counter == next_execution_time)
 { TheFunction();
 next_execution_time = next_execution_time + time_period;
 }
 TOC3 += ONE_MS; // set OC3 count for next interrupt in 1 ms
 TFLG1 = OC3_MASK; // reset the oc3 interrupt flag by writing a 1
}

_Q void StopFunctionTimer(void)
{ TMSK1 &= ~OC3_MASK; // clear OC3I to locally disable OC3
}

_Q void StartFunctionTimer(void)
// inits variables and locally enables OC3 interrupt;
// does not globally enable interrupts!
{ StopFunctionTimer(); // locally disable OC3 while we set it up
 ATTACH(FunctionTimer, OC3_ID); // post the interrupt service routine
 ms_counter = 0;
 time_period = next_execution_time = DEFAULT_TIME_PERIOD; // 1/second
 action_variable = 0; // state is toggled by TheFunction()
 TOC3 = TCNT + ONE_MS; // start after a 1 ms delay
 TFLG1 = OC3_MASK; // clear interrupt flag OC3F
 TMSK1 |= OC3_MASK; // set OC3I to locally enable OC3
}

Using Interrupt Service Routines (ISRs) 89

In this program, we define a bit mask named OC3_MASK which has bit 5 set and all other bits clear.
From inspection of the register summary in the Motorola 68HC11F1 booklet, we see that this mask
isolates the Output Compare 3 (OC3) mask bit in the TMSK1 register, and isolates the OC3 interrupt
flag bit in the TFLG1 register. The other relevant registers are the 16 bit free-running counter regis-
ter named TCNT which increments every 2 microseconds, and the Timer Output Compare 3 register
named TOC3. If the OC3 interrupt is enabled by setting its mask bit = 1 in TMSK1 and by globally
enabling interrupts using ENABLE_INTERRUPTS() or the assembly instruction CLI, then an inter-
rupt occurs when the count in TCNT matches the count in TOC3. Thus we can control when the next
interrupt occurs by writing a specified count to TOC3.

TheFunction() is our prototypical function that simply toggles the action_variable between
the values 0 and 1. The goal of our interrupt service routine is to call TheFunction() exactly once
per second.

FunctionTimer() is the OC3 interrupt service routine. It increments the ms_counter variable,
and checks if ms_counter equals next_execution_time. If so, it calls TheFunction() and
updates next_execution_time by adding time_period to it. Then FunctionTimer() incre-
ments the contents of the TOC3 register to set up the next interrupt in 1 ms, and clears the interrupt
request flag by writing a 1 to the OC3 flag bit in the TFLG1 register. Note that FunctionTimer()
does not have any input parameters or a return value. Moreover, it is not defined using the
_interrupt keyword which would insert an RTI (return from interrupt) instruction at the end of
the function. Rather, ATTACH() will supply the RTI instruction for us. Because
FunctionTimer() does not end with an RTI, we can easily test the FunctionTimer() service
routine using our standard interactive debugging techniques.

StopFunctionTimer() simply clears the local OC3 interrupt mask bit in the TMSK1 register to
disable the OC3 interrupt.

StartFunctionTimer() first locally disables OC3 to prevent an interrupt while the service rou-
tine is being posted. Then it calls:

ATTACH(FunctionTimer, OC3_ID);

to ensure that FunctionTimer() is called every time the OC3 interrupt occurs; ATTACH() also
installs a return sequence that supplies the required RTI (return from interrupt) opcode. ATTACH()
is described in detail later in this chapter. Note that its input parameters are a pointer to the interrupt
service routine FunctionTimer, and a pre-defined constant named OC3_ID that identifies the
interrupt. All of the interrupt identifier constants are summarized in Table 6-3.

After calling ATTACH(), StartFunctionTimer() initializes the timing variables, and initializes
TOC3 so that the first interrupt will occur in 1 ms. It then clears the interrupt flag by writing a 1 to
the OC3F flag bit in the TFLG1 register using the statement:

TFLG1 = OC3_MASK;

Clearing the interrupt flag bit before enabling the interrupt is a highly recommended procedure that
ensures that all prior pending OC3 interrupts are cleared before the interrupt occurs. Finally,
StartFunctionTimer() locally enables the OC3 interrupt by setting the mask bit in TMSK1 with
the statement:

90 Chapter 6: Real Time Programming

TMSK1 |= OC3_MASK;

To start the interrupt, main() simply calls StartFunctionTimer() followed by
ENABLE_INTERRUPTS(). After you compile and download the TIMEKEEP.C program and type:

main

from your terminal, the OC3 interrupt is running in the background. To monitor the state of the
action_variable, interactively type at your terminal:

See()

and you will see the variable’s value change from 0 to 1 exactly once per second. Type any key to
terminate the See() function.

This short program provides a template that shows how a function can be periodically called with a
period specified by the variable time_period. Of course, in your application the called function
would perform a more useful action than does TheFunction() in this simple example. You could
make other enhancements; for example, a foreground task could manipulate the contents of
time_period to change the frequency at which TheFunction() is called, and you could use
ms_counter to measure elapsed time with 1 ms resolution.

Note that, to maintain timing accuracy, the interrupt service routine should have a worst-case exe-
cution time of under 2 ms; otherwise the FunctionTimer() will miss the interrupt when TCNT
matches TOC3, and an extra delay of 131 ms will occur while the TCNT timer rolls over. In general,
interrupt service routines should be short and simple. Complex calculations should be done by
foreground tasks, and the interrupt routines should perform the minimum actions necessary to serv-
ice the time-critical events. An example of this approach is presented in the Turnkeyed Application
Program.

Cautions and Restrictions

Note that the OC2 interrupt is used as the multitasker’s timeslice clock. Before using this interrupt
for another purpose, make sure that you don’t need the services provided by the timeslicer which
supports the multitasking executive and the elapsed time clock.

The main restriction on interrupt service routines is that they must not call _forth (kernel) library
functions unless the instructions in the next section are followed. The Glossary document and the
header files in the \MOSAIC\FABIUS\INCLUDE\MOSAIC directory specify which functions are of
the _forth type.

Summary

Using interrupts requires:

coding an interrupt service routine;

using ATTACH() to bind it to the appropriate interrupt; and,

enabling its local interrupt mask.

91

Calling Kernel Functions From Within ISRs

There is a special consideration when calling _forth library functions from interrupt service rou-
tines. Fortunately, this restriction can be overcome by simply including the FORTHIRQ.C file with
your source code, and following the simple example presented in the file. FORTHIRQ.C is present
in the \MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory.

The method is very simple: just place a call to the function

BeginForthInterrupt();

at the top of your interrupt service routine (or, at the minimum, before any _forth functions are
called). Before the final exit point of the interrupt service routine, place a call to the function

EndForthInterrupt();

That's all there is to it. The ability to call _forth library functions from interrupt service routines
makes it easier to manage page-mapped I/O devices on an event-driven basis.

92 Chapter 6: Real Time Programming

93

Chapter 7

Failure and Run-Time Error Recovery

This chapter describes a variety of useful hardware features of the 68HC11F1:

The processor’s external hardware interrupt /IRQ, may be used by external devices to
request immediate service.

Three nonmaskable interrupts cause a hardware reset: the external reset, the COP, and
the clock monitor. The main reset is activated on power-up or when the /RESET pin is
pulled low for more than 4 machine cycle. Enabling the computer operating properly
circuit, COP, sets up a watchdog timer that resets the processor unless a special register
is periodically updated. This provides a means of recovering from crashes in an embed-
ded application. Use of the COP feature requires installation of an autostart routine
which services the COP. The clock monitor backs up the COP by resetting the machine if
the system clock fails.

STOP and WAI instructions are available to put the CPU in low power modes with dif-
ferent degrees of power savings

Finally, an on-board jumper allows selection of the standard operating mode or the spe-
cial cleanup mode.

Getting Started and Getting Stopped – Restarts and
Resets

External Hardware Resets

The main reset interrupt of the 68HC11 processor is activated upon power-up or when the active-
low /RESET signal is pulled low. The processor does not distinguish between a power-on reset and
a reset caused by a low level on the /RESET input pin; both result in the same hardware initializa-
tion and software restart sequence.

The /RESET line is normally held high by a pull-up resistor. You can pull the /RESET line low by
pushing on the reset switch. Moreover, any peripheral device can reset the processor by driving the
/RESET signal low for at least 2 microseconds using an open-collector output.

The active-low /RESET signal is controlled by the power monitor circuitry. On power-up, the
monitor asserts the reset signal until the positive supply has stabilized above 4.5 Volts.

94 Chapter 7: Failure and Run-Time Error Recovery

Internal Resets

The 68HC11 resets itself when a failure condition is detected by either the computer-operating-
properly (COP) or the clock monitor circuit. When either of these failure conditions occur, the
processor drives the /RESET line low for less than 4 machine cycles to reset itself and any peripher-
als that are connected to the /RESET line. The processor then determines which failure (COP or
clock monitor) caused the reset, and branches to the associated service routine. QED-Forth initial-
izes the interrupt vectors for the COP and clock monitor to perform the standard restart sequence,
and the programmer may change the vectors if desired. The operation of the COP and clock moni-
tor are described in the following sections.

Crashes

A computer “crashes” when it executes a set of instructions that it is not supposed to. This can
cause the processor to write over memory locations that are not write-protected. The processor may
get into an infinite loop of legal instructions (in which case it will not respond to your commands),
or it may eventually execute an “illegal opcode”. Illegal instructions are detected by the processor’s
illegal opcode trap and result in a restart , in which case you will see the QED-Forth startup message
on your terminal, or execution of the autostart program, if present.

The best response to a crash during program development is to push the reset button. This initializes
all of the registers and performs a restart. In most cases a “warm restart” will be performed, which
should allow you to continue programming with access to all of the words that you have defined. In
other cases, the state of the user area or the dictionary may be corrupted. If QED-Forth detects the
corruption, it will automatically execute a “cold restart”; otherwise you may execute COLD which
performs the restart. The cold restart re-initializes all of the user variables that control QED-Forth’s
operation.

Resets versus Restarts

To clarify the discussion of crashes, some terms must be defined. A “reset” is an initialization proc-
ess invoked by the hardware of the 68HC11, while a “restart” is an initialization process controlled
by software.

A reset can be caused by any of four events:

◙ power is applied to the processor

◙ the reset button is pushed

◙ the clock monitor detects a clock failure

◙ the computer operating properly (COP) circuit detects a failure

The hardware of the 68HC11 is configured by a set of registers that reside at locations 8000H
through 805FH. (These hardware registers should not be confused with the programming registers
D, X, Y, etc.) The reset initializes essentially all of the registers, and then initiates an interrupt re-
sponse sequence. The interrupt calls a specified response program whose address is stored in an
interrupt vector near the top of memory. The power-on and reset-button resets share the same inter-

Getting Started and Getting Stopped – Restarts and Resets 95

rupt vector at FFFE. The clock monitor and COP resets are re-vectored to addresses in EEPROM
where the programmer can install customized service routines, if desired. All of these service rou-
tines are initialized to perform the default restart routine.

A “restart” is an initialization process performed by software. After a (hardware-invoked) reset, the
68HC11 calls a restart routine which re-initializes some of the registers to accommodate QED-
Forth, and initializes other memory locations including all or part of the user area. A restart can also
be invoked solely via software, by executing the kernel words COLD or WARM. When the illegal
opcode trap detects an illegal instruction, it calls a restart routine, but does not perform a hardware
reset. Note that a reset always results in a restart, but that a restart can be performed without a reset.

COLD is the most comprehensive software-invoked initialization command. Executing COLD after
a crash usually puts the machine into a well-known state by completely initializing the user area
which controls QED-Forth’s operation. But COLD does not initialize all of the registers. There-
fore, in crashes where the contents of key hardware registers are corrupted, it may be necessary to
perform a hardware reset by pushing the reset button or powering the machine off and on again.

Cold versus Warm Restarts

There are two types of restart: cold and warm. A cold restart initializes all of the parameters used by
the QED-Forth system. These parameters are stored in the “user area”, which is a 256-byte block of
memory in the common RAM. All of the memory management pointers, format variables to control
numeric conversion, quantities that enable the compilation of local variables, and many other system
values are stored in the user area. COLD initializes these to default values. COLD also initializes
several vital interrupt vectors so that they will perform the startup sequence if they are invoked.
These vital interrupts --clock monitor, computer operating properly, and illegal opcode trap-- were
discussed in the last chapter.

A warm restart, on the other hand, assumes that most of the user variables have already been prop-
erly initialized. A warm restart initializes only a few of these parameters, including stack pointers
(it clears the stacks) and some multitasking variables (it makes sure that a single task is running and
that it has control of the serial port).

A warm restart preserves the prior number base (whatever you had set it to before the restart oc-
curred) while a cold restart always sets the base to decimal. A warm restart preserves the user’s
memory map and QED-Forth’s ability to find user defined words, while a cold restart sets a default
memory map and forgets all words except those in the original kernel.

The default restart program decides whether to perform a cold or a warm restart by checking a loca-
tion in the user area to see if a specified pattern (1357H) is stored there. If the correct pattern is
present, the restart program assumes that the user area is already properly initialized, so it performs
a warm restart. If the location does not contain the proper value, the restart program assumes that
some event (perhaps a crash) has corrupted the user area, so a cold restart is executed to force the
system to a known state.

Because the Handheld’s common RAM is battery backed (except for the 1K of RAM at B000H-
B3FFH on the 68HC11 itself), the user area (including the location where the startup pattern is
stored) maintains its contents even when it is powered down. Thus a warm restart will be performed

96 Chapter 7: Failure and Run-Time Error Recovery

most of the time when you turn on the Handheld. This is convenient: it means that access to the
words you defined, your memory map, and the contents of the user area are not altered by removal
of power. It also means that pushing the restart button and powering the machine off and on again
have similar effects, except that powering the machine off loses the contents of the 1K of RAM on
the 68HC11 at addresses B000H-B3FFH.

If a crash over-writes the user area, the next restart will be a cold restart. QED-Forth signals a cold
startup by printing a COLDSTART statement before the QED-Forth V4.4x startup message is
printed. If the crash did not corrupt the startup pattern in the user area, a warm restart would be
performed, and you could continue debugging. In most cases, all of the words that you defined
would still be accessible. If the machine is behaving in an unpredictable manner, however, it may
be necessary to reset the machine and perform a cold restart to establish a known initialized state.

Recovery Tricks

Some crashes may be difficult (but not impossible!) to recover from. For example, if the name area
of the dictionary is corrupted, QED-Forth may not be able to find even the most basic commands in
the dictionary. If every command you give is met with the ? error message, try executing COLD.
The FIND word in the interpreter is programmed to always recognize the word COLD, even if the
dictionary is corrupted.

If All Else Fails, Use the Special Cleanup Mode

These recovery techniques may not work if you have a buggy autostart word or a major crash. If
typing COLD or pressing the reset button does not greet you with the standard “QED-Forth V4.4x”
prompt, you may need to use the special cleanup mode to restore your system to a proper state. This
involves installing Jumper J1 and then pressing the reset button. The special cleanup procedure
places the Handheld in the same state it was in when it was shipped from the factory.

The COP Watchdog Timer and Clock Monitor
In many embedded control applications, it is important that processor crashes be detected quickly so
that the system can rapidly be returned to a proper operating condition. The Computer Operating
Properly subsystem, also known as a “watchdog timer” or “COP”, provides this capability. It gives
the programmer a way to force a processor reset if an application program crashes or gets lost.
When enabled, the COP resets the processor if the application program fails to periodically update a
specified register within a predetermined time-out period. The COP time-out period is programma-
ble to any of four values between 8 msec to 0.5 seconds.

To use the COP, design and debug an application program that, in addition to performing all of its
normal tasks, periodically writes a 2-byte pattern to the COP reset (COPRST) register as described
below. The specified pattern must be written before the COP “times out”. Then install the applica-
tion as an autostart routine using the QED-Forth word AUTOSTART or PRIORITY.AUTOSTART,
and enable the COP.

If the application program ever allows the time-out period to be exceeded without writing the speci-
fied pattern, the COP resets the processor. Presumably the pattern will not be properly written if the

The COP Watchdog Timer and Clock Monitor 97

processor crashes for any reason, so the COP provides a way of automatically resetting the proces-
sor to recover from crashes. Then, because the application program has been installed as an
autostart routine, the application is automatically restarted when the COP forces a reset.

Be Careful with the COP

Before enabling the COP, make sure that a debugged application program that properly updates the
COPRST register has been installed as an Autostart() or PriorityAutostart() routine. If the startup
program is improperly designed so that it is unable to service the COP on time, the COP will reset
the machine, thereby invoking the startup program again, and leading to an infinite series of COP
resets.

If you find yourself in this situation you can return the Handheld to its “pristine” state by entering
the special clean-up mode: install Jumper J1 and then press the reset button to resume normal op-
eration with the COP disabled and any autostart routine removed.

The COP feature should prove trouble-free as long as the application program is:

fully debugged;

capable of updating the COPRST in a timely fashion; and,

installed as an autostart routine.

Configuring the COP

Three bits are used to configure and enable/disable the COP. They are named CR0, CR1, and
NOCOP. CR0 and CR1 are located in the OPTION register. These bits determine the amount of
time which can elapse between updates of the COPRST register by the application program. If the
time-out period is exceeded, the COP forces a reset. The four available time-out periods are:

Table 7-1 COP Time-out Period

CR1 CR0 Time-out Period

0 0 8.192 ms

0 1 32.768 ms

1 0 131.07 ms

1 1 524.5 ms

The CR1 and CR0 bits in the OPTION register may be modified only during the first 64 cycles after
a reset. The function InstallRegisterInits() makes it easy to specify a value that will be automatically
stored into the OPTION register after every reset; consult its glossary entry for details.

The third control bit is called NOCOP and is located in the CONFIG register. The Handheld is
shipped with this bit set so that the COP is disabled. To enable the COP, clear this bit. The
CONFIG register’s contents are non-volatile, and so are maintained even after the processor has
been powered down.

98 Chapter 7: Failure and Run-Time Error Recovery

Servicing the COP

Servicing the COP is accomplished by writing 55H and AAH to the COPRST register. Although
the order of the writes is important, the number of intermediate instructions between them is incon-
sequential. The two writes must be performed before the time-out period has elapsed. Once AAH
has been stored, the COP will need to be serviced again before the next time-out period has elapsed.

The Clock Monitor

The clock monitor provides a second level of security by monitoring the main system clock and
resetting the processor if the clock signal disappears or oscillates too slowly. The clock monitor
does not initiate a reset as long as the E-clock frequency is greater than 200 kHz (the E-clock fre-
quency is one quarter the frequency of the on-board crystal). A reset is always triggered at E-clock
frequencies below 10 kHz, and may be triggered at frequencies as high as 200 kHz.

The clock monitor is primarily used as a backup for the COP. The COP relies on the clock’s pres-
ence for reliable operation, and the clock monitor can ensure that the processor is safely reset if the
clock fails.

Enabling the clock monitor is accomplished by setting the CME (clock monitor enable) bit in the
OPTION register. This bit may be set or reset at any time. A second bit named FCME (force clock
monitor enable) is also involved. When the FCME bit is in its default state of 0, the bit has no ef-
fect, and when FCME is set, the clock monitor feature cannot be disabled until a reset occurs. We
will assume that FCME is 0, and that the CME bit controls the clock monitor. See MC68HC11F1
Technical Data Manual, p.5-3 for further details. Note also that if the clock monitor is enabled, a
STOP assembly instruction will trigger a reset because it stops the clock, as discussed in the “Low
Power Modes” section below.

Processor Operating Modes

Low Power Modes

The 68HC11F1 has two low power modes. These modes are enabled by assembly instructions
STOP and WAI (wait). The STOP command puts the CPU into its lowest power-consumption
mode by stopping all clocks, thereby stopping all processing (MC68HC11F1 Technical Data Man-
ual, p.5-17). If the clock monitor is enabled, a reset will be triggered when the clocks stop due to a
STOP instruction. To use a STOP instruction when the clock monitor reset is enabled, disable the
monitor before the STOP instruction, and re-enable it after returning from the STOP.

Pulling either /RESET or /IRQ low wakes the processor up after a STOP instruction. Pulling the
reset line low awakens the CPU and performs the standard reset startup sequence. For the CPU to
be awakened by the /IRQ line going low, the I bit in the CCR register must be clear so that interrupts
are globally enabled. When /IRQ goes low and the I bit is clear, execution begins with the /IRQ
handler and then executes the code following the STOP instruction.

Processor Operating Modes 99

The STOP instruction is executed as a NOP unless the S bit in the CCR is cleared. After clearing
the S bit, any occurrence of a STOP instruction puts the CPU into its lowest power mode. After
each reset or restart, QED-Forth leaves the S bit in the CCR in its default set position, meaning that
the STOP mode is disabled.

WAI Low Power Mode

The WAI instruction also puts the 68HC11F1 in a low power mode. However, clocks are not dis-
abled in the wait mode, so power consumption is greater than the STOP mode. After a WAI in-
struction, the machine state is stacked and processing stops. Power savings can be increased by
setting the I bit in the CCR and disabling the COP. Further savings can be achieved by disabling the
on-chip subsystems, including executing A/D8.OFF to turn off the A/D (MC68HC11F1 Technical
Data Manual, pp.5-17...5-18).

The WAI low power state can only be exited by an unmasked interrupt or by pulling the /RESET
pin low. When an unmasked interrupt occurs, (for example /IRQ goes low, the COP is not serviced,
clock monitor failure or reset occurs), the appropriate interrupt handler is executed and then proc-
essing continues with the instructions following the WAI. Implementing the WAI lower power
mode is accomplished by simply executing WAI.

Summary of Low Power Modes

In sum, power can be saved by putting the CPU in a low power mode while processing is not re-
quired. The 68HC11F1 has two low power modes with different degrees of savings. Both modes
are terminated by unmasked interrupts. While the WAI instruction can be called without any prepa-
ration, the STOP instruction must be enabled by clearing the S bit of the CCR register.

Operating Modes of the 68HC11F1 CPU

The 68HC11F1 microcontroller has four operating modes: expanded nonmultiplexed, special test,
single chip, and special bootstrap modes (M68HC11 Reference Manual, Section 3 and
MC68HC11F1 Technical Data Manual, pp.4-1...2). The standard operating mode is expanded non-
multiplexed, meaning that the processor has access to expanded memory beyond its on-chip mem-
ory, and that the address and data lines are not multiplexed together (as they are on other members
of the 68HC11 family). The Handheld also makes use of the special test mode, renaming it the
“special cleanup” mode. This mode makes it possible to rapidly recover from any programming
error that causes repeated machine crashes. The single chip mode takes away the ability of the
processor to address external memory, and special bootstrap allows startup code to be inserted into
the processor; these two modes are not used on the Handheld.

The processor’s operating mode is determined by the states of two pins named MODA and MODB
(refer to the schematic in Appendix C). On the Handheld, MODA is always high and MODB may
be pulled LOW by installing Jumper J1; this invokes the special cleanup mode. When Jumper J1 is
not installed, the board is in the standard operating mode.

100 Chapter 7: Failure and Run-Time Error Recovery

Special Cleanup Mode

The Special Cleanup Mode is useful if a buggy startup routine has been installed (using the
AUTOSTART or PRIORITY.AUTOSTART words) or if invalid register initializations have been
specified (for example, using the InstallRegisterInits() word). To recover from these problems,
simply enter the special cleanup mode by installing Jumper J1 and pressing the reset button. This
completely re-initializes the system software to its “pristine” state, and displays the QED Forth
startup message at your terminal.

101

Chapter 8

Chapter 8: Programming the Graphical User Interface

The Graphical User Interface (GUI) Toolkit is a suite of programming tools that gives you the
ability to build an informative and interactive graphical user interface to monitor and control
your instrument. This chapter

Introduces the structure of the GUI Toolkit;

Takes you on a step-by-step guide to building your interactive application; and

Provides you with detailed descriptions of each component of the GUI Toolkit.

The Structure Of The GUI Toolkit
A graphical user interface is created from building blocks such as bitmapped images and ASCII
strings. These building blocks, or data, must be organized in an intuitive way so users can easily run
your instrument. Object oriented concepts are the key to organizing this data and make it easy for
you to design and implement your user interface. Object oriented programming allows you to or-
ganize data hierarchically based on objects and manipulate the data using methods. With the GUI
Toolkit, it is simple to create elementary objects such as graphics that contain bitmapped image data
and textboxes that contain ASCII string data. You can load those objects into other objects such as
screens so that they can be shown on the display. You can create yet another type of object, a con-
trol, which can execute functions that acquire data from a user or actuate hardware when a user
touches the keypad.

A Closer Look At Objects

The two concepts of object oriented programming essential to modern programs with user interfaces
are “Objects” and “Events”. An object is an association of properties and methods, and may re-
spond to events. An event is an external action that prompts an object into action. GUI Toolkit
objects that can respond to events are called controls.

Properties

Properties describe an object’s physical attributes like its size, location, or image. Objects contain a
data structure that holds its properties. Properties generally don’t do anything by themselves; they
are more like read/write variables. However, properties may qualify the object’s behavior when the
object does do something or has something done to it.

102 Chapter 8: Programming the Graphical User Interface

Some properties may be read only while others may be read/write. GUI Toolkit properties are al-
ways 32-bit numbers and are accessed or modified by calling the methods Get_Property or
Set_Property. Set_Property requires a reference to an object, its property, and the new value,
while Get_Property requires a reference to an object and its property as parameters and returns
the property value.

Methods

Methods are actions the object can do or have done to it. Many methods, like Load, are overloaded;
that is, they are applicable to several different types of objects. For example, you can load graphics
and textboxes into a screen. Overloaded methods allow you to use a single simple syntax with re-
spect to many different objects.

Events

Events are external actions that an object responds to by executing a user defined function called an
event procedure. Objects automatically recognize a predefined set of events, it is up to you to de-
cide if and how they respond to those events. You specify the event procedure called when the
event happens (or fires) by storing your function into the appropriate property using
Set_Property. Event procedures are written, for example, to specify the program actions that
occur in response to the press of a key.

The GUI Toolkit Objects

The following table lists the objects in the GUI Toolkit.

Object Description

GUI_TOOLKIT The central object that contains properties relevant to all other objects.

GUI_DISPLAY The object tied to the physical display.

GUI_SCREEN0 to
GUI_SCREEN3

An object that contains a collection of other functionally related objects such as
graphics, textboxes, and plots.

GUI_KEYPAD0 to
GUI_KEYPAD3

An object tied to the physical keypad for each GUI screen.

GUI_BATTERY The object tied to the rechargeable batteries.

GUI_TIMER An object that repeatedly calls event procedures.

GUI_ERROR An object that contains the most recent GUI Toolkit error.

GUI_PEN A tool object that is used in conjunction with the Draw method to draw lines and
geometrical figures onto screens.

GUI_BUZZER The object tied to the physical buzzer.

GUI_FONT A custom proportional font, 10 pixels tall, that is used to render strings in
textboxes.

GRAPHIC An object that contains a single image as a property.

FONT An object that contains a single image composed of the 255 images of each
character of a font that is used to render strings in textboxes.

TEXTBOX An object that uses a font object to render strings onto a screen.

Building Your Application 103

Object Description
DATA_ENTRY_KEY An object associated with a key on the keypad that adds a character to a textbox.

ACTION_KEY An object associated with a key on the keypad that responds to a user’s touch by
calling an associated event procedure.

SHIFT_KEY An object associated with a key on the keypad that changes the shift state.

PLOT An object used to render numerical data into graphical form onto a screen.

Some of these objects are created when you initialize the GUI Toolkit while others are created by
functions that you write. All GUI objects reside in their own task with their own heap and some
respond to events. In the next section, we’ll show you how to create your user interface and then
how to write your application using the GUI Toolkit.

Building Your Application
In this section, we’ll explore the GUI Toolkit in the order in which you would typically build your
application. We’ll show you how to:

◙ Design and create your user interface on a PC;

◙ Transfer the images that you created for your user interface from the PC to the Handheld Con-
troller;

◙ Write your application using the demo program as a reference guide;

◙ Handle errors; and,

◙ Expand the capabilities of the GUI Toolkit.

The demo program shows you how to build a multitasking application with four simple screens.
The first screen is an alphanumeric keypad example that allows you to enter text and show it on the
display. The second screen allows you to adjust the contrast and brightness of the display. The
third screen allows you to change the length of each beep that is sounded when you press a key. The
fourth screen displays a textbox using a custom font of 8 point Comic Sans. As we describe each
part of the GUI Toolkit, we’ll use the alphanumeric keypad screen of the demo to illustrate the im-
portant concepts.

Designing Your User Interface

Before you start coding your application, it’s a good idea to sketch out how you want your user
interface to look. Figure 8-1 shows a rough sketch of the first screen of the demo program.
Sketching out your user interface before you start programming will help you to think about how
you want your application to be organized and how you want to present information to your user.

104 Chapter 8: Programming the Graphical User Interface

Figure 8-1 The sketch of the first screen of the demo program.

Drawing Your Screens

Once you’ve sketched out and designed your user interface, you need to create bitmapped images of
your interface using an image-editing program. Images may be created using Microsoft Paint,
which is included with all versions of Windows. You can also use other image-editing programs
such as Corel Draw, Photoshop, and Paint Shop Pro. In this section and throughout this chapter, we
provide step-by-step instructions for creating and manipulating images using Photoshop. However,
all of the image-editing programs have similar tools and functionality. For example, the pencil tool
in Photoshop is simply called the pencil in Paint and the line tool in Photoshop is called the line in
Paint. Thus, the steps listed in the examples, although specific to Photoshop, apply to all image-
editing programs.

To create an image of a screen from your sketch using Photoshop:

1. Create a new file with a width of 128 pixels and a height of 128 pixels, a resolution of 72 pix-
els per inch, and using the bitmap image mode. 128x128 is the size of the display and the size
of a screen. The resolution is not important because it refers to the number of pixels per inch
for the monitor. However, the image mode is important and must be set to bitmap if you are
using a monochrome display. This configures the image to have one bit per pixel.

2. Draw all lines using the pencil tool with a brush size of one pixel. The line tool, paint brush
tool, and airbrush tool are also useful in drawing shapes and patterns.

Building Your Application 105

3. Draw text using the type tool.

4. Save the image as a windows bitmap. A dialog box may appear informing you that some im-
age data, such as printer settings, cannot be saved with this format. This does not effect the
image so you can just click on OK.

The image that we created based on the sketch in Figure 8-1 is shown in Figure 8-2 .

Figure 8-2 The bitmap image of the first screen of the demo program that was
created using Adobe Photoshop.

Creating Your Images

Once you have created the screens for your user interface, you need to ungroup them. Ungrouping
the screens into smaller images will allow you to save space in Flash memory since you don’t want
to store images with a lot of white space. To ungroup an image using Photoshop:

1. Select the marquee tool;

2. Left click on the upper left corner of an image you want to ungroup and drag the mouse pointer
to the lower right corner of the image. This will create a box with a moving dashed line
around the image;

3. Note the location of the upper left corner of the image; this location will be needed when you
want to load a graphic containing the image onto a screen;

106 Chapter 8: Programming the Graphical User Interface

4. Under the Edit Menu, select the cut option to move the image to the clipboard. The image will
disappear from the screen;

5. Under the File Menu, select the create new file option;

6. Name the file, based on the image. The height and width will automatically be set to the
height and width of the image that is in the clipboard;

7. Under the Edit Menu; select paste; and,

8. Save the ungrouped image in the Windows bitmap format.

The width of an image must be a multiple of 8 pixels and the image must be positioned on an 8 pixel
horizontal grid in a screen. Finer horizontal pixel placement and image widths would require bit
shifting of each byte of the image every time it is drawn, significantly slowing performance of the
GUI Toolkit. There are no limitations on the placement of an image in the vertical direction. The
size of an image is limited by its placement and the size of the display. For example, an image
placed in the upper left corner (at coordinates 0,0) can be up to 128 pixels wide by 128 pixels tall.
However, if the image is moved 8 pixels to the right and 12 pixels down (to coordinates 8,12), the
maximum size the image can be is 120 pixels wide by 116 pixels tall.

Transferring Your Images to the Handheld Controller

Once you have ungrouped all the images for your user interface, assemble them into a single direc-
tory. Images must be processed before you can use them with the GUI Toolkit; Mosaic’s Image
Conversion Program concatenates images into a single text file called an Image Data File. The
Image Data File is stored in the same directory as your images and when it is transferred to the
Handheld Controller, it stores your image data in RAM and then copies it into Flash. You must
transfer the Image Data File using Mosaic’s Terminal Program, to the Handheld Controller before
you transfer your application code. For more information on the Image Conversion Program, see
the section on the Image Conversion Program .

The Image Header File

An Image Header File is also created with the Image Conversion Program and stored in the same
directory as your images. The Image Header File associates the names of your images with the
location of their image data in Flash. The Image Header File must be included in your application in
order for you to create graphic objects.

The following shows the first few lines of the Image Header File used by the demo. The Image
Header File defines a few constants, named after the image files display_screen.bmp,
sound_screen_bmp, and welcome.bmp shown in the following listing. The constants contain the
addresses of the image data in Flash memory on the Handheld Controller. For more information on
the memory map of the Handheld Controller see Chapter 4: Making Effective Use of Memory.

Listing 8-1 The first few lines of the Image Header File.
#define DISPLAY_SCREEN_BMP 0x7101F36
#define SOUND_SCREEN_BMP 0x102756
.
.

Building Your Application 107

.
#define WELCOME_BMP 0x103497

Coding Your Application

Once you have designed and built the user interface for your application and you have transferred
the images to the Handheld Controller, you can start writing the code to animate your instrument.
All GUI applications need the following components:

The pre-loaded GUI Toolkit driver software;

The Image Data and Image Header Files from the Image Conversion Program;

An initialization routine that initializes the GUI Toolkit and sets up a task to run your applica-
tion’s user interface.

Routines that create and configure objects;

Event procedures that animate controls;

Routines that load objects onto screens; and,

An endless loop that executes event procedures

Each of these components are described in the following sections.

The GUI Toolkit Driver Software

The GUI Toolkit driver software is pre-installed on your Handheld Controller. However, you will
need to copy the library files (which define constants, structures, and headers for the GUI Toolkit
methods) to the same directory as your source code as described below.

The GUI Toolkit driver software is provided as a pre-coded modular runtime library, known as a
“kernel extension” because it enhances the on-board kernel's capabilities. The library functions are
accessible from C and Forth.

The kernel extension for the GUI Toolkit is available from Mosaic Industries on the Installation CD.
Look in the Demos and Drivers directory, in the subdirectory corresponding to your hardware, in the
GUI Toolkit folder.

The kernel extension is shipped as a “zipped” file named “packages.zip”. Unzipping it (using, for
example, winzip or pkzip) extracts the following files:

◙ readme.txt - Provides summary documentation about the library.

◙ install.txt - The installation file, to be loaded to COLD-started controller.

◙ library.4th - Forth name headers and utilities; prepend to Forth programs.

◙ library.c - C callers for all functions in library; #include in C code.

◙ library.h - C prototypes for all functions; #include in extra C files.

108 Chapter 8: Programming the Graphical User Interface

Library.c and library.h are only needed if you are programming in C. Library.4th is only needed if
you are programming in Forth. The uses of all of these files are explained below.

We recommend that you move the relevant files to the same directory that contains your application
source code; the references to the library files in the demo assume the library files are in the same
directory as the source code.

Using the Driver Code with C

Move the library.c and library.h files into the same directory as your other C source code files and
use the following directives in your highest level source code file:

#include “library.h”
#include “library.c”

The library.h contains the prototypes and constants of the GUI Toolkit while library.c contains the
code to call the various GUI Toolkit methods. You should include library.c only once in your high-
est level source code file but include library.h in every additional source file that uses GUI Toolkit
constants or functions.

Note that all of the functions in the kernel extension are of the _forth type. While they are fully
callable from C, there are two important restrictions. First, _forth functions may not be called as
part of a parameter list of another _forth function. Second, _forth functions may not be called from
within an interrupt service routine unless the instructions found in the file named

\fabius\qedcode\forthirq.c

are followed.

NOTE: If your compiler was purchased before June 2002, you must update the files,
qlink.bat and qmlink.bat in your /fabius/bin directory on your installation before
using the kernel extension. You can download a zip file of new versions from
http://www.mosaic-industries.com/Download/new_qlink.zip

The two new files should be placed in c:\Fabius\bin. This upgrade only has to be
done once for a given installation of the C compiler.

Using the Image Data and Image Header Files

Before writing your application code, be sure to transfer the Image Data File, created with the Image
Conversion Program, to the Handheld Controller. Then, be sure to include the Image Header File in
your application as shown below:

Listing 8-2 The first few lines of the demo program.
#include <\mosaic\allqed.h> // Include all of the Mosaic utilities.
#include “library.h” // Define prototypes and constants of the GUI Toolkit.
#include “library.c” // Code used to call the GUI Toolkit functions.
#include “image_header.h” // Include constants that define location of your images

Building Your Application 109

Writing Your Application’s Initialization Routine

The initialization routine of your application needs to initialize the GUI Toolkit and setup a task to
control the GUI Toolkit before any GUI Methods are called.

Initialize_GUI must be called before any other GUI method!

To initialize the GUI Toolkit, call Initialize_GUI, passing it a heap start address and a heap end
address as shown in the demo.

Listing 8-3 Initializing the GUI Toolkit
#define GUI_HEAP_START 0x0F3000L
#define GUI_HEAP_END 0x0F6FFFL
.
.
void main(void)
{
 Initialize_GUI (GUI_HEAP_START, GUI_HEAP_END);
 .
 .
}

Initialize_GUI performs several actions: it sets up a heap memory structure for the GUI Toolkit;
it sets up and activates a task for the GUI Toolkit; it initializes and starts the timeslicer; and it con-
figures several critical objects, called the GUI Toolkit’s pre-instantiated objects.

All GUI objects and their associated properties are stored in a heap accessed only by the GUI Tool-
kit. This GUI Heap can be located in any contiguous block of RAM (i.e. it may span consecutive
pages of RAM) but it is typically placed on page 0x0F from 0x3000 to 0x6FFF as shown in the
example above. The size of the heap that is needed by the GUI Toolkit depends on your application.
As a benchmark, the demo program uses approximately 8k of heap space. Because all objects are
stored in the GUI Heap, it is easy to add, modify, or resize objects without worrying about the spe-
cifics of their memory allocation.

The GUI Toolkit runs in a stand-alone task called the GUI Task. The GUI Task executes an endless
loop that:

◙ checks to see if new objects need to be created or existing objects need to be modified;

◙ polls the keypad looking for events;

◙ checks to see if a user defined event procedure needs to be called (as part of the GUI Timer);
and,

◙ calls Pause.

When an action key is pressed, the GUI Task sends a message indicating that the event procedure
should be executed. Service_GUI_Events listens for messages from the GUI Task and executes
the appropriate event procedure when commanded. Service_GUI_Events must be included in
the infinite loop of a task that you create (separate from the GUI Toolkit’s Task) as shown in the
following example. This task should also be in charge of creating and initializing the objects for
your application.

110 Chapter 8: Programming the Graphical User Interface

Listing 8-4 Servicing GUI Events
TASK taskbase;
.
.
void GUI_Monitor (void)
{
 Initialize_GUI (GUI_HEAP_START, GUI_HEAP_END);
 .
 while(1)
 {
 .
 .
 Service_GUI_Events();
 Pause();
 }
}
void main(void)
{
 .
 BUILD_C_TASK(0, 0, &taskbase); // build task
 ACTIVATE(GUI_Monitor,&taskbase); // activate task
 StartTimeslicer(); // starts elapse time clock, enables interrupts
 Pause(); // start next task immediately
}

The GUI Toolkit is a resource whose access must be controlled. Only the GUI Toolkit (running in
the GUI Task) polls the keypad, writes to the display, creates objects, or modifies objects. We rec-
ommend that you use only one task to run the your application’s user interface so that only one task
interacts with the GUI Toolkit. However, if multiple tasks in your application need to use the GUI
Toolkit, you must create and use a resource variable to assure that only one task accesses the GUI
Toolkit at a time. See the chapter on Real Time Programming for more information on using re-
source variables.

The GUI Task should have an opportunity to run approximately once every 50 milliseconds. Calling
the GUI Task more frequently will not improve performance because the GUI Task polls the
timeslicer to assure it is not called more than once every 50 milliseconds. Calling the GUI Task less
frequently will not cause any errors but may result in sluggish performance. Because the GUI Tool-
kit polls the timeslicer, the timeslicer must be running or the GUI Toolkit will freeze. The GUI
Task takes approximately one millisecond to execute if no events occur, no new object needs to be
created, and no existing object needs to be modified. When an event fires, the time the GUI Task
takes to execute is proportional to the number of items that are loaded onto the visible screen. For a
screen with 15 objects, it will take approximately 5 milliseconds to pass the event to the responsible
control. Additional time is required if the responsible control has an image that has to be redrawn.

The GUI Toolkit’s Pre-Instantiated Objects

The GUI Toolkit has a set of special objects that are created and configured only when you initialize
the GUI Toolkit. These special objects are called the pre-instantiated objects because they are in-
stantiated or created before the GUI Toolkit starts it’s task. These objects include the GUI Toolkit
itself, display, four predefined screens, four predefined keypads, battery, timer, pen, buzzer, and
default font. You can not create additional instances of these objects because they are tied to a spe-
cific piece of hardware or unique function of the GUI Toolkit.

Building Your Application 111

The GUI Toolkit is itself an object with properties that influence the operation of the GUI Task and
all other objects. The GUI Toolkit Object is called the GUI TOOLKIT and has properties that de-
termine how objects such as graphics and controls are loaded into screens, whether events are serv-
iced, and the behavior of the GUI Task when an error occurs.

The Display Object is called the GUI_DISPLAY, and is tied to the physical display. Properties of the
GUI_DISPLAY control the behavior of the display such as adjusting the contrast or controlling the
backlight. The GUI_DISPLAY contains four pre-instantiated screens called GUI_SCREEN0 to
GUI_SCREEN3. A property of GUI Screens is their VISIBLE property. Only one of the GUI
Screens may be made visible at a time. When it is made visible, the other GUI Screens are auto-
matically made not visible and the display suddenly shows the visible screen’s objects. GUI
Screens are the only objects that are shown on the physical display. To show an object like a
graphic on the display, the object must be loaded into the visible GUI Screen. The visible screen
after Initialize_GUI is called is GUI_SCREEN0.

Each GUI Screen has an associated keypad named GUI_KEYPAD0 to GUI_KEYPAD3. A keypad is a
collection of keys; the possible types of keys are action keys, data entry keys, and shift keys. Action
keys generate events when a user presses the key (press event), holds down the key (hold event), and
releases the key (release event). Data entry keys are used to enter numbers, letters, or symbols into
textboxes. You can overload data entry keys so that the same key can be used to enter multiple
numbers, letters, or symbols. For example, in the demo, the number 9 data entry key is used to enter
the number “9” as well as the letters “W”, “X”, “Y”, “Z”, “w”, “x”, “y”, or “z”. Shift keys are used
to change the shift state to enable the overloading of data entry keys.

The Battery Object is called the GUI_BATTERY, and it is tied to the physical rechargeable batteries.
Properties of the GUI_BATTERY include the battery voltage, battery current usage, battery state, and
whether the charger is on or off.

The Timer Object is called the GUI_TIMER, and it is used to repetitively call user defined event
procedures. The GUI_TIMER is useful for calling routines that need to be called every so often to
perform tasks like reading the battery.

The Pen Object is called the GUI_PEN. This useful tool generates geometric shapes and line draw-
ings on a screen. The GUI_PEN has properties that control how the points and lines are drawn so
you don’t have to pass all the optional parameters to the drawing method each time it is called.

The Buzzer Object is called the GUI_BUZZER and it is associated with the piezo electric beeper.
Properties of the GUI_BUZZER control the length of time of a beep and turn the buzzer on and off.

The Default Font Object is called the GUI_FONT and is associated with a custom proportional font
that is10-pixels tall. The default font is used to render string data from a textbox onto a screen
where it can be shown.

Creating New Objects

The GUI Toolkit also has other objects, like graphics and textboxes, that you can create using the
New_Object method. New_Object requires one input parameter that specifies the type of object
you want to create; GRAPHIC, FONT, TEXTBOX, ACTION_KEY, DATA_ENTRY_KEY, SHIFT_KEY,

112 Chapter 8: Programming the Graphical User Interface

SCREEN, and PLOT are all valid object types. New_Object returns an integer that you store into a
variable. This variable (which we call an object reference because it contains a reference to the
object) is used to set properties of the object and perform actions on the object like loading the ob-
ject onto a screen.

The following code from the demo, creates a new graphic object and stores its object reference into
a variable named graphicWelcome. Later, we’ll set the image of the graphic and then load it into
a screen.

Listing 8-5 Creating a New Graphic.
int graphicWelcome;
.
.
.
void Initialize_Screen0 (void)
{
 graphicWelcome = New_Object (GRAPHIC);
 .
 .
 .
}

Objects can be created but not destroyed. Because objects are stored in the heap, you can only cre-
ate a finite number of them. Different objects use different amounts of heap space. For example,
graphics and fonts only use a few bytes of heap space while plots use hundreds of bytes depending
on the size of its buffer.

Setting the Property of Objects

All objects have their properties set to default values when they are created so that you need to set as
few properties as possible to have a fully functional object. However, certain objects like graphics
require you to set its image before the graphic can be loaded onto a screen.

In the demo, Initialize_Screen0 creates a graphic and then sets it’s image property using a
constant defined in the Image Header File.

Listing 8-6 Setting the Property of a Graphic.
int graphicWelcome;
.
.
.
void Initialize_Screen0 (void)
{
 graphicWelcome = New_Object (GRAPHIC);
 Set_Property (graphicWelcome, IMAGE, WELCOME_BMP);
 .
 .
 .
}

Creating and Initializing Controls

Now that you’re familiar with creating graphic objects, we’ll show you how to create an action key.
To create an action key:

Building Your Application 113

1. Use the New_Object method to create an action key and store the object reference to the ac-
tion key into a variable. By default, the action key will beep when it receives a press event.
You can change this behavior by setting the KEYPAD_BEEP property of the keypad containing
the action key (GUI_KEYPAD0 in this case) to GUI_FALSE.

2. Initialize any required action key properties such as BLOCK_ON_HOLD. The next section dis-
cusses when to use blocking in your application.

3. Define the PRESS_EVENT_PROCEDURE for the action key. Writing event procedures is cov-
ered after the next section on blocking.

4. Associate the event procedure with the action key using the Set_Property method.

5. Insert the action key into a keypad using the Insert_Key method. Inserting a key into a
keypad associates the key with a screen. When the associated screen becomes visible, the key
becomes active (i.e. the key will responded to presses). The key positions are shown in the
following table:

Table 8-1 The key positions for a keypad.

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

20 24 28 32

21 25 29 33

22 26 30 34

23 27 31 On / Off

The on / off key is tied to power circuitry so it can not be moved or assigned to different function.

The following code shows the Initialize_Screen0 function from the demo that illustrates how
to create an action key that, when pressed, will beep, and execute an event procedure.

Listing 8-7 Creating and Initializing a Control.
int actionkeyFunction1;
.
.
.
void Initialize_Screen0 (void)
{
 .
 .
 .
 actionkeyFunction1 = New_Object(ACTION_KEY);
 Set_Property(actionkeyFunction1, BLOCK_ON_PRESS, GUI_TRUE);
 Set_Property(actionkeyFunction1, PRESS_EVENT_PROCEDURE, (long)
 Function1_event_procedure_ptr);
 // Position the function 1 key to be in the upper left corner of the keypad.
 Insert_Key (GUI_KEYPAD0, actionkeyFunction1, 0);
 .
 .
 .
}

114 Chapter 8: Programming the Graphical User Interface

Defining and initializing other controls like data entry keys and shift keys are handled in the same
way. Examples of how to define and initialize data entry keys and shift keys are shown in the demo.

When To Use Blocking

Turning off the service events property of the GUI Toolkit (also called blocking) disables the key-
pad and keys from changing GUI Toolkit properties. Blocking is required when the state of the GUI
Toolkit must remain unchanged for a short time period. Blocking is usually associated with action
keys with event procedures that need to read, write, or change properties or calls GUI Toolkit meth-
ods. As shown in the previous listing, the block on press property of the action key is set because its
event procedure (as shown in the next listing) changes the visible property of a screen. Thus once
the action key is pressed, no other keys will be able to change GUI Toolkit properties (so another
key that is simultaneously pressed can’t make another screen visible causing a conflict). If you
configure an action key to block, it is your responsibility to re-enable the servicing of events in the
event procedure. Typically, the re-enabling of events is the last thing you do in an event procedure
before exiting.

Writing Event Procedures

Event procedures are functions that you write to animate your controls. Event procedures cannot
take any parameters or return any values, but they can set variables and call other GUI methods like
Clear and Refresh. In the demo, the event procedure for the Function 1 Action Key changes the
visible screen. The following listing shows the code for the action key’s event procedure.

Listing 8-8 Writing the Event Procedure.
void Function1_Event_Procedure (void)
{
 // Set GUI Screen 3 to be the visible screen.
 Set_Property (GUI_SCREEN3, VISIBLE, GUI_TRUE) ;
 // The action key associated with this event procedure must be configured to
 // block on press since the event procedure must change the visible property
 // of a screen. Re-enable the servicing of events here at the end of the
 // event procedure.
 Set_Property (GUI_TOOLKIT, SERVICE_EVENTS, GUI_TRUE);
}
// We need to store the address of the event procedure into a function pointer which
// will be used to associate the event procedure with the action key.
#include “begin_event_procedure_pointers.h”
.
.
.
xaddr (*function1_event_procedure_ptr)(void) = Function1_Event_Procedure;
.
.
.
#include “end_event_procedure_pointers.h”

Loading Objects into Screens

The final step in creating a GUI application is loading the objects onto the screen. To load an object
onto a screen, use the Load method. The following code initializes a graphic for GUI_SCREEN0 and
then loads it into the screen.

Building Your Application 115

Listing 8-9 Loading a Control into a Screen.
void Initialize_Screen0 (void)
{
 graphicWelcome = New_Object (GRAPHIC);
 Set_Property (graphicWelcome, IMAGE, WELCOME_BMP);
 Load (GUI_SCREEN0, graphicWelcome, 0, 0);
 .
 .
 .
}

We've now shown you how to design and build your user interface, initialize the GUI Toolkit, create
and initialize objects, write event procedures, and load objects onto screens. This final section cov-
ers how to handle errors that may occur during your application.

Handling Errors

The GUI Toolkit has extensive error handling and reporting abilities. When an error occurs, an
error code is logged and an attempt is made to recover from the error. For example, if you try to
load a graphic that contains an image which is 24 pixels wide to the coordinates (112,0), 8 pixels of
the image will hang off the edge of the screen (since the width of a screen is 128 pixels). This will
generate an X_OUT_OF_RANGE error, and the graphic will instead be loaded to the right-most posi-
tion on the screen at (104,0). You can read the error code by using the Read_Error method of the
GUI Toolkit object. Because only the last error is recorded, you must call Clear_Error after you
read the error to prevent servicing the same error more than once. The following code shows how to
create a custom error handling and reporting routine:

Listing 8-10 Handling Errors.
void Print_Error (void)
{
 switch (Read_Error())
 {
 case HEAP_FULL: printf(“Can’t create any more new objects.\n”); break;
 case X_OUT_OF_RANGE: printf(“X coordinate is out of range.\n”); break;
 // You would put other error codes and error messages here.
 }
 Clear_Error(); // Be sure to clear the error after we read it;
 // we don’t want to respond to the same error more than once.
}

Multiple errors can occur for each GUI Toolkit method but only one can occur at a time. It is up to
you to decide if and when you should check for errors.

A useful debugging tool that comes with the GUI Toolkit is the property ABORT_ON_ERROR. If true,
an error causes the controller to disable interrupts, stop multitasking, and send a descriptive error
message to the primary serial port, Serial 1. The error message identifies the calling method and
parameters that triggered the error. ABORT_ON_ERROR helps you to quickly identify the source of
the error; this is especially useful when developing a complex application. This property should be
set to GUI_FALSE for the production version of your application.

116 Chapter 8: Programming the Graphical User Interface

Expanding the GUI Toolkit’s Objects and Methods

We understand that each GUI application you write has unique requirements. Although it is possi-
ble for you to implement many things like custom plotting routines or drawing geometrical shapes
by writing high level code, there maybe a significant performance advantage in our providing pre-
packaged objects to you that perform the desired function. Please contact Mosaic Industries about
adding additional objects, properties, and methods to the GUI Toolkit. We are planning to add
many features to the toolkit to enhance it’s capabilities; the features you are looking for may already
exist.

GUI Objects in Detail
There are many kinds of GUI objects. Some are tied tightly to particular hardware (the
GUI_BATTERY and GUI_DISPLAY), some collect other objects together (GUI Screens), some re-
spond to events (controls), some are tools (the GUI_PEN), and some simply contain data for display
(graphics and textboxes). Several of the GUI objects are created and configured when
Initialize_GUI is called. These objects include the GUI_DISPLAY, GUI_BATTERY,
GUI_BUZZER, GUI_FONT, GUI Screens, GUI Keypads, and GUI_PEN. You can not create more of
these object types. For other object such as graphics, textboxes, keys, screens, and plots, you can
create as many as you like. All of the GUI Toolkit objects, their 32-bit properties, associated meth-
ods, and possible errors are described below. More detailed descriptions of each method, property,
and value is available in the GUI Toolkit Glossary.

GUI_TOOLKIT

The GUI Toolkit is itself an object that contains properties that effect all other objects. The GUI
Toolkit Object is called GUI_TOOLKIT. These are its properties, methods, and possible errors:

Properties

Table 8-2 Properties of the GUI_TOOLKIT.

Property Values Meaning

ABORT_ON_ERROR GUI_TRUE,
GUI_FALSE

If true, disables interrupts, stops multitasking, and
sends a detailed message to serial 1 when an error
occurs.

AVAILABLE_HEAP_SPACE Unsigned Long Read only. Contains the number of bytes remaining
in the GUI Heap.

CURRENT_SCREEN GUI_SCREEN0
to
GUI_SCREEN3

Contains the current visible screen.

SERVICE_EVENTS GUI_TRUE,
GUI_FALSE

If false, events are not serviced. All events
generated by pressed keys are ignored.

GUI Objects in Detail 117

Property Values Meaning
STANDARD_FONT GUI_FONT or

custom font
object

Contains the reference to the font object used to
render string data in textboxes. At initialization,
STANDARD_FONT is set to GUI_FONT which is a
proportional font with a height of 10 pixels. You can
set this property to your own custom font, if desired.

HORIZONTAL_SNAP_TO_GRID GUI_TRUE Read only. Causes all objects loaded onto a screen
to be located on the nearest 8-pixel horizontal
boundary. This property is always true for speed.

VERICAL_SNAP_TO_GRID GUI_TRUE,
GUI_FALSE

If true, causes all objects loaded on to a screen to
be located on the nearest 8-pixel vertical boundary.

Methods

Table 8-3 Methods of the GUI_TOOLKIT.

Method Parameters Return
Value

Action

Initialize_GUI Start of the GUI
Heap, End of the
GUI Heap

None Initializes the GUI_TOOLKIT,
GUI_DISPLAY, GUI_BATTERY,
GUI_PEN, GUI_FONT, GUI_BUZZER, GUI
Screens, and GUI Keypads. Sets up and
activates a task in common memory.
Initializes and starts the timeslicer. Calling
any other GUI Toolkit method before calling
Initialize_GUI will crash the controller.

Service_GUI_Events None None Executes the event procedures of controls.
This method must be included in a task as
part of your infinite loop to service events
generated from the GUI Task.

Read_Error None Error code Reads the last reported error.

Clear_Error None None Clears the last reported error.

New_Object Object Type Object
Reference

Create a new object and return an object
reference which is stored in an object variable
for later use.

Set_Property Object
Reference,
Property, Value

None Set an object’s property as a 32-bit value.

Get_Property Object
Reference,
Property

Value Get an object’s property as a 32-bit value.

118 Chapter 8: Programming the Graphical User Interface

Errors

Table 8-4 Errors of the GUI_TOOLKIT.

Error Associated Method Meaning

HEAP_FULL Initialize_GUI,
New_Object

Heap is full. There is no room to create the
GUI Toolkit, create new objects, or resize
existing objects.

GUI_EXISTS Initialize_GUI The GUI Task has already been activated.
Do not call Initialize_GUI more than
once!

DISPLAY_INITIALIZATION
_FAILURE

Initialize_GUI There was a problem initializing the display.
This error occurs if there was a hardware
communications problem talking to the
display controller. If the problem persists,
contact Mosaic Industries.

INVALID_OBJECT New_Object,
Set_Property,
Get_Property

The object reference is not valid.

INVALID_PROPERTY Get_Property,
Set_Property

The property is not valid.

INVALID_IMAGE Set_Property There is no valid image at the specified
address. This error is returned after
attempting to set the IMAGE property of a
graphic or a font.

INVALID_FONT Set_Property The object reference is not a font when
setting the STANDARD_FONT property of
the GUI Toolkit or setting the
TEXTBOX_FONT property of a textbox.

BUFFER_SIZE_OUT_OF_RAN
GE

Set_Property The size of the plot object buffer must be
greater than or equal to the width of the plot
in pixels

WIDTH_OUT_OF_RANGE Set_Property The width will create a plot or textbox that is
wider than the width of the screen.

HEIGHT_OUT_OF_RANGE Set_Property The height will create a plot or textbox that is
taller than the height of the screen.

GUI_DISPLAY

The GUI_DISPLAY corresponds to the physical display. Properties of the GUI_DISPLAY and all
other GUI objects are accessed or modified using the GUI_TOOLKIT methods Set_Property and
Get_Property.

Properties

Table 8-5 Properties of the GUI_DISPLAY.

Property Values Meaning

WIDTH_IN_PIXELS 128xels Read only. Contains the width of the display in pixels.

GUI Objects in Detail 119

Property Values Meaning
HEIGHT_IN_PIXELS 128xels Read only. Contains the height of the display in pixels.

CONTRAST 0 to 31 Changes the contrast voltage of the monochrome display.
Saturates at 0 or 31. Initialized to 16.

BACKLIGHT_ON GUI_TRUE,
GUI_FALSE

If true, turns the backlight on for monochrome displays.
Initialized to GUI_TRUE.

BRIGHT_BACKLIGHT GUI_TRUE,
GUI_FALSE

If true and the backlight is on, supplies more current to
the backlight to increase the brightness. Initialized to
GUI_FALSE.

GUI Screens

A screen is a collection of functionally related objects, including textboxes, plots, and graphics that
are presented together on the display. Screens are fixed in size to 128 pixels wide by 128 pixels tall.
For speed, objects loaded into screens are aligned on 8 pixel horizontal grid. A property of the GUI
Toolkit, called VERTICAL_SNAP_TO_GRID, allows you to align objects vertically as well. The
coordinate system for specifying the location of objects and drawing to a screen is in pixels and the
origin is the upper left corner of a screen. The x coordinate represents a displacement from the
origin in the horizontal direction and the y coordinate represents a displacement from the origin in
the vertical direction. An increase in x moves the coordinate to the right and an increase in y moves
the coordinate down.

Screens whose object images are stored in the display’s memory are called GUI Screens. GUI
screens have a visible property that when set, causes the selected screen to be shown on the display
and makes all other GUI Screens invisible. Only one GUI Screen can be made visible at a time.
GUI Screens are the only objects that are shown on the physical display. To show an object like a
graphic on the display, the object must first be loaded into a GUI Screen. The visible screen after
Initialize_GUI is called is GUI_SCREEN0.

You can also create additional screens that reside in the heap. Heap screens, unlike GUI Screens,
can not be made visible. Heap screens allow you to build many different screens when you are
initializing your application and then quickly switch them into GUI Screens at run time using the
Copy_Screen method. Heap screens are described in detail in a later section.

Properties

Table 8-6 Properties of GUI Screens.

Property Values Meaning

WIDTH_IN_PIXELS 128 pixels Read only. Contains the width of the screen in pixels.

HEIGHT_IN_PIXELS 128 pixels Read only. Contains the height of the screen in pixels.

VISIBLE GUI_TRUE,
GUI_FALSE

If true, makes the screen visible and sets the last visible
screen’s property to false.

NUM_OBJECTS Unsigned Long Read only. Contains the number of objects contained in
the screen.

120 Chapter 8: Programming the Graphical User Interface

Property Values Meaning
IN_DISPLAY GUI_TRUE,

GUI_FALSE
Read only. TRUE if the screen is in the display memory,
FALSE otherwise. All GUI screens have this property set
to GUI_TRUE.

SCREEN_ADDRESS Extended Address Read only. Contains the address of the rendered image
of the screen and its objects in the display.

Methods

Table 8-7 Methods of GUI Screens.

Method Parameters Return Value Meaning

Load Screen Reference, Object
Reference, X Coordinate, Y
Coordinate

None Load an object into a screen at the
specified x and y coordinates.

Un_Load Screen Reference, Object
Reference, X Coordinate, Y
Coordinate

None Unload an object from a screen at
the specified x and y coordinates.

Copy_Screen Source Screen Reference,
Destination Screen Reference

None Copies the contents of the source
screen into the destination screen.
The contents of the destination
screen are over written.

Clear Screen Reference None Unloads all objects from the screen
and erases the screen.

Refresh Screen Reference None Re-renders graphics, textboxes and
plots in the screen that have their
refresh flags set to true. Sets the
refresh flags to false once the objects
have been refreshed.

Redraw Screen Reference None Re-draws all objects contained in the
screen.

Errors

Table 8-8 Errors of GUI Screens.

Error Associated Method Meaning

HEAP_FULL Load Heap is full. There is no room to load an object into
a GUI Screen.

INVALID_OBJECT Load, Un_Load The object reference cannot be loaded into a GUI
Screen.

INVALID_SCREEN Load, Un_Load, Clear,
Redraw, Refresh,
Copy_Screen

The object reference is not a GUI Screen.

X_OUT_OF_RANGE Load, Un_Load The x coordinate plus the width of the object is
greater than the width of the GUI Screen.

Y_OUT_OF_RANGE Load, Un_Load The y coordinate plus the height of the object is
greater than the height of the GUI Screen.

GUI Objects in Detail 121

GUI Keypads

Each GUI Screen has a corresponding keypad that holds the keys that animate the screen.
GUI_SCREEN0 is associated with GUI_KEYPAD0, GUI_SCREEN1 is associated with GUI_KEYPAD1,
GUI_SCREEN2 is associated with GUI_KEYPAD2, and GUI_SCREEN3 is associated with
GUI_KEYPAD3. GUI Keypads can contain three different types of keys - action keys, data entry
keys, and shift keys. Each type of key is covered in a later section. Only the keypad of the visible
screen is active (i.e. responds to key presses).

Properties

Table 8-9 Properties of the GUI Keypads.

Property Values Meaning

DATA_ENTRY_EVENT_PROCEDURE Extended Address Execute this user defined event
procedure when a non-overloaded data
entry key is pressed or an overloaded
data entry key is pressed and a timeout
has been reached. If zero, no event
procedure is executed.

INT_DATA_ENTRY_EVENT_PROCE
DURE

Extended Address Execute this user defined event
procedure when an overloaded data entry
key is pressed and a timeout has not
been reached. If zero, no event
procedure is executed.

SHIFT_EVENT_PROCEDURE Extended Address Execute this user defined event
procedure when any shift key is pressed.
If zero, no event procedure is executed.

DATA_ENTRY_TEXTBOX Textbox object The textbox that contains the keycodes of
pressed data entry keys.

SHIFT_STATE_TEXTBOX Textbox Object The textbox that contains a string
corresponding to the shift state.

KEYPAD_BEEP GUI_TRUE,
GUI_FALSE

If true, sounds the buzzer when a key is
pressed.

KEYPAD_BEEP_DURATION Unsigned Integer Controls the length of time (in 5 ms
intervals) the piezo electric buzzer is on
when a key is pressed. The default value
is 1, corresponding to 5 milliseconds.

KEY_CODE 1 – 255 Read only. Contains the key code of the
last pressed data entry key. See the
following section on Data Entry Keys for
more information on Key Codes.

PRIOR_KEY_CODE 1 – 255 Read only. Contains the key code of the
data entry key that was pressed before
the last data entry key.

KEY_EVENT PRESS_EVENT,
HOLD_EVENT,
RELEASE_EVENT,
NO_EVENT

Read only. Contains the last event.

122 Chapter 8: Programming the Graphical User Interface

Property Values Meaning
PRIOR_KEY_EVENT PRESS_EVENT,

HOLD_EVENT,
RELEASE_EVENT,
NO_EVENT

Read only. Contains the event that
occurred before the last event.

KEY_POSITION 0 – 15 or 20 – 34 Read only. Contains the key position of
the last key. See Table 8-1 for the key
positions on the keypad.

PRIOR_KEY_POS 0 – 15 or 20 – 34 Read only. Contains the key position of
the key pressed before the last key.

KEY_TYPE ACTION_KEY,
DATA_ENTRY_KEY,
SHIFT_KEY,
NO_KEY

Read only. Contains the type of key that
was last pressed.

PRIOR_KEY_TYPE ACTION_KEY,
DATA_ENTRY_KEY,
SHIFT_KEY,
NO_KEY

Read only. Contains the type of key that
was pressed before the last key.

PRESS_NUMBER Unsigned Integer Read only. Contains the number of times
the last data entry key was pressed
before a timeout expired.

SHIFT_STATE SHIFT_UP,
SHIFT_NEUTRAL,
SHIFT_DOWN

Contains the current shift state.

Methods

Table 8-10 Methods of the GUI Keypads.

Method Inputs Outputs Meaning

Insert_Key Keypad Reference,
Key Reference, and
Key Position

None Inserts a key object into the specified keypad object at
the specified position. Valid positions are shown in
Table 8-1.

Errors

Table 8-11 Errors of the GUI Keypads.

Error Associated Method Meaning

INVALID_KEY Insert_Key The specified object reference is not a valid
key.

INVALID_KEYPAD Insert_Key The specified object reference is not a valid
keypad.

KEY_POS_OUT_OF_RANGE Insert_Key The specified key position is not between 0
and 15 or 20 and 34.

GUI Objects in Detail 123

GUI_PEN

The GUI_PEN is a tool used to draw points, lines, and shapes on a screen. You use its Draw method
to draw to the screen, and its properties control how points or lines are rendered so you don’t have to
pass all the optional parameters to the Draw method.

Properties

Table 8-12 Properties of the GUI_PEN.

Property Values Meaning

PEN_TYPE SET, UNSET Determines whether the pen draws or erases from the screen.

SHAPE POINT, LINE Determines the shape that is drawn or erased from the screen.

TARGET_SCREEN Screen Reference Contains the screen the pen is rendering to.

LAST_COORDS Unsigned Long Contains the last coordinates passed to the Draw method. The y
coordinate is located in the 16 most significant bits and the x
coordinate is located in the 16 least significant bits.

Methods

Table 8-13 Methods of the GUI_PEN.

Method Inputs Outputs Meaning

Draw X Coordinate, Y
Coordinate

None Draw or erase a point or a line onto a screen. If
drawing a line, draws from the last coordinate to the
coordinates passed to Draw. To draw a line from an
arbitrary point rather than the last coordinate, place
the new coordinate into LAST_COORDS.

Errors

Table 8-14 Errors of the GUI_PEN.

Error Associated Method Meaning

X_OUT_OF_RANGE Draw The x coordinate is outside of the width of the screen.

Y_OUT_OF_RANGE Draw The y coordinate is outside of the height of the screen.

GUI_BUZZER

The GUI_BUZZER corresponds to the piezo electric beeper and controls the length of the beep when
the Buzz method is called. The GUI_BUZZER is useful for alarms and system notifications.

124 Chapter 8: Programming the Graphical User Interface

Properties

Table 8-15 Properties of the GUI_BUZZER.

Property Values Meaning

BEEP_TIME Unsigned Long Controls the length of time the piezo electric buzzer is on during
a call to the Buzz method. Only the 16 least significant bits are
used. The units of BEEP_TIME are in TCNTs or 2 microsecond
intervals. The default value is 1000, corresponding to 2
milliseconds.

BEEPER_ON GUI_TRUE,
GUI_FALSE

If true, turns the piezo electric buzzer on.

Methods

Table 8-16 Methods of the GUI_BUZZER.

Method Inputs Outputs Meaning

Buzz None None Turns the piezo electric buzzer on for BEEP_TIME.

GUI_BATTERY

The GUI_BATTERY contains properties corresponding to the 6 AA rechargeable Nickle Metal Hy-
dride batteries. The GUI_BATTERY is used to monitor the state of the batteries. For more informa-
tion about the lifetime, replacement, and charging of the batteries, see the chapter on Powering Your
Handheld.

If reading the battery voltage, current draw, battery state, and charger state, be sure to install jump-
ers J3 and J4 on the Motherboard to connect the A/D inputs to the battery. Before you read any
properties of the battery, be sure the call Read_Battery to update the battery properties. If all 8
Port E lines are required by your application, don’t install the jumpers on the Motherboard and don’t
call Read_Battery. To monitor the battery and use the remaining Port E lines as digital or analog
inputs, you must get the 8 bit A/D resource before reading the other Port E lines and then release the
resource when finished.

Properties

Table 8-17 Properties of the GUI_BATTERY.

Property Values Meaning

BATTERY_STATE FULL_BATTERY,
MEDIUM_BATTERY,
LOW_BATTERY,
NO_BATTERY

Read only. Contains the current state of the battery.

BATTERY_VOLTAGE Unsigned Long Read only. In the 16 least significant bits, contains the
current battery voltage in millivolts.

GUI Objects in Detail 125

Property Values Meaning
BATTERY_CURRENT Unsigned Long Read only. In the 16 least significant bits, contains the

current draw of the Handheld in milliamps.

CHARGER_STATE GUI_TRUE,
GUI_FALSE

Read only. If true, the battery charger is on.

Methods

Table 8-18 Methods of the GUI_BATTERY.

Method Inputs Outputs Meaning

Initialize_Battery None None Turns on the 8-bit A/D circuitry of the processor which
is used to read the battery voltage, current usage,
battery state, and charger state.

Read_Battery None None Reads the battery voltage, current usage, battery
state, and charger state and stores it into the
appropriate properties.

GUI_TIMER

The GUI_TIMER allows you to repetitively call non-critical event procedures during a specified
interval. The GUI_TIMER is useful for calling routines every so often – like reading the battery once
a minute and showing the voltage on the display. If the repetitively called event procedure reads,
writes, or changes any GUI Toolkit property or calls a GUI Toolkit method, the first line of the
event procedure must disable the servicing of events and the last line of the event procedure must re-
enable the servicing of events. See the demo program for an example. The GUI_TIMER should only
be used for non-critical event scheduling because events may be delayed by interrupt service rou-
tines and other tasks. For critical event timing, use an interrupt service routine.

Methods

Table 8-19 Methods of the GUI_TIMER.

Method Inputs Outputs Meaning

Schedule_Event Extended
Address,
Interval, Start
Time, End Time

None Schedules an event procedure to be repetitively
called. The interval, start, and stop time is specified
in 5 ms increments. If 0 is specified for the start time,
the event procedure is called immediately. If 0 is
specified for the end time, the event procedure is
repetitively call forever or until the event procedure is
removed by Remove_Event. No error checking is
performed.

Remove_Event Extended
Address

None Removes an event procedure from being called by
the GUI_TIMER. No error checking is performed.

126 Chapter 8: Programming the Graphical User Interface

Graphic Object

A graphic object contains a single image as a property. Images are typically created on a PC but
need to be converted and transferred to the Handheld Controller before they can be loaded into a
graphic. Images are converted using Mosaic’s Image Conversion Program. The Image Conversion
Program creates two files, an Image Data File and an Image Header File. The Image Data File con-
tains the converted image data, and the Image Header File associates the location of the image data
on the Handheld Controller with a constant named after the file name of the image. Before the GUI
Toolkit is initialized and graphics are created, the Image Data File must be transferred to the Con-
troller using Mosaic’s Terminal Program. After the Image Data File is transferred and the GUI
Toolkit is initialized, a new graphic is created using the New_Object method and its image set
using the Set_Property method. The width and height of the graphic object are automatically set
when the IMAGE property of the graphic is set to a valid image. Error checking is performed to
assure the image is valid.

For the optimal performance of the GUI Toolkit, the width of an image must be a multiple of 8
pixels, and graphics must be loaded onto an 8 pixel horizontal grid in a screen. Finer horizontal
pixel placement and image widths would require bit shifting of each byte of the image every time it
is drawn, significantly slowing performance of the GUI Toolkit. To enforce the alignment there are
two properties of the GUI Toolkit that globally affect the placement of objects,
HORIZONTAL_SNAP_TO_GRID and VERTICAL_SNAP_TO_GRID. HORIZONTAL_SNAP_TO_GRID is
read-only and is always true where as VERTICAL_SANP_TO_GRID may be set to either true or false.
Images whose width does not fall on 8 pixel boundaries will not be converted with the Image Con-
version Program. The images must be cropped or stretched appropriately using an image-editing
program before the Image Conversion Program is used.

Properties

Table 8-20 Properties of Graphic Objects.

Property Values Meaning

WIDTH_IN_PIXELS 8 to 128 pixels Read only. Contains the width of the image in pixels.

HEIGHT_IN_PIXELS 1 to 128 pixels. Read only. Contains the height of the image in pixels.

IMAGE Extended
Address

Contains a pointer to the image contained in the graphic.

Image Conversion Program

Mosaic’s Image Conversion Program allows you to easily transfer images created on a PC to your
Handheld Controller for use with the GUI Toolkit. The image conversion program takes all of the
images in a selected directory and concatenates them into a single text file called an Image Data
File. The Image Data File is stored in the selected directory and is sent to the Controller using Mo-
saic’s Terminal Program, the terminal program provided by Mosaic Industries. The Image Data
File, by default, puts the converted image data into RAM on page 0x01 and then transfers the data
into Flash at page 0x10. For more information about the memory map of the Handheld Controller,
see Chapter 4: Making Effective Use of Memory.

GUI Objects in Detail 127

Another file, called an Image Header File, is created to associate the names of the images (which is
just the filename of the image) with their location in memory on the Controller. The Image Header
File contains constants named after the file names of the images and must be included in your pro-
gram to tell the GUI Toolkit where the images are stored. Supported image formats are mono-
chrome bitmap (*.bmp) and PCX (*.pcx) files. The following sections describe the user interface
and the error messages returned by the Image Conversion Program.

Image Conversion Program Interface

The user interface for Mosaic’s Image Conversion Program has a main screen, an advanced options
screen, a font selection screen, and a help screen. On the main screen there are controls that select
the directory that contain your image files, specify the type of image file (PCX or BMP) to convert,
and select the type of controller you are using. A button labeled “Convert Files Now” starts the
conversion process. In the advanced options screen there are controls that select your programming
language, desired target memory location for the image data, and filenames for the Image Data and
Image Header files. All of the advanced options are set to default values that will work for most
applications. In the font selection screen there are controls that allow you to preview and select
fonts to use with the GUI Toolkit. Once a font is selected, a bitmap image is made of all of the
characters of the font and a data file is created that contains the width of each character. The bitmap
file and the data file are then stored into the currently selected directory. The Image Conversion
program will then add the font bitmap file and the character width data file along with your images
into the Image Data File and the Image Header File. Be sure to select your working directory before
selecting a font and be sure to select the BMP image format to convert your selected fonts. The help
screen provides additional information for each of the options and controls.

Image Conversion Program Errors

Mosaic’s Image Conversion Program detects and reports the following error conditions:

◙ “Error changing to the specified directory”. The directory does not exist, it was moved, or
deleted. A new directory has to be specified.

◙ “Error opening an image file, Image Data File, or Image Header File”.

◙ “Not a valid bitmap file (no valid file identifier) or pcx file (no valid manufacturer or encod-
ing)”.

◙ “Bit depth of the image file does not match the specified value”.

◙ “Image width does not fall on an 8-pixel boundary”. All images must have a width that is a
multiple of eight pixels. This is required to quickly draw the images onto screens. Please crop
or stretch the image using any photo or image editing program such as Photoshop or Paint.

Font Object

A font object renders string data into images that can be displayed on a screen in a textbox. A font
object is like a graphic object in that it contains a single bitmap image of all 255 characters joined
together along with a data file that contains the widths of each character. Fonts are created on the
PC using the Image Conversion Program (see the previous section for more information). The GUI

128 Chapter 8: Programming the Graphical User Interface

Toolkit provides a custom proportional font that is 10 pixels tall called the GUI_FONT. The demo
program uses a Comic Sans font to demonstrate how to create and use font objects. While you can’t
create another instance of the GUI_FONT, you can create your own custom fonts as described in the
previous section.

Properties

Table 8-21 Properties of the Font Object.

Property Values Meaning

HEIGHT_IN_PIXELS 10 – 128 pixels. Read only. Contains the height of a single character in pixels.

IMAGE Extended
Address

Contains a pointer to the image of the characters contained in
the font.

IMAGE_WIDTH_DATA Extended
Address

Contains a pointer to the array that contains the width in pixels
of each character contained in the font.

Textbox Object

Textboxes are used in conjunction with fonts to render string data on a screen so it can be shown on
the display. Textboxes are useful for displaying information that constantly changes, like the status
of a process or the state of an instrument.

When textboxes are created, the font referenced by the STANDARD_FONT property of the GUI Tool-
kit, is stored into the TEXTBOX_FONT property of the textbox. If you did not store a custom font into
the STANDARD_FONT property of the GUI Toolkit, the GUI_FONT is stored into the TEXTBOX_FONT
property of the textbox. The GUI_FONT is a 10 pixel tall, proportional font; each character has a
different width depending on the glyph or symbol of the character. If you want to change the font of
a textbox, you must change it before you set the size of the textbox. Once you have set the size of a
textbox, the font can not be changed.

The size of a textbox is uninitialized when it is instantiated. The size of the textbox must be set
(using the Set_Property method along with the HEIGHT_IN_PIXELS and WIDTH_IN_PIXELS
properties) before a character or string is written into the textbox. Once the size of a textbox is set,
it cannot be changed. When the size of a textbox is initialized, a block of memory in the heap is
allocated for the textbox to render its string into. The string in a textbox must be rendered before it
can be shown on the display. The RENDER property controls whether or not the string in a textbox is
rendered. The RENDER property is set to GUI_TRUE when a textbox is instantiated. Turning this
property off is useful when a string in a textbox needs to be changed or modified frequently but does
not need to be shown on the display.

Properties

Table 8-22 Properties of the Textbox Object.

Property Values Meaning

WIDTH_IN_PIXELS 8 to 128 pixels Write once. Contains the width of the textbox in pixels.

GUI Objects in Detail 129

Property Values Meaning
HEIGHT_IN_PIXELS 10 to 128 pixels Write once. Contains the height of the textbox in pixels.

TEXTBOX_ROWS Unsigned Long Read only. The 16 least significant bits contain the
number of rows of the textbox. Equals to the textbox
height divided by the font height.

STRING_LINES Unsigned Long Read only. The 16 least significant bits contain the
number of lines the string in the textbox occupies when
rendered. Based on the number of characters in the
string and the textbox width.

FIRST_VISIBLE_LINE Unsigned Long The 16 least significant bits contain the line number of
the string that is written to the first row of the textbox.
Typically used for scrolling long strings in textboxes. See
the demo for an example.

STRING_LENGTH Unsigned Long Read only. The 16 least significant bits contain the
length of the string in the textbox.

TEXTBOX_FONT Font reference Contains a reference to the font object used to render the
string in the textbox. This property can only be set
before the size of the textbox is set.

RENDER GUI_TRUE,
GUI_FALSE

If true, immediately renders changes to the textbox
string.

INVERT GUI_TRUE,
GUI_FALSE

If true, inverts the background and rendered string. If
using this property, be sure to set this property to the
desired value before writing to the textbox.

BORDER GUI_TRUE,
GUI_FALSE

If true, draws a one-pixel border around the textbox.

Methods

Table 8-23 Methods of the Textbox Object.

Method Inputs Outputs Meaning

Add_Character Textbox Reference,
Character

None Adds a character to the end of the string in a
textbox.

Delete_Character Textbox Reference None Deletes a character from the end of the sting
in a textbox.

STRING_TO_TEXTBOX Textbox Reference,
String

None Writes a string up to 255 characters into a
textbox. Overwrites any existing string.

Textbox_To_String Textbox Reference String Reads the first 255 characters of the string in
a textbox.

Clear Textbox Reference None Sets all of the characters in the textbox to
ASCII space.

130 Chapter 8: Programming the Graphical User Interface

Errors

Table 8-24 Errors of the Textbox Object.

Error Associated Method Meaning

INVALID_OBJECT Clear The object reference is not a textbox.

INVALID_TEXTBOX Add_Character,
Delete_Character,
Textbox_To_String,
STRING_TO_TEXTBOX

The object reference is not a textbox.

HEIGHT_OUT_OF_RANGE Set_Property The height is greater than the height of the
display or less than the height of the textbox
font.

WIDTH_OUT_OF_RANGE Set_Property The width is greater than the width of the
display or less than the width of the widest
character of the textbox font.

Controls

Controls are objects that respond to keypad events such as key presses and releases. The GUI Tool-
kit has three types of controls for data entry and instrument control – Action Keys, Data Entry Keys,
and Shift Keys; each are described in the following sections.

Action Key Object

Action keys are used to invoke custom program actions such as turning on a motor, changing the
contrast level of the display, or starting a process. The custom program actions are performed using
event procedures or functions that you write that can be assigned to run when an action key is
pressed, held, or released. Event procedures cannot receive or return values but they can modify
global variables. If you need to write an event procedure that needs to read, write, or modify GUI
Toolkit properties, the servicing of events must be disabled using BLOCK_ON_PRESS,
BLOCK_ON_HOLD, and BLOCK_ON_RELEASE to prevent data corruption. If using BLOCK_ON_PRESS,
BLOCK_ON_HOLD, and BLOCK_ON_RELEASE, remember to re-enable the servicing of events (by
setting the GUI_TOOLKIT property, SERVICE_EVENTS to GUI_TRUE) prior to leaving the event
procedure. When an Action Key object is instantiated, all of its properties are initialized to 0.

Properties

Table 8-25 Properties of the Action Key Object.

Property Values Meaning

PRESS_EVENT_PROCEDURE Extended Address Execute this user defined event procedure when
the key is pressed. If zero, no event procedure is
executed.

HOLD_EVENT_PROCEDURE Extended Address Execute this user defined event procedure when
the key is held. If zero, no event procedure is
executed.

GUI Objects in Detail 131

Property Values Meaning
RELEASE_EVENT_PROCEDURE Extended Address Execute this user defined event procedure when

the key is released. If zero, no event procedure is
executed.

BLOCK_ON_PRESS GUI_TRUE,
GUI_FALSE

If true, disables the servicing of events when the
key is pressed.

BLOCK_ON_HOLD GUI_TRUE,
GUI_FALSE

If true, disables the servicing of events when the
key is held.

BLOCK_ON_RELEASE GUI_TRUE,
GUI_FALSE

If true, disables the servicing of events when the
key is released.

Data Entry Key Object

Data entry keys are used to enter alphanumeric characters and symbols into the
DATA_ENTRY_TEXTBOX of a keypad. Data entry keys may be overloaded; that is the same key can
be used to enter many different characters or symbols. The alphanumeric characters and symbols
are stored as key codes in the Data Entry Key object. Key codes are numbers from 1 to 255 that
refer to the images of the characters of a font that are copied to a textbox when a string is rendered.
Key codes are stored into the Date Entry Key object by using the Set_Property method. When a
Data Entry Key object is instantiated, all of its properties are initialized to 0; be sure to initialize the
Data Entry Key object (by storing key codes into the properties) before you use it.

Properties

Table 8-26 Properties of the Data Entry Key Object.

Property Values Meaning

SHIFT_NEUTRAL_VALUE 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is pressed and
the shift state is shift neutral.

NUM_SHIFT_UP_VALUES 0 to 5 Contains the number of shift up values in the Data
Entry Key.

SHIFT_UP_VALUE0 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is first pressed
and the shift state equals to shift up.

SHIFT_UP_VALUE1 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is pressed twice
and the shift state equals to shift up.

SHIFT_UP_VALUE2 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is pressed three
times and the shift state equals to shift up.

SHIFT_UP_VALUE3 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is pressed four
times and the shift state equals to shift up.

SHIFT_UP_VALUE4 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is pressed five
times and the shift state equals to shift up.

132 Chapter 8: Programming the Graphical User Interface

Property Values Meaning
NUM_SHIFT_DOWN_VALUES 0 to 5 Contains the number of shift down values in the

Data Entry Key.

SHIFT_DOWN_VALUE0 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is first pressed
and the shift state equals to shift down.

SHIFT_DOWN_VALUE1 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is pressed twice
and the shift state equals to shift down.

SHIFT_DOWN_VALUE2 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is pressed three
times and the shift state equals to shift down.

SHIFT_DOWN_VALUE3 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is pressed four
times and the shift state equals to shift down.

SHIFT_DOWN_VALUE4 1 to 255 The key code that is added to the Data Entry
Textbox when the data entry key is pressed five
times and the shift state equals to shift down.

Shift Key Object

Shift keys are used to set the Shift State of the keypad. Changing the Shift State allows Data Entry
Keys to be overloaded. When a Shift Key object is instantiated, the Shift Type is set to
SHIFT_NEUTRAL, and SHIFT_TOGGLE is set to GUI_FALSE.

Properties

Table 8-27 Properties of the Shift Key Object.

Property Values Meaning

SHIFT_TYPE SHIFT_UP,
SHIFT_NEUTRAL,
SHIFT_DOWN

Contains the shift type of shift key.

SHIFT_TOGGLE GUI_TRUE,
GUI_FALSE

If true, causes the shift key when pressed, to toggle between
the SHIFT_NEUTRAL state and value in the SHIFT_TYPE
property.

Plot Object

Plot objects are used to render data (such as temperature, voltage, or pressure) into a graphical form
onto a screen. Plot objects contain a one-dimensional circular byte array, called the plot buffer, that
holds the data. The initial size of a plot is 120 pixels wide by 120 pixels tall, with a 240-byte buffer.
The size of the plot buffer is limited by the size of the GUI Heap and must be greater than or equal
to the width of the plot in pixels. The data in the plot buffer specifies the y coordinate, as the verti-
cal distance in pixels, measured from the top edge of the plot object. Data is added into the plot
buffer sequentially; the position of the data in the plot buffer represents the x coordinate and se-
quential points are connected by lines. For example, if we enter the two data values 4 and 57 into a

GUI Objects in Detail 133

new plot object and the plot’s upper left corner is at (8,10), a line would be drawn from point (8,14)
to (9,67). When the plot buffer is the same size as the plot width and you get to the end of the
buffer, the next data point you add will be written into the first position of the buffer and the data
will be plotted to the left-edge of the plot (over-writing the previous point on the screen and data in
the buffer). When the buffer is larger than the plot width and you get to the end of the plot, the next
data point that you add will be written to the next position of the buffer and the data will be plotted
to the left-edge of the plot (over-writing only the previous point on the screen). This provides plots
that look like oscilloscope traces.

The Add_Data method adds a single data value into a plot object. The Refresh method must be
called after data is added to re-render the plot on the screen. The plot is rendered from left to right.
For example, the following code creates a new plot, loads it into GUI_SCREEN0, and then repeatedly
adds a random data value from 0 to 119 into the plot buffer and refreshes the plot on the screen.

Listing 8-11 Using the Plot Object.
int plotRandom;
void Example_Plot(void)
{
 int random_num;
 // Create a new plot object.
 plotRandom = New_Object(PLOT);
 // Center plot object on the screen. Plot size is 240 x 120 pixels.
 Load(GUI_SCREEN0, plotRandom, 0, 0);
 random_num = Random();
 Add_Data(plotRandom, (random_num % 119));
 while(1)
 {
 random_num = Random ();
 Add_Data(plotRandom, (random_num % 119));
 Refresh(GUI_SCREEN0);
 Pause();
 }
}

Properties

Table 8-28 Properties of the Plot Object.

Property Values Meaning

WIDTH_IN_PIXELS 8 to 128 pixels Contains the width of the plot in pixels.

HEIGHT_IN_PIXELS 1 to 128 pixels Contains the height of the plot in pixels.

BUFFER_SIZE Unsigned Long Sets the size of the circular plot buffer. The plot buffer must
be greater than or equal to the width of the plot in pixels.

BORDER GUI_TRUE,
GUI_FALSE

If true, draws a one pixel border around the plot

134 Chapter 8: Programming the Graphical User Interface

Methods

Table 8-29 Methods of the Plot Object.

Method Inputs Outputs Meaning

Add_Data Plot Reference,
Data

None Adds a single data value into a plot object. Data is added to
the next position in the circular plot buffer. The data value
represents the distance in pixels as measured from the top
edge of the plot.

Errors

Table 8-30 Errors of the Plot Object.

Error Associated
Method

Meaning

DATA_OUT_OF_RANGE Add_Data The data value is larger than the height of the plot in pixels.

INVALID_PLOT Add_Data The object reference is not a plot.

Screen Object

Screens that are created using the New_Object method reside in the heap. Screens that reside in the
heap can not be made visible - the only difference between heap screens and GUI Screens. Heap
screens are useful for applications with many different screens. All screens can be instantiated and
loaded when the application first starts up. Then, during run time, the screens that are needed can be
quickly copied to the GUI Screens for viewing.

Properties

Table 8-31 Properties of Screen Objects.

Property Values Meaning

WIDTH_IN_PIXELS 128 pixels Read only. Contains the width of the screen in pixels.

HEIGHT_IN_PIXELS 128 pixels Read only. Contains the height of the screen in pixels.

VISIBLE GUI_FALSE Read only. All non GUI screens have this property set to
GUI_FALSE since they can not be made visible.

NUM_OBJECTS Unsigned Long Read only. Contains the number of objects contained in
the screen.

IN_DISPLAY GUI_FALSE Read only. All non GUI screens have this property set to
GUI_FALSE since they reside in the heap

SCREEN_ADDRESS Extended Address Read only. Contains the heap handle to the address of
the rendered image of the screen.

GUI Objects in Detail 135

Methods

Table 8-32 Methods of Screen Objects.

Method Parameters Return Value Meaning

Load Screen Reference, Object
Reference, X Coordinate, Y
Coordinate

None Load an object into a screen at the
specified x and y coordinates.

Un_Load Screen Reference, Object
Reference, X Coordinate, X
Coordinate

None Unload an object from a screen at
the specified x and y coordinates.

Copy_Screen Source Screen Reference,
Destination Screen Reference

None Copies the contents of the source
screen into the destination screen.
The contents of the destination
screen are over written.

Clear Screen Reference None Unloads all objects from the screen
and erases the screen.

Refresh Screen Reference None Re-renders graphics, textboxes and
plots in the screen that have their
refresh flags set to true. Sets the
refresh flags to false once the objects
have been refreshed.

Redraw Screen Reference None Re-draws all objects contained in the
screen.

Errors

Table 8-33 Errors of Screen Objects.

Error Associated Method Meaning

HEAP_FULL Load Heap is full. There is no room to load an object into
a screen.

INVALID_OBJECT Load, Un_Load The object reference cannot be loaded into a
screen.

INVALID_SCREEN Load, Un_Load, Clear,
Redraw, Refresh,
Copy_Screen

The object reference is not a screen.

X_OUT_OF_RANGE Load, Un_Load The x coordinate plus the width of the object is
greater than the width of the screen.

Y_OUT_OF_RANGE Load, Un_Load The y coordinate plus the height of the object is
greater than the height of the screen.

136 Chapter 8: Programming the Graphical User Interface

Customizing the Keypad Overlay
You can customize the “look and feel” of your instrument by creating your own graphic to be used
over your keypad. Figure 8-3 shows an example graphic.

5.180

Menu

Clear

On
Off

F1F5
F9 F2F6

F10 F3F7
F11 F4F8

F12

Shift
CAPS

Num
Lock

Shift
small

Enter

Ctrl Alt

Esc Bk
Delete

Home

End
Yes

Pg Up

Pg Dn
Insert

Display

Sound
No Backspace

PQRS

pqrs
7

TUV

tuv
8

WXYZ

wxyz
9

GHI

ghi
4

JKL

jkl
5

MNO

mno
6

TAB !°~`

@ %^&²
1

ABC

abc
2

DEF

def
3

0
 _? ' "

<>{}

+–×÷=

. , : ; #
•

/\ | *$

() [] SYM

EXP

2.630
.341

.349.640 .645 .638

.527

.640

.620

.610

.604

.620

.610

.600

.527

.366Ribbon exits back

Button Placement
(front view, all dimensions in inches)

(buttons are .420 x .420 max, domes are .350)

Example Overlay Design
(showing alphanumeric entry, shift,

navigation, menu, and function keys)

.130

.140

Figure 8-3 Keypad layout showing precise button positions, and a sample
design for key layout.

The keypad includes a clear plastic overlay which forms a pocket into which you can place a paper
graphic. When shipped from the factory, the keypad is loosely attached with tape to the enclosure;
the adhesive on the back of the keypad is not used to securely fasten the keypad to the enclosure.
This allows you to pull up the keypad and install your own custom graphic. Once you have final-
ized your keypad design, you can remove the backing on the keypad (exposing the adhesive) and

Menu

Clear

On
Off

F1F5
F9 F2F6

F10 F3F7
F11 F4F8

F12

Shift
CAPS

Num
Lock

Shift
small

Enter

Ctrl Alt

Esc Bk
Delete

Home

End
Yes

Pg Up

Pg Dn
Insert

Display

Sound
No Backspace

PQRS

pqrs
7

TUV

tuv
8

WXYZ

wxyz
9

GHI

ghi
4

JKL

jkl
5

MNO

mno
6

TAB !°~`

@ %^&²
1

ABC

abc
2

DEF

def
3

0
 _? ' "

<>{}

+–×÷=

. , : ; #
•

/\ | *$

() [] SYM

EXP

Customizing the Keypad Overlay 137

permanently attach the keypad to the enclosure. You can also remove the clear plastic overlay and
instead use an adhesived plastic sheet with your own graphic.

Figure 8-3 provides the dimensions of the keypad, showing the precise placement of the buttons.
Note that they are not arrayed perfectly evenly; your graphic design should take into account their
precise placement. also shows an example overlay design including alphanumeric entry keys, shift
and menu keys, navigation keys, and function keys.

One key is special: The bottom right corner key is used to turn the handheld on and off. It is di-
rectly wired to the handheld’s power circuitry and it is not scanned with the other keypad keys by
the keypad driver routines. Your graphic should show this dedicated key as the on/off button.

Using the Keypad Pocket

You can print a graphic image on ordinary photo paper and insert it into the keypad pocket. We’ve
had the best success printing on “Epsom Photo Quality Ink Jet Paper (Matte Finish)” Part Number
S041062, or equivalent: 27 lb, ISO 90 brightness (or greater), 4.9 mil, coated paper. Using a thin
paper will not interfere with the buttons’ tactile feedback, while much thicker paper stock may.
After printing, the image can be cut to size to fit within the pocket, i.e., to 2.350 x 5.050 in., and
carefully slid into the pocket. You can also achieve a better finished look if the image is inserted
into the keypad pocket slightly underlapping the black border of the keypad’s top clear plastic layer.
If so, cut the image slightly larger. To insert it you will need to peel back the pocket’s top clear
plastic layer. Peel it back starting at the top – it is pressure-sensitive-adhesived at the side and bot-
tom edges only. Then place the overlay onto the keypad, carefully centering it so that its edges
slightly underlap the black borders of the top plastic layer, and carefully aligning its top edge with
the top edge of the keypad. Then place the top layer back on, and reseal the pocket by running a
finger around the bottom and side edges to reattach the pressure sensitive adhesive.

Printing on a Plastic Overlay

Alternatively you can print directly on plastic sheets and use them in place of the top layer on the
existing keypad. For use as a top layer, the cropped size of your graphic should be 2.630 by 5.180
in.

138 Chapter 8: Programming the Graphical User Interface

139

Chapter 9

Digital and Timer-Controlled I/O

Overview of Available Digital I/O
The Handheld provides up to 8 digital I/O lines, 8 analog input lines (which may be used as digital
intputs), and up to three communications channels. The digital I/O lines originate from two 8 bit
ports on the CPU (68HC11) named PORTA and PORTE. Table 9-1 summarizes the uncommitted
digital I/O available.

Table 9-1 The Handheld’s Uncommitted Digital I/O

I/O
Lines

Type Port
Address

Comments / Alternate Uses

6 Timer-controlled inputs or outputs
including 3 input-capture, 3
output-compare, and pulse
accumulator

PA 0-2, 5-7 Bit-by-bit configured by the application as inputs or
outputs, including:

Timed inputs: PA 0-2
Timed outputs: PA 5-7

Pulse accumulator: PA 7

There are a total of 6 uncommitted digital I/O lines for your use. After initialization or reset, all
digital I/O lines are configured as inputs, but they may be reconfigured as outputs.

In addition to these I/O lines there are several committed to other services on the controller; these
are summarized in Table 9-2.

Table 9-2 Committed I/O pins

Service Port Pins

8-bit A/D CPU PORTE PE 0-7

Serial 2 CPU PORTA PA 3-4

For applications requiring even more digital I/O, I/O lines usually committed to the 8-bit A/D and
the secondary serial port may be redirected as general purpose digital I/O if these other services are
not needed. Table 9-3 summarizes the digital I/O lines gained if other services are not used.

140 Chapter 9: Digital and Timer-Controlled I/O

Table 9-3 Additional digital I/O lines made available if other services
are forfeited and their committed I/O pins freed.

Services Used Digital I/O Available

8-bit A/D Serial 2 Inputs Outputs Total

Yes Yes 0 to 6 0 to 6 6

No Yes 6 to 14 0 to 6 14

No No 8 to 16 0 to 8 16

The maximum number of digital inputs and outputs is 16 (up to 16 can be configured as inputs, up
to 8 as outputs) if none are used for the 8-bit A/D or the secondary serial port. Table 9-3
summarizes the digital I/O and alternate use of some of the I/O pins.

Digital inputs and outputs are very useful in data acquisition, monitoring, instrumentation and con-
trol applications. A low voltage (approximately 0 Volts) is established on a digital output pin when
the processor writes a logical 0 to the corresponding bit in a data register associated with the digital
output port. A high voltage (approximately 5 Volts) is established on the digital output pin when the
processor writes a 1 to a corresponding bit in the port’s data register. This allows software to con-
trol external events and processes. For example, an application program can use digital outputs to
activate solenoids and turn switches and lights on and off, or to interface the Handheld with a wide
variety of digital accessories.

A digital input allows the processor to monitor the logical state of an external voltage by reading a
data register associated with the port. External voltages near 0 Volts connected to a digital input
cause the corresponding bit in the port’s data register to be read as a logical 0, and external voltages
near 5 Volts connected to a digital input are read as a logical 1. Application programs can use digi-
tal inputs to read switches and keypads or to interface to digital devices such as A/D converters and
real-time clocks.

Using digital I/O is very easy: simply configure the output port as input or output as explained be-
low, and then use functions or assignment statements to read from or write to the port. The names
of the data and direction registers and all required initialization routines are pre-defined in the
header files so you don’t have to worry about hexadecimal register addresses in your code.

The following sections describe the available digital I/O ports and how to use them.

The digital I/O signals on the Handheld originate from a Motorolla 68HC11 processor chip. The
68HC11 provides two 8 bit ports named PORTA and PORTE.

Table 9-4 summarizes the digital input/output available on the Handheld including the names,
addresses, and number of signals associated with the digital ports on the 68HC11. The “configur-
able as” column specifies whether the direction of the port may be changed on a bit-by-bit, nibble-
by-nibble, or byte basis (or in the case of PORTE, configured as digital or analog input). The final
column lists alternate uses (other than standard digital I/O), the signal pins and the number of signals
associated with the alternate uses.

Overview of Available Digital I/O 141

Table 9-4 Digital I/O Port Addresses and Configurability.

Port Name Address
(HEX)

I/O
Line

Configurable As Alternate Use (Signals Used)

68HC11:

PORTA 8000 8 Bitwise I/O Serial2: PA3 & PA4 (2)
Pulse accumulator: PA7 (1)

Timed inputs: PA0-3 (3 or 4)
Timed outputs: PA3-7 (4 or 5)

PORTE 800A 8 Bytewise digital or
analog input

8 bit A/D: PE0-7 (8)

Table 9-5 specifies the named data direction register which controls the input/output direction, or
specifies the functions that configure each digital I/O port.

Table 9-5 Digital I/O port data direction registers
and configuration functions.

Port Name Configured By

68HC11:

PORTA DDRA

PORTE AD8On()
AD8Off()

Using the Digital I/O Ports on the 68HC11 Chip

This section describes how to configure and access the PORTA and PORTE digital ports in the
68HC11 chip on the Handheld.

As you work through the examples in the remaining sections of the chapter, you can use a voltmeter
to verify that the outputs are behaving as you expect. You can also connect the input signals
through a 1 kOhm resistor to +5V or GND to verify that you can digitally read their values. (The 1
kOhm resistor is just a safety precaution to minimize the chance that you’ll “blow out” a port bit by
mistakenly connecting an output bit to a supply voltage; even if you make this mistake, the resistor
would limit the current to safe levels.)

Digital inputs and outputs are very useful in data acquisition, monitoring, instrumentation and con-
trol applications. A low voltage (near 0 Volts) is established on a digital output pin when the proc-
essor writes a logical 0 to the corresponding bit in a data register associated with the digital output
port. A high voltage (near 5 Volts) is established on the digital output pin when the processor writes
a 1 to a corresponding bit in the port’s data register. This allows software to control external events
and processes. For example, an application program can use digital outputs to activate solenoids
and turn switches and lights on and off, or to interface the Handheld with a wide variety of digital
accessories such as D/A converters, displays, etc.

A digital input allows the processor to monitor the logical state of an external voltage by reading a
data register associated with the port. External voltages near 0 Volts connected to a digital input

142 Chapter 9: Digital and Timer-Controlled I/O

cause the corresponding bit in the port’s data register to be read as a logical 0, and external voltages
near 5 Volts connected to a digital input are read as a logical 1. Application programs can use digi-
tal inputs to read switches and keypads or to interface to digital devices such as A/D converters and
real-time clocks.

PORTA

PORTA is configurable as input or output on a bit-by-bit basis. To configure PORTA, use an assign-
ment statement to write to the DDRA (Data Direction Register A) register. DDRA and all 68HC11
register names are defined in the QEDREGS.H file in the \MOSAIC\FABIUS\INCLUDE\MOSAIC
directory. Writing a 1 to a bit position in DDRA configures the corresponding port bit as an output,
and writing a 0 to a bit position configures the corresponding bit as an input. For example, the fol-
lowing C statement configures PORTA as all outputs:

DDRA = 0xFF;

To configure PORTA as all inputs, use the statement:

DDRA = 0x00;

If we want to configure bits 0-6 as inputs, and bit 7 as output, we can execute:

DDRA = 0x80;

To change the state of an output bit on PORTA of the 68HC11 chip, use an assignment statement
with PORTA on the left hand side to write to the port’s data register named PORTA. For example, if
PORTA is configured as all outputs, the following C statement sets all PORTA bits high:

PORTA = 0xFF;

To read the state of PORTA, use an assignment statement with PORTA on the right hand side to read
the port’s data register. For example, the following code fragment reads PORTA and places the re-
sults in the variable named latest_porta_state:

static unsigned char latest_porta_state;
latest_porta_state = PORTA;

PORTE

PORTE (named in the QEDREGS.H file) is an 8 bit analog or digital input port. PORTE is configured
as a digital input after a reset or restart, and is read in the same way that PORTA is read: simply use it
as the right hand side of an assignment statement. For example, to read the digital state of PORTE,
your program could execute the statements:

static unsigned char latest_porte_state;
latest_porte_state= PORTE;

To configure PORTE for analog input, use the function:

AD8On()

To turn off the 8 bit A/D and revert to a digital input port, use:

AD8Off()

Overview of Available Digital I/O 143

(For experts and the curious: AD8Off() turns the 8 bit analog converter off by clearing the A/D
power up bit named ADPU in the OPTION register; AD8On() sets the ADPU bit.)

Using Uninterruptable Operators

The Importance of Uninterruptable Operators

Care must be taken when performing “read/modify/write” operations in applications that use inter-
rupts or multitasking. Operations such as setting or clearing individual bits in a byte while leaving
other bits unchanged are called “read/modify/write” operations because they involve reading the
port, modifying the read contents, and writing the result back to the port. Unpredictable results can
occur if more than one interrupt service routine or task tries to access a single port or memory loca-
tion at the same time using a read/modify/write sequence. The simplest solution to this problem is
to access the memory location or port using an “uninterruptable” read/modify/write operator.

The following scenario illustrates the importance of uninterruptable operators when more than one
task or interrupt routine is writing to a memory location. Let’s assume that two different tasks are
controlling the bits of PORTA. Assume that TASK1 is controlling the state of bit 4, and TASK2
controls bit 7. Let’s assume that bit 4 is low when TASK2 tries to execute the following code:

static unsigned char mask = 0x80;
PORTA |= mask;

TASK2 is merely trying to set the top bit in PORTA to 1, but this statement may have unintended
consequences. The compiler generates code that reads the contents of PORTA, performs a bitwise
OR with the contents of mask, and stores the result back into PORTA. Assume that the timeslicer
interrupt is serviced just after the OR instruction and transfers control to TASK1. TASK1 may
change the state of bit 4 to a 1. When control is then transferred back to TASK2, the final store to
PORTA is executed. Unfortunately, this store command erroneously sets bit 4 back to the low state!
TASK2 was interrupted after it read the state of PORTA but before it had a chance to write the new
contents, so it undoes the change that TASK1 made in the state of PORTA bit 4! This can indeed
cause problems in an application program.

Pre-coded Read/Modify/Write Functions

The pre-coded read/modify/write functions avoid this problem by disabling interrupts for ten to
sixteen cycles (2.5 to 4 microseconds at a 16 MHz crystal speed). This prevents the corruption of
the contents when different tasks or interrupts share access to a single location. The following func-
tions are uninterruptable:

void ChangeBits(uchar data, uchar mask, xaddr address)
void ClearBits(uchar mask, xaddr address)
void SetBits(uchar mask, xaddr address)
void ToggleBits(uchar mask, xaddr address)

Additional uninterruptable operators are declared in the XMEM.H header file in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory; these routines are described in detail in the Con-
trol-C Glossary.

144 Chapter 9: Digital and Timer-Controlled I/O

Create Your Own Uninterruptable Functions

It is easy to create your own uninterruptable functions using the _protect keyword. For example,
the following uninterruptable function sets specified bits in a port or memory byte:

void _protect SetBitsUninterrupted(uchar mask, char* address)
{ *address |= mask;
}

In response to the _protect keyword, the compiler ensures that interrupts are temporarily disabled
while SetBitsUninterrupted() is executing, and that the global interrupt mask (the I bit in the
condition code register) is restored to its prior state after the function terminates.

Simple stores to and fetches from 1-byte or 2-byte memory locations are intrinsically uninterrup-
table because they are implemented with single assembly-language opcodes. However, the 68HC11
processor does not have a single opcode that can access a 32 bit memory location. Thus, problems
can arise when one task writes to a floating point or long variable, and a second task needs to read
the saved value. The data that is read may be invalid if the read or the write is interrupted between
the time of the writing/reading of the first 16 bits and the writing/reading of the second 16 bits. In
these cases uninterruptable operators should be used. An example is presented by the functions
named:

PeekFloatUninterrupted()
PokeFloatUninterrupted()

which are defined using the _protect keyword in the TURNKEY.C example program found in the last
chapter of this book.

Connecting Hardware to the Digital Outputs
On the Handheld the processor’s port A is available for you to connect to external devices. You
can use them to directly drive LEDs, relays, transistors, opto-isolators or other digital logic devices.
But please be careful -- whenever these outputs are connected to external devices you must stay
within the voltage and current capabilities of the output pins. Because the MC68HC11 reference
manuals don’t specify the electrical capability of these ports very well we provide some additional
information here.

Electrical Characteristics of the 68HC11’s I/O Ports

The electrical characteristics of the 68HC11F1’s digital I/O signals are specified in detail on page A-
3 of the MC68HC11F1 Technical Data Manual. This table lists the “DC Electrical Characteristics”
of the processor.

Pins on the 68HC11 configured as digital inputs report a logical “high” if the input voltage is greater
than 0.7 times the supply voltage, or 3.5 Volts. They report a logical “low” if the input voltage is
less than 0.2 times the supply voltage, or 1.0 Volt. Input voltages between 1.0 and 3.5 Volts may be
read as either high or low.

Pins on the 68HC11 configured as digital outputs in the “high” state can maintain the output voltage
within 0.8 Volts of the positive supply if 0.8 mA or less is being drawn from the pin. If less than 10

Connecting Hardware to the Digital Outputs 145

microamps is being drawn, the output high voltage is within 0.1 Volt of the positive supply. In the
low state, the digital outputs can keep the voltage below 0.4 Volts while sinking up to 1.6 mA of
current. Load circuitry that requires significant current to be sourced or sunk by the digital output
should include external resistors to ensure that the absolute maximum rating of 25 mA per output
pin is never exceeded.

Protecting the Input and Output Pins

These output pins are very useful because they can directly drive a wide range of devices. Never-
theless, any circuitry connected to the processor should take care to:

◙ Prevent excessive voltage levels at the pin; and,

◙ Prevent excessively great currents.

We’ll address each of these concerns in turn.

Preventing Excessive Voltages

Excessive voltages are prevented by ensuring that voltages of less than a diode drop below VSS (-0.6
V) or greater than a diode drop above VDD (VDD+0.6 V) are never applied to the processor. For
some applications, particularly when driving inductive loads such as relays, you may need to pro-
vide Schottkey diode clamps between the pin and VDD and between the pin and ground. All pins on
the processor have inherent diode clamps to the processor’s ground voltage, VSS, but it is best not to
rely on these; if there is the possibility of the output pin being driven to a negative voltage level it is
better to prevent excessive power dissipation in the processor package by externally clamping the
voltage to ground (VSS) with a Schottkey diode. Processor port A pins also have inherent diode
clamps to the chip’s +5V supply voltage, VDD, but it is better not to rely on these; instead external
Schottkey clamps to VDD should be used.

Preventing Excessive Currents

The current into or out of any pin on the MC68HC11 should also be limited to prevent damage. The
specified maximum current is 25 mA into or out of any one pin at a time, although these pins can
typically withstand transients of more than 100 mA at room temperature. In driving more than one
pin at a time it is necessary only to stay within the processor’s maximum power dissipation. Un-
fortunately, Motorola doesn’t specify what this maximum is, but we recommend that you don’t
exceed a total of 100 mW for all processor I/O pins combined. The chip’s total power dissipation is
the sum of its internal power (which varies from device to device so much that it can only be deter-
mined by actually measuring it, but which is specified at less than 150 mW) and the power associ-
ated with the I/O pins. Pin currents must be limited using external resistors.

Output Pin V-I Characteristics

The output pins of the MC68HC11 are similar in electrical characteristics to the SN54/74HC digital
logic family. They can source or sink up to 25 mA and are guaranteed to source 0.8 mA while pro-
viding a valid logic high and to sink 1.6 mA at a valid logic low, although they generally do much
better. A valid logic high level is between VOH = VDD and VOH = VDD - 0.8 V, and a valid low level
is between VOL =VSS = 0 V and VOL =VSS + 0.4 V. As the output is loaded, the VOL and VOH levels

146 Chapter 9: Digital and Timer-Controlled I/O

rise or fall. It is often useful to know just how much to expect the VOL and VOH levels to degrade
with current. For currents of less than 10 mA the voltage change is linear with current; that is, it can
be modeled as a voltage source of either zero or five volts and an equivalent series resistance of 40
ohms. At greater output currents the resistance increases until at the greatest specified current for
any one pin, 25 ma., the equivalent resistance is 60 ohms. At this current the voltage degradation of
the VOL or VOH is 1.5 volts. Figure 9-1 and Figure 9-2 illustrate this variation.

These figures can be used to choose component values for particular circuits. For example if we
wish to use a pin of Port A to drive a light-emitting diode we would place the LED in series with a
resistor and connect them between an output pin and ground. The resistor limits the current, to the
LED. From the LED data sheet we note that its forward voltage at a current of 10 mA is specified to
be 2.2 V. What should the resistor value be? We calculate it as,

Eqn. 9-1 R = (VOH - 2.2 V) / 10 mA

Consulting the VOH vs I curve for the output pin we find that at 10 mA VOH = 4.4 V. We therefore
need a resistance of 220 ohms.

0

1

2

3

4

5

0 10 20 30 40 50

H
ig

h
Le

ve
l O

ut
pu

t V
ol

ta
ge

 -
V

High Level Output Current - mA

Figure 9-1 Degradation of the Port A or Port D output high voltage with
current. The maximum current allowed for continuous operation is
25 ma.

The Processor’s Output Compare Functions 147

0

1

2

3

4

5

0 10 20 30 40 50

Lo
w

 L
ev

el
 O

ut
pu

t V
ol

ta
ge

 -
V

Low Level Output Current - mA

Figure 9-2 Degradation of the Port A or Port D output low voltage with current.
The maximum current allowed for continuous operation is 25 ma.

The Processor’s Output Compare Functions
The processor’s programmable timer subsystem contains 5 output compare (OC) functions (named
OCx for x from 1 to 5) associated with PORTA output pins PA7 through PA3 (in descending order).
These output compare functions allow you to specify actions that take place at particular, well de-
termined times. Using output compares, it is easy to set up real-time clocks, cause periodic execu-
tion of code, and generate precisely timed synchronous or asynchronous waveforms. They can be
used to implement a stepper motor controller, pulse generator, pulse width modulation (PWM) sig-
nals, precisely timed output pulses, timesliced multiplexing, or serial communications.

Output-compare functions work by automatically changing PORTA output pins and/or invoking an
interrupt service routine (ISR) whenever the contents of a free-running 16-bit counter (TCNT)
matches the contents of user-set output-compare registers, TOCx. When these contents match, we
say that a “successful output compare” has occurred. Thus the programmer can precisely specify a
future time at which an action will occur by simply storing the time as a 16-bit value in the appro-
priate output compare register, TOCx. The free running counter counts at a programmable rate,
from 0 to 65536, then rolls over to zero and continues counting. Its rate is one count each 2 micro-
seconds, for a rollover period of 131.072 milliseconds. Consequently, you can set up output com-
pares to trigger events with a resolution of 2 microseconds, and up to 131.072 milliseconds into the
future (or arbitrarily longer if you keep track of rollovers on TCNT).

Because TCNT is clocked by a prescaler driven from the system E clock, you can change the count
rate by modifying the prescaler’s division ratio, from its current value of 8 to 1, 4, or 16, changing
its rollover period to 16.384, 65.536, or 262.144 milliseconds. If you do though, the system

148 Chapter 9: Digital and Timer-Controlled I/O

timeslicer will be affected. We find that a 2 microsecond tick rate provides sufficient resolution for
most applications.

Each of the five output compare subsystems has a 16-bit TOCx register, a successful compare OCxF
(interrupt) flag, and an interrupt mask OCxI, where “x” is the output compare number. OC1 can
control any of pins PA3 through PA7 and it has its own register to specify which of PORTA pins are
affected. Output compares OC2, OC3, OC4 and OC5 each control a single pin. They each have a
pair of output mode/level bits, OMn and OLn, which determine the effect that each successful com-
pare has on PORTA bits PA6, PA5, PA4, and PA3 respectively. The processor automatically sets
an output compare’s OCxF flag bit in the TFLG1 register when the contents of the TCNT register
and the OC’s TOCx register are equal. At the same instant, the state of the associated PORTA pin is
set, cleared, or toggled as specified by the output mode bits. In addition, if the output compare’s
OCxI mask bit in the TMSK1 register is set, an interrupt is recognized when a successful compare
occurs.

An active output compare function can cause a signal change on a PORTA pin at a specified time T,
and/or trigger an interrupt at time T:

◙ Signal Change – To cause a signal change on a PORTA pin when time T equals the contents of
TCNT, the PORTA pin must be configured as an output, and the output compare function must
be enabled. OC1 is enabled by storing the data to be output in OC1D and specifying the pins
to be changed in OC1M, and OC2-OC5 are enabled simply by storing a 2-bit code into TCTL1
specifying the desired signal change. Using the CFORC register, it is also possible for soft-
ware to immediately force a state change on a timer-controlled signal without causing an inter-
rupt.

◙ Interrupt – To trigger an interrupt when time TCNT = T, an interrupt handler must be installed,
and the output compare’s local interrupt must be enabled by setting bits in TMSK1.

Table 9-6 Output Compares and their properties

Output
Compare

Controlled
PORTA Pin

Comparison
Register

Comments and Alternate Use

OC1 PA3, 4, 5, 6,
and/or 7

TOC1 May control multiple pins simultaneously, or be paired with
another OC to jointly control pin PA3, 4, 5, or 6.

OC2 PA6 TOC2 The OC2 timer is used by the kernel’s timeslicer and
elapsed time clock functions. If you do not use these
functions, pin PA6 may be controlled by OC1 or used for
general purpose I/O.

OC3 PA5 TOC3 Not used by the kernel.

OC4 PA4 TOC4 Used as an output by the secondary serial port. Available if
you do not need Serial 2.

OC5 PA3 TI4O5 Shared with Input Capture 4, which is used as an input by
the secondary serial port. Available if you do not need
Serial 2.

The Processor’s Output Compare Functions 149

As summarized in the table, the output compares are not all identical in function, and some are used
by the operating system. OC1 and OC5 differ from the others slightly in function, OC2 is used by
the operating system’s timeslicer, and OC4 and OC5 are used by the secondary serial port:

◙ OC1 is special in that it can synchronously control any of PORTA pins PA7, PA6, PA5, PA4,
and PA3. Even when OC1 is used to control several PORTA pins, the timer and interrupt
functions of those pin’s output compares may still be used independently of the pin (to imple-
ment clocks, etc.). While the other output compares can be used to set, clear, or toggle an out-
put pin, OC1 can be used only to set or clear a pin, but not to toggle it.

◙ OC2 is used by the timeslicer. Consequently, if you need the services of the timeslicer
(timesliced task switching or elapsed time clock function) make sure that you do not use OC2
for other functions. Even if you do use the timeslicer, pin PA6 is still available for use as gen-
eral purpose I/O, or as an output controlled by OC1.

◙ OC4 is used as an output by the secondary serial port, so you can’t use it or its associated pin
PA4 if you need the second RS232 serial link.

◙ OC5 shares its timer register and output pin with input capture 4 (IC4). OC5 operates like the
other output compares, but it must be initialized by clearing the I4/O5 bit of the PACTL (pulse
accumulator control) register before it may be used. Also, IC4/OC5 and associated pin PA3
are used by the secondary serial port, so be sure not to use these resources if you need the sec-
ond RS232 serial link.

Pulse and PWM Generation Techniques

The processor’s output compare functions provide lots of flexibility for creating single pulses or
pulse-width-modulated waveforms. Most methods are variations on this algorithm:

1. The desired start time of the pulse is programmed by storing an appropriate count in the out-
put-compare register (TOCx) of OCx, and the OCx interrupt is enabled by setting a flag bit in
TMSK1.

2. OCx’s mode/level bits (OMx and OLx) are configured to automatically set the output com-
pare’s corresponding output either high or low, depending on the polarity of the desired pulse
(this action enables the output compare).

3. When the compare occurs, the pin state is automatically changed and an interrupt service rou-
tine called.

4. The interrupt service routine (ISR) reprograms the output compare to automatically change its
pin back to its inactive level on the next compare;

5. The ISR also increments the output-compare register by a value corresponding to the desired
duration of the pulse.

Since the pin-state is changed by hardware automatically at specific values of the free-running
counter, the pulse width is controlled accurately to the resolution of the free-running counter irre-
spective of software latencies. By repeating the actions for generating a pulse, you can generate an
output signal of a specific frequency and duty cycle. While software latency and execution times do

150 Chapter 9: Digital and Timer-Controlled I/O

not affect the timing of the waveform, they do impose limits on the frequency and duty cycles at-
tainable. The different methods of generating PWM signals differ primarily on where the software
execution times are constrained to fit, either within the on time, the off time, or the waveform’s
period as a whole.

The following is a quick summary of some of some specific ways you can use output compares to
generate pulses or PWM waveforms. You can find complete descriptions of the registers mentioned
in Motorola’s MC68HC11F1 Technical Data Manual. Example 1 shows you how to generate a
tirggered pulse, Examples 2 and 3 represent exceptional and instructive methods of generating
PWM signals, and examples 4-6 are commonly used PWM methods. Example 6 provides code for
generating “failsafe” PWM signals.

Example 1 – Creating a Single Precise Pulse from an External Trigger

Suppose you’d like to output a single pulse on PA5 with very precise duration in response to a trig-
gering event, for example the leading edge of an input pulse on PA0. You’d like the output pulse to
start a precise, fixed time after the initiating trigger and to last some precise duration, between 2
microseconds and 131 milliseconds. Further, the output pulse should occur after the first occurrence
of the trigger (after enabling the system) and then stay off rather than being retriggered by subse-
quent input pulses.

To do this you would use one input capture (IC3) and two output compares (OC1 and OC3). Be-
cause the trigger may occur anytime an input capture is used to determine the precise time of its
leading edge. And because the output pulse width must be precisely controlled, and its duration can
potentially be shorter than any interrupt service routine, the pulse should be turned on and off by
output compares. The input capture invokes an interrupt service routine that enables the output
compares. For our example we’ll assume the desired pulse start time is 10 milliseconds (or 5000
TCNT counts) after the trigger is detected, and its duration is precisely 10 microseconds (5 TCNT
counts). Here’s one way to do it using three routines:

An initialization routine (called ENABLE) that configures and enables IC3 to capture a rising
edge on PA0, forces PA5 off to initialize it, and configures and enables OC3 to turn off pin
PA5;

An interrupt service routine for IC3 (called IC3_ISR) that programs the comparator registers of
OC1 and OC3 and enables OC1; and,

An interrupt service routine for OC1 (called OC1_ISR) that disables OC1 so that after the
output pulse is first turned on it is not turned on again.

Here’s how to write the routines:

ENABLE – Inhibit IC3, OC1, and OC3 interrupts by storing 0x0xxxx0 to TMSK1 (using
CLEAR.BITS with a mask of 0xA1). Configure OC1 to set PA5 high on an output compare
by setting bit 5 of OC1D, but don’t enable it using OC1M yet – the IC3_ISR will be responsi-
ble for doing that. Configure OC3 to clear its associated pin (PA5) on an output compare by
storing appropriate mode/level bits (OM3 and OL3), that is xx10xxxx, into the timer control
register (TCTL1). Initialize PA5 to the OFF state by forcing an early output compare on OC3.
This is done by setting bit 5 of CFORC. Configure and enable IC3 to capture a rising edge

The Processor’s Output Compare Functions 151

PA0. This is done by clearing bit 0 of DDRA (to set the data direction of PA0 to input), and
setting the lower two bits of TCTL2 (the two corresponding to IC3) to xxxxxx01 to capture a
rising edge. Clear the interrupt flag bit (IC3F) left over from any prior edge detection, if any,
by writing a one to IC3F in TFLG1. Finally, enable an IC3 interrupt by setting the IC3I bit in
TMSK1.

IC3_ISR – On entering the ISR routine first disable further interrupts by clearing the IC3I bit
in TMSK1, and clear the interrupt flag bit (IC3F) by writing a one to IC3F in TFLG1. Then
read TIC3 to determine the trigger time, we’ll call it TT. Set up OC1 to turn on output pin
PA5 at time TT+5000 by setting TOC1=TT+5000 and configure OC3 to turn it back off just 5
counts later, by setting TOC3=TT+5005. Enable an OC1 interrupt by setting the OC1I bit in
TMSK1. Finally enable OC1 and tie it to PA5 by setting bit 5 in OC1M.

OC1_ISR – This interrupt service routine will be invoked when the output pulse is turned on.
It only needs to disable OC1 so that further pulses are not produced until the system is re-
enabled by executing ENABLE again. Disable OC1 by clearing bit 5 in OC1M. Disable inter-
rupts on OC1 by first clearing the OC1I bit in TMSK1, then clear the interrupt flag bit (OC1F)
by writing a one to OC1F in TFLG1.

Example 2 – Two OCs Generate a PWM Waveform Without Interrupts

Using two output compares you can generate a PWM waveform of any duty cycle (from 1/65536 to
65535/65536) without using interrupt service routines. As no ISR is used, no software resources are
needed to maintain the waveform, and there is no impact on overall system performance. The PWM
waveform is free – from a software perspective. So what’s the catch? The catch is that the wave-
form must have a fixed period, equal to the rollover period of the free-running counter, or 131.072
milliseconds. If you can live with that, here’s how it’s done: Two output compares are used, one
sets the output pin at a particular value of TCNT, and the other simply resets the pin at another
TCNT value. One of the output compares must be OC1 – because it can be used in conjunction
with another to control the same pin. Let’s use OC1 to turn ON an output pin (PA5) whenever
TCNT hits 0x0000, and OC3 to turn it OFF whenever TCNT hits 0x1000. More specifically,

1. Disable interrupts caused by OCs by storing 0x00 to the timer interrupt mask register 1
(TMSK1). Now, output compares will not cause interrupts. Even so, they can still control
output pins.

2. Use OC3 to turn OFF the pulse whenever TCNT=0x1000 (for example, for a duty cycle of
1/16) by storing 0x1000 into TOC3. Configure OC3 to clear its associated pin (PA5) on a suc-
cessful compare by storing appropriate mode/level bits (OM3 and OL3), that is xx10xxxx, into
the timer control register (TCTL1). Now, whenever TCNT hits 0x1000 pin PA5 will be
cleared. We configure the OFF transition first because we don’t want the pin to get stuck ON
before we’re done configuring our output compares, just in case.

3. Use OC1 to turn ON the pulse whenever TCNT=0x0000 by storing 0x0000 into TOC1. Asso-
ciate OC1 with pin PA5 by setting bit 5 in the output compare mask register OC1M. Config-
ure OC1 to set the pin high by storing 0x20 into the OC1 data register, OC1D. Now, whenever
TCNT hits 0x0000 pin PA5 will be set high.

Because an ISR isn’t used, there is no possibility of software delays influencing the PWM output.

152 Chapter 9: Digital and Timer-Controlled I/O

Advantages: Precise transition time control, all duty cycles possible with 16-bit resolution, no soft-
ware needed to keep things running, failsafe in that a software crash is not likely to affect operation.

Disadvantages: Only a single channel, only a single PWM period.

Example 3 – A Single OC-Driven ISR Generates Many PWM Channels

What if you want to generate many channels of PWM waveforms, more than there are output com-
pares? In the prior example output compares were used to generate a precisely-timed high-
resolution waveform on a single channel without the assistance of an ISR. This example provides
the other extreme, an unlimited number of channels of low-resolution PWM signals are generated by
a single output-compare-driven interrupt service routine.

The scheme uses a single output compare to periodically invoke an interrupt service routine. The
OC is not tied to a PORTA pin, rather it is used only as a dedicated clock that calls the ISR at a
fixed interval corresponding to the smallest ON or OFF time that can be produced. Each time the
ISR is called it updates all the PWM outputs using any general purpose output pins available. It
may do this by reading values from a look-up table, counting, or more computationally.

Because the ISR latency can vary depending on what other interrupt-driven services are running on
the controller there is some jitter (or variance) on the transition times, producing a slightly varying
PWM duty cycle. This variation can be compensated on the average if the ISR reads TCNT to de-
termine the actual ON and OFF times and modulates the next ON or OFF time to attain the desired
PWM duty cycle averaged over a number of cycles – but of course that requires greater execution
time.

The sum of the ISR latency and execution times must be less than the difference between adjacent
OC times, placing a limit on the smallest ON or OFF time attainable. If the ISR is delayed so long
that the next OC time is missed, the next ISR doesn’t occur until TCNT rolls over and another match
occurs. Consequently rollover delays of a TCNT period may be inserted into the desired ON or
OFF times.

For an example of software generated PWM signals with 8-bit resolution and best averaging prop-
erties see “MI-AN-056 Optimal PWM Algorithm” and “MI-AN-058 Using Port PPA for PWM”.

Advantages: Any number of channels can be accommodated.

Disadvantages: ISR latency causes jitter in the transition times; ON or OFF times smaller than the
ISR latency and execution time are not possible; rollover delays possible if timing criteria not met;
not failsafe.

Example 4 – One OC and ISR Generates a “No Jitter” PWM Signal

The simplest way of generating a precise PWM waveform with arbitrary duty cycle and period is to
use a single output compare to automatically turn on and off an output pin and an interrupt service
routine that reprograms the output compare after each transition. The “off” transition invokes the
ISR which sets up the turn-on time and programs the next output state to be “on”, and the “on” tran-
sition invokes the same ISR to set up the turn-off time and the next “off” state. The on and off times
must each be great enough to contain the latency and execution time of the ISR. So duty cycles that

The Processor’s Output Compare Functions 153

would require very small on or off times are not attainable. If the ISR is delayed so that it does not
program the next transition in time, than the output compare doesn’t find a match until TCNT rolls
all the way around. In this case rollover delays of approximately 131 msec may be inserted into
either the on or off time.

An example of this approach is presented by the function named OC3Service() in the TURNKEY.C
example program found in the last chapter of this book.

Advantages: Transitions are precise, with no jitter; duty cycle and period are programmable over a
wide range.

Disadvantages: ON or OFF times smaller than the ISR execution time and latency are not possible;
rollover delays are possible; not failsafe – a software crash can leave the output stuck ON.

Example 5 – Two OCs and ISRs Generate a “No Jitter” PWM Signal of any Duty
Cycle

To obtain ON and OFF times that may be each as small as a single clock tick, two OCs and ISRs are
required. The “off” transition invokes an ISR which sets up the next turn-off time, and the “on”
transition invokes a different ISR to set up the next turn-on time. Each ISR simply increments the
next ON or OFF comparison register by the period. There is no particular restriction on the short-
ness of the ON or OFF times, either can extend down to just a single count of TCNT, but their sum,
the period, must be great enough to contain the latency and execution times of both ISRs. Because
OCs are used to drive the output pin, the transition times are exact, with no jitter. If service of either
ISR is delayed for more than a period then a rollover delay may be inserted into either the on or off
time.

Advantages: Transitions are precise, with no jitter; duty cycle and period are programmable over a
wide range, duty cycle extends fully from 1/65536 to 65535/65536.

Disadvantages: Rollover delays are possible; not failsafe – a software crash can leave the output
stuck ON.

Example 6 – One OC and ISR Generates a “Failsafe” PWM Signal

A single OC and associated ISR is used. The OC invokes an ISR for each transition. For the ON
transition, the ISR is responsible for setting the output pin. It also computes the next turn-off time
based on the time at which the pulse is actually turned on, and programs the OC to automatically
turn it back OFF at the turn-off time. At the next OC the pin is turned off by hardware and the ISR
is again called. This time the ISR just sets the turn-on time for the next OC time, disconnecting the
OC from the pin so that the pin is not automatically set. This sequence of events produces pulses
whose duration is invariant with respect to ISR delay, but that may jitter back and forth within their
fixed period. Despite any jitter, the duty cycle and period are both precisely controlled. If the ISR
is delayed by more than the off time, rollovers are inserted into only the off time, never the on time.
So the pulse on times are failsafe so long as the processor’s clock is running.

Advantages: Failsafe operation assures an ON pulse is never longer than desired and the pulses turn
off on a software crash. ON time may be as small as a single TCNT count.

154 Chapter 9: Digital and Timer-Controlled I/O

Disadvantages: Pulse position jitter; rollover delays are possible in the OFF time; minimum OFF
time must be greater than the IST latency and execution time.

Table 9-7 PWM Methods.

Method ISR
Used

Output
Compares

Turn
ON/OFF

Jitter D.C.
Accuracy

D.C. Range Rollovers
inserted?

Period

2 no OC1 and
one other

OC/OC none Perfect any no – failsafe Fixed at 131.072 ms

3 yes any OC ISR/ISR yes limited by
ISR
delays

Ton, Toff >ISR yes on and off times must
each be greater than ISR
latency and execution
times

4 yes any OC OC/OC no Perfect Ton, Toff >ISR yes on and off times must
each be greater than ISR
latency and execution
times

5 yes OC1 and
one other

OC/OC no Perfect Ton, Toff
unlimited

yes P>ISR1+ISR2

6 yes any OC ISR/OC yes Perfect Ton unlimited,
Toff>ISR

failsafe – into
only the off
time

155

Chapter 10

Data Acquisition Using Analog to Digital Conversion

This chapter describes the analog inputs available on the Handheld, explains how to connect
the converters to external signals, and details the built-in driver routines that make the analog
inputs easy to use. Simple code is presented to calculate measured voltages based on A/D
readings.

Data Acquisition Using the Handheld
Many instrument applications require monitoring of analog signals. Analog to digital (A/D) con-
verters can perform this function. An A/D converter samples analog signals and converts them to
digital values that can be stored, processed, or displayed.

The resolution of an A/D is specified in bits. For example, an 8-bit A/D converts an analog signal
into one of 256 discrete digital numbers.

Table 10-1 Analog I/O

I/O
Lines

Type Port
Address

Comments / Alternate Uses

8 8-bit 0-5 V analog inputs PE 0-7 Alternately may be used as digital inputs.

The Handheld hosts an analog to digital converter to address a wide variety of instrumentation and
control applications. It includes an 8-channel 8-bit analog to digital (A/D) converter that is built into
the 68HC11 processor chip. It converts unipolar signals with a nominal 0 to +5 volt range;

The analog inputs are brought out to the 24 pin Field Header on the Handheld; the connector dia-
grams in Appendix B specify the pin assignments.

The 8 bit A/D Converter

The 8 bit A/D converter in the processor converts unipolar signals with a nominal 0 to +5 volt range,
and conversion results are returned in registers in the 68HC11. The analog inputs are connected to
the PORTE pins on the processor; these can be used as digital inputs if the 8 bit A/D is disabled.

156 Chapter 10: Data Acquisition Using Analog to Digital Conversion

Examining the Demonstration Program

The code discussed in this section is located in the file named AD8.C in the
\MOSAIC\DEMOS_AND_DRIVERS\MISC\C EXAMPLES directory. Most of the functions in this file
are interactive versions of functions declared in the ANALOG.H file in the
\MOSAIC\FABIUS\INCLUDE\MOSAIC directory; they are described in detail in the Control-C Glos-
sary.

We recommend that you compile and download the AD8.C program now so that you can interac-
tively work through the exercises in this chapter. Simply use your TextPad editor to open AD8.C,
and click on the Make Tool to create the download file named AD8.DLF. Then enter the Mosaic
Terminal program, and type:

COLD

to terminate any prior multitasking program that might be running, and select the “Send File” menu
item to send AD8.DLF to the Handheld.

Fundamentals of Analog to Digital Conversion
An analog to digital converter samples an analog signal and outputs a digital number that is propor-
tional to the analog signal. The A/D converters on the Handheld sample input voltages and commu-
nicate the digital result to the 68HC11 processor.

The analog input signal must be within the input range of the A/D converter. On the Handheld, the
lower bound of the range is equal to the voltage on VRL (voltage reference/low) and the upper
bound of the allowable input range is equal to the voltage on VRH (voltage reference/high). By
default, their values are 0 Volts (analog ground) and 5.0 Volts (analog +5V), respectively.

The converter measures the input voltage with a certain specified resolution. The resolution is the
granularity with which the measurement is performed. It can be specified as a number of bits or as a
voltage increment. For example, an A/D converter with only 1 bit of resolution and a 5 Volt input
range would classify all voltages from 0 to just under 2.5 Volts as the digital value 0, and voltages
from 2.5 Volts to 5 Volts as the digital value 1. This converter has a resolution equal to 1 bit, which
corresponds to 2.5 Volts per count.

The converter measures the input voltage with a specified accuracy. The accuracy tells how close
the measured value is to the actual voltage. A typical 8 bit A/D converter is accurate to within plus
or minus one least significant bit.

Determining the Resolution of an A/D Converter

The VRL and VRH analog input reference pins define the lower and upper voltages that can be con-
verted by the 8 bit A/D. The resolution depends on the input voltage range. The measurement
resolution of a B-bit A/D, expressed in Volts per count, is

Eqn. 10-1 Resolution = (VRH - VRL) / 2B [Volts per count]

Using the 8-bit A/D 157

where 2B is the number of counts that can be represented by a B-bit number. From this equation we
see that resolution becomes finer (better) as B grows larger or as the reference voltage range (VRH -
VRL) gets smaller. For the 8 bit A/D the resolution is

Eqn. 10-2 8 bit Resolution = (VRH - VRL)/256 [Volts per count]

With the default VRL and VRH of 0 V and 5 V, respectively, the resolution of the 8 bit converter is
19.5 mV per count.

Converting an A/D Count into Its Equivalent Voltage Reading

To convert the 8-bit count returned by the A/D converter into an equivalent voltage, use the formula

Eqn. 10-3 Input Voltage = VRL + (Count * Resolution)

Combining this with Eqn. 10-1 yields

Eqn. 10-4 Input Voltage = VRL + Count * (VRH - VRL) / 2B

D
ig

ita
l C

on
ve

rs
io

n
R

es
ul

t (
H

ex
ad

ec
im

al
)

FD

Analog Input

FE

FF

02

01

00
1

256
VRH

2
256

VRH
3

256
VRH

253
256

VRH
254
256

VRH
255
256

VRH
VRH0

Figure 10-1 Conversion function for the 8-bit A/D.

Using the 8-bit A/D
Initializing the 8 Bit A/D

The 8 bit A/D is inside the 68HC11 processor chip, and is accessed via PORTE. This 8 bit port can
be used as either an 8 channel A/D or as an octal digital input port. When the Handheld is first

158 Chapter 10: Data Acquisition Using Analog to Digital Conversion

powered up, or after a reset or restart, the 8 bit A/D converter is disabled and PORTE is configured as
a digital input port. To turn on the A/D converter, a program must call the function:

AD8On()

Another function named AD8Off() is available to turn off the 8 bit A/D so that PORTE once again
acts as a digital input port.

The function named

InitAnalog()

defined in the AD8.C file calls AD8On(). If you interactively execute InitAnalog(), as,
InitAnalog()

the 8 bit A/D converter will be turned on and ready for use.

In an autostarting application you should include InitAnalog() in your start-up code.

Hardware Connections

To sample an analog voltage, attach a voltage with a value between zero and +5 Volts to the 8 bit
A/D channel 0 input named PE0. The 8 bit A/D inputs are the PORTE signals named PE0 through
PE7 available at pins 17 through 24 on the Field Header (see Appendix A). Each analog signal is
converted to a number between 0 and 255 indicating its value relative to VRL (the low voltage ref-
erence) and VRH (the high voltage reference). The default values are VRL = 0 Volts (analog
ground) and VRH = 5 Volts. The exact voltage difference between VRH and VRL varies slightly
from board to board; it is a good idea to measure the value on your board to obtain the most exact
voltage equivalents of the measured A/D results.

Interactively Perform the Conversion

The Convert8() function is defined near the middle of the AD8.C file; you can see from its defini-
tion that it is simply an interactively callable version of the AD8Sample() function. Now that you
have connected an input voltage to channel PE0, you can type from your terminal:

Convert8(int 0)

The printed return value summary displays the conversion count; you’ll see a printout that looks
something like this for a 1.5 volt signal:

Rtn: -30722 77 =0x87FE004D =fp: -3.822E-34

We know that this function returns an integer, so we identify “77” (hex 0x004D) as the return value;
the other numbers in the summary are irrelevant. If the input is 1.5 volts, the result should be ap-
proximately 77 counts (256 * 1.5 / 5.0). If the input voltage equals VRL (the low reference voltage,
typically at 0 Volts), the result will equal 0. If the input is within 1 bit of VRH (the high reference
voltage, typically at 5.0 Volts), the result will equal decimal 255. If the input is exactly half of
(VRH - VRL), the result will equal decimal 128.

Using the 8-bit A/D 159

Multiple 8 Bit A/D Conversions with Results Stored in a C Array

The function AD8Multiple() which is defined in the ANALOG.H file expects as inputs a buffer
xaddress (32 bit extended address), a sampling interval parameter, the number of samples, and a
channel number. When called, it performs the specified number of conversions and saves the results
as single bytes in the specified buffer. As explained in the Glossary, the sampling interval parame-
ter specifies the timing of the samples, with 0 representing the fastest sampling, and 65,535 repre-
senting the slowest sampling. You can sample at up to 100 kHz (100,000 samples per second) using
the 8-bit A/D provided the processor is devoted to this single task.

The AD8ToCArray() function defined in AD8.C uses a standard C one-dimensional array named
results_8 as the data buffer. The function accepts a channel number as input, performs conver-
sions at the fastest sampling speed (100 kHz), and places the results in the array. The number of
samples is specified by the DEFAULT_NUMSAMPLES constant which equals 16. Because we have
connected the channel 0 input (AN0), let’s perform the multiple conversion on this channel. Type at
your terminal:

AD8ToCArray(int 0)

remembering to type at least one space after the (character. This function does not return a value,
so the printed return value summary is not relevant. To see the results of the conversion, you could
write a simple C function that prints the contents of results_8; this is left as an exercise for you.
You can also use the debugging routine named DUMP to view a hexadecimal dump of the buffer. To
do this, type at your terminal:

results_8 0 16 DUMP

DUMP is a QED-Forth function that expects as inputs an address (in this case, results_8 puts the
address on the data stack), a page (0, representing the common page), and the number of bytes to be
dumped (16). You should see a printout similar to this if you connected a 1.5 volt signal:

pg addr 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 0123456789ABCDEF

00 8E2D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D 4D MMMMMMMMMMMMMMMM

This tells us that the contents of the 16 bytes starting at address 0x8E2D (which is the address of
results_8) all equal 0x4D. To the right of the hex dump the ascii equivalent of the memory
contents is displayed; this is not relevant for the numerical data here. We conclude that the A/D
conversion result was 0x4D, equivalent to decimal 77; this is the same value returned by the
Convert8() function above. Your results may vary slightly depending on the exact value of sup-
ply voltage on the Handheld, as the +5V supply is used as the default reference voltage.

For Experts: How To Use Additional Features of the 8 Bit A/D

The built-in driver routines for the 8 bit A/D are easy to use and address the requirements of most
applications. If you wish to gain a detailed understanding of the operation of the 8 bit A/D, or need
to use one of its special modes, the information in the Analog-To-Digital Section of the
MC68HC11F1 Technical Data Manual may prove useful. For example, one of the operating modes
allows the 8 bit A/D converter to continuously sample four different analog inputs in rapid succes-
sion.

160 Chapter 10: Data Acquisition Using Analog to Digital Conversion

161

Chapter 11

Serial Communications

RS-232 and RS-485 Communications
The Handheld has two serial communications ports: a primary serial port called Serial 1 that sup-
ports both RS232 and RS485 protocols, and a secondary serial port called Serial 2 that supports
RS232. The Serial 1 port is implemented with the 68HC11's on-chip hardware UART (Universal
Asynchronous Receiver/Transmitter). Serial 2 is implemented by a software UART in the control-
ler’s QED-Forth Kernel that uses two of the processor’s PortA I/O pins to generate a serial commu-
nications channel.

Table 11-1 Serial Communications Channels

Channels Type Port Address Comments / Alternate Uses
1 Serial 1: RS232/485 hardware

UART at up to 19.2 KBaud
PD 0-1, PD 5
used for RS-485.

1 Serial 2: RS232 software
UART at up to 4800 Baud

PA 3-4 PA 3-4 may be used as timer-controlled I/O
(one input-capture and one output-compare)
if Serial 2 is not used. PA 3-4 may also be
used for hardware handshaking for Serial 1.

1 Synchronous Serial Peripheral
Interface at 2 MBaud

PD 2-5

3 Serial communications channels

The primary channel’s UART translates the bit-by-bit data on the serial cable into bytes of data that
can be interpreted by the QED-Forth Kernel or by your application program. It controls the serial-
to-parallel and parallel-to-serial conversion and performs all of the timing functions necessary for
asynchronous serial communications. The communications is asynchronous because no synchro-
nizing clock signal is transmitted along with the data. Rather, the UART deduces the correct time to
sample the incoming signal based on the start and stop bits in the signal itself. (The Handheld also
supports fast synchronous serial communications via the Serial Peripheral Interface described later
in this Chapter.)

The secondary channel is very useful for debugging application programs that communicate with
other computers or I/O via the primary channel. Since both channels can operate simultaneously
and independently, debugging can be performed while the application program is communicating

162 Chapter 11: Serial Communications

via its primary channel. The dual communications channels also provide an easy way to link sys-
tems that communicate using different serial protocols.

Serial Protocols

There are several protocols that govern the format of exchanged data, with the RS232 protocol used
primarily by personal computers, and the RS485 protocol used in industrial control systems. The
Serial 1 port can be configured for either RS232 or RS485 communications at up to 19200 baud.
The Serial 2 port is dedicated to RS232 communications at up to 4800 baud.

RS232

RS232 is by far the most common protocol. It is supported by virtually all personal computers, and
is the default protocol for both of the Handheld’s serial ports. Its simplest implementation requires
only three wires: one to transmit serial data, a second to receive serial data, and a third to provide a
common ground reference. RS232 allows both communicating parties to transmit and receive data
at the same time; this is referred to as full duplex communications. RS232’s greatest benefit is its
universality; practically all personal computers can use this protocol to send and receive serial data.
If your computer does not have an RS-232 serial port, low cost USB-to-RS-232 serial cables are
available; contact Mosaic Industries for details.

RS232 uses inverse logic; that is, a positive bit at the 68HC11 UART is inverted by the onboard
RS232 driver chip and appears as a negative signal on the serial cable. The terminal’s serial re-
ceiver chip re-inverts the signal to its positive sense. The data bits are also transmitted in reverse
order, with the least significant bit transmitted first, after a start bit. The specified signal levels of
approximately +/- 9 Volts are derived from the Handheld’s +5 Volt supply by a dual RS232 driver
chip that has a built-in charge pump voltage multiplier.

RS485

RS485 is another protocol supported by the primary serial port on the Handheld. It is a half duplex
protocol, meaning that only one party at a time may transmit data. Unlike the standard RS232 pro-
tocol, RS485 allows many communicating parties to share the same 3-wire communications cable.
Thus RS485 is the standard protocol of choice when multi-drop communications are required.

Like RS232, the data bits are transmitted in reverse order, with the least significant bit transmitted
first. The RS485 protocol uses differential data signals for improved noise immunity; thus RS485
can communicate over greater distances than RS232. An RS485 transceiver is present on the Hand-
held, and its data direction is controlled by pin 5 of port D of the 68HC11.

Serial Connectors and Configuration Options

The primary and secondary serial communications ports are accessible through the Handheld's 10
pin, dual row Communications Header (H4) on the Processor Board. Several serial communications
cables are also supplied with Handheld Starter Kits.

The pinout of the Handheld’s Communications Header (H4) is shown in the following table.

RS-232 and RS-485 Communications 163

Although the RS232 protocol specifies functions for as many as 25 pins, each communications
channel requires only three for simple serial interfaces: TxD1 (transmit data), RxD1 (receive data),
and DGND (digital ground). The RS232 protocol specifies the use of two separate grounds, a signal
ground and a protective (or “chassis”) ground. The Handheld does not differentiate between these.
To provide a convenient means of attaching two grounds to the serial cable, there are several pins
(labeled DGND) on the communications connector that are connected to the controller’s ground
plane.

Table 11-2 Serial Communications Header, H4

Signal Pins Signal
/TxD1 – 1 2 – /RxD1

DGND – 3 4 – /MOD1.CS

RS485 XCVR- – 5 6 – RS485 XCVR+

/TxD2 – 7 8 – /RxD2

DGND – 9 10 – +VBAT

Given the availability of ready-made communications cables, it is not necessary to study or under-
stand the following descriptions of cable connections. These detailed signal descriptions and cable
diagrams are presented to provide complete information for those who have special communications
requirements and for those who wish to make their own application-specific communications cables.
Most computers conform to IBM PC AT-compatible RS232 interfaces which use 9-pin D-Type
connectors, consequently the Handheld brings out its serial ports to two female 9-pin D-Type con-
nectors on the PowerDock. Table 11-3 shows the connection diagram for a standard 9-pin serial
cable.

Table 11-3 Serial Cable Connections.

Cable
Pin

PC AT or
Terminal

Handheld

1 NC DTR1/DSR1
2 RxD TxD1
3 TxD RxD1
4 DTR DSR1/DCD1
5 GND GND
6 DSR DTR1/DCD1
7 RTS CTS1
8 CTS RTS1
9 NC NC

We can gain insight into the operation of the RS232 protocol by examining the signal connections
used for the primary serial port in Table 11-3. The transmit and receive data signals carry the mes-
sages being communicated between the Handheld and the PC or terminal. The Handheld’s transmit
data signal TxD1 (pin 2 on the 9-pin serial connector) is connected to the terminal’s receive data
signal RxD (pin 2 on its 9-pin connector). Likewise, the terminal’s transmit signal TxD is con-

164 Chapter 11: Serial Communications

nected to the Handheld’s receive signal RxD1. Chassis and signal grounds are connected together to
the digital ground (DGND) signal.

From the Handheld’s point of view, these three signals (TxD, RxD, and ground) are the only con-
nections required to perform serial communications. While these signals provide a data path, they
do not provide hardware handshaking that allows the two communicating parties to let each other
know when they are ready to send or receive data.

The RS232 protocol provides for four handshaking signals called ready to send (RTS), clear to send
(CTS), data set ready (DSR), and data terminal ready (DTR) to coordinate the transfer of informa-
tion. The Handheld, however, does not implement hardware handshaking. Rather, it relies on soft-
ware handshaking via transmission of XON/XOFF characters to coordinate data transfer and ensure
that information is not lost when one of the communicating parties is busy.

Many terminals and PCs, however, do rely on hardware handshaking to determine when the other
party (in this case the Handheld) is ready to accept data. By connecting pairs of these handshaking
signals together, the terminal or PC can be made to think that the Handheld is always ready to send
and receive data. Thus in Table 11-3 , RTS1 is connected to CTS1, and DSR1 is connected to
DTR1 and DCD1 onboard the Handheld using zero ohm shorting resistors. These signals may al-
ternatively be redirected to the digital inputs and outputs used by the second serial port if hardware
handshaking is required.

The secondary serial port is connected similarly except that the onboard connection of RTS to CTS,
and DSR to DTR are permanent.

Enabling RS485 Communications

If your application requires RS485, use the primary serial port (serial1) for RS485 communications,
and use the secondary serial port (Serial 2) to program and debug your application code using the
RS232 protocol. The default serial routines used by the onboard kernel assume that full duplex
communications are available, so you cannot use the RS485 protocol to program the controller. You
can use it to communicate with other devices.

A jumper, J9 on the Processor Board, configures the primary serial port for either RS232 or RS485
operation.

For RS232 operation: Remove the jumper shunt from J9. In this case, cable connections may
be made to Serial 1 on either the 10-pin Serial Communications Header or the DB25 Connec-
tor if jumpers J1-J3 are configured appropriately on the Personality Board.

For RS485 operation: Install the jumper shunt onto J9. In this case, cable connections must be
made to Serial 1 at pins 5 and 6 of the 10-pin Serial Header.

Using the Serial Ports

Using the primary serial port is easy. In fact, you have been using it all along as you worked
through the examples in this document. The standard C serial I/O routines such as printf(),
scanf(), putchar(), and getchar() give you high level access to the serial ports. All high

RS-232 and RS-485 Communications 165

level routines call the following low level revectorable serial primitives to access the currently ac-
tive serial port:

int AskKey(void) // returns a flag that is true if an input char is waiting
char Key(void) // waits for and returns the next input char
void Emit(char) // outputs the specified char to the serial port

Because all of the serial I/O routines on the Handheld are revectorable, it is very easy to change the
serial port in use without modifying any high level code.

Let’s do a quick experiment to see how easy it is. We’ll use code from the GETSTART.C program.
If you have already downloaded the program, you are ready to go. If your board is presently run-
ning a multitasking application, type

WARM

to stop the program now.

If you have not yet compiled the GETSTART program and you want to do the exercises here, open
GETSTART.C in your TextPad editor, click on the Make Tool, and after the compilation is done,
enter Mosaic Terminal by clicking on the terminal icon and use the “Send File” menu item to send
GETSTART.DLF to the Handheld.

Switching the Default Serial Port

Before running the program, let’s switch to the secondary serial port. The secondary serial port is
implemented by a software UART that controls two pins on PortA. Pin 3 of PortA is the Serial2
input, and pin 4 of PortA is the Serial2 output. To switch to the secondary serial port running at
1200 baud, simply type from the terminal the following QED-Forth commands:

DECIMAL

1200 BAUD2

USE.SERIAL2

You can operate the port at any baud rate up to 4800 baud; just specify the rate you want before the
BAUD2 command. Now select the “Comm” item in the “Settings” menu of the Terminal program,
and click on 1200 baud (or whatever baud rate you selected in the command above). Move the
serial cable from the “Serial Port 1” connector to the “Serial Port 2” connector on the PowerDock.
Typing a carriage return at the terminal should now produce the familiar “ok” response via the Se-
rial2 port.

Now type:
main

and you’ll see the familiar starting message of the GETSTART.C program:
Starting condition:

The radius is 0; the circular area is 0.

ok

In fact, the program works the same as it did before, but now it is using the secondary serial port
instead of the primary port -- and you didn’t even have to recompile the code!

166 Chapter 11: Serial Communications

For those of you interested in the details, here’s how it works: The low-level serial driver routines
named Key(), AskKey() and Emit() are revectorable routines that can be redirected to use either
of the serial ports. By interactively executing the QED-Forth function

USE.SERIAL2

before calling main, we revectored these serial primitives to use the Serial2 port.

You can invoke the C version of this routine by calling

UseSerial2()

anywhere within your C program’s source code file. Function prototypes for this function and other
versatile serial I/O routines are defined in the COMM.H header file, and are described in detail in the
Control-C Glossary.

To return to using the primary serial port, simply type from the active terminal the QED-Forth
command:

USE.SERIAL1

which transfers control back to serial port 1 running at the prior established baud rate (typically
19200 baud). A hardware reset (pressing down on the reset switch) has the same effect. If you do
this now, remember to move the Handheld’s serial connector back to Serial Port 1, and to change the
terminal’s baud rate back to 19200 baud using the “Comm” item under the terminal’s “Settings”
menu.

If you always want the Handheld to start up using the secondary serial port as the default serial
communications link, you can type at your terminal:

1200 SERIAL2.AT.STARTUP

where 1200 is the baud rate that you choose; you can specify any standard baud rate up to 4800
baud. The complementary routine is:

SERIAL1.AT.STARTUP

which makes the primary serial port the default startup serial link. We recommend that you keep the
faster Serial1 port as the default serial link as you work through the exercises in this book.

All of these functions that we are calling interactively via the operating system can also be called
from C in your program source code; their C function prototypes are as follows:

void UseSerial1(void);
void UseSerial2(void);
void Baud2(int baud);
void Serial1AtStartup(void);
void Serial2AtStartup(int baud);

In summary, the code provided for implementing the second serial port is very flexible and can be
used to support dual concurrent communications ports. Data translation between different machines
can be performed with ease, and applications that communicate via the primary serial port can be
debugged using the secondary channel.

RS-232 and RS-485 Communications 167

Timing Considerations and Multitasking

In multitasking systems using both serial ports Serial1 and Serial2, the application code should
include one of the commands

SERIAL_ACCESS = RELEASE_ALWAYS;
SERIAL_ACCESS = RELEASE_NEVER;

before building the tasks. This prevents contention that can occur if the default
RELEASE_AFTER_LINE option is installed in the SERIAL_ACCESS user variable.

The primary serial port, Serial1, is supported by the 68HC11's on-chip hardware UART, and does
not require interrupts to work properly. On the other hand, the secondary serial port (Serial2) is
implemented using hardware pins PA3 (input) and PA4 (output), and is controlled by the associated
interrupts IC4/OC5 and OC4, respectively. The Handheld’s kernel software contains a complete set
of high level driver routines for the Serial2 port, and these functions are summarized in the Control-
C Glossary.

The maximum Serial2 communications rate is 4800 baud. Because the software UART is interrupt
based, competing interrupts that prevent timely servicing of the Serial2 interrupts can cause com-
munications errors on the secondary serial channel. For example, at 4800 baud (bits per second),
each bit lasts about 200 microseconds (µs), and if communications are full duplex (e.g., if the Hand-
held echoes each incoming character), then there is a serial interrupt every 100 µs or so. In the
middle of a character, each interrupt service routine takes about 35 µs. At the end of a received
character, the service routine takes about 45 µs. At the start of a transmitted character, the service
routine takes about 65 µs. Thus, as a rough approximation, operating at 4800 baud full duplex re-
quires about 40 to 50% of the 6811's CPU time (that is, an average of approximately 40 to 50 µs
service time every 100 µs).

If you are running Serial2 at 4800 baud, the rest of your application must be able to function prop-
erly using the remaining portion of the CPU time. Moreover, if Serial2 is running full duplex at
4800 baud, any other interrupt service routine that takes longer than 100 µs is likely to cause a
problem. If an interrupt service routine takes longer than 200 µs, then an entire serial bit will be
missed, causing a communications error. Also, several non-serial interrupts can stack up; if they
have higher priority than the serial interrupts, they will be serviced before the Serial2 interrupt rou-
tine, and again a serial input or output bit may be lost.

Routines that temporarily disable interrupts for significant periods of time can also interfere with the
Serial2 port. The Control-C Glossary contains a list of functions that temporarily disable interrupts,
and the glossary entries give further information regarding how long interrupts are disabled. In most
cases the times are less than 25 µs which does not pose a problem. However, note that the functions
that write to EEPROM disable interrupts for 20 msec. per programmed byte. Be sure to account for
these effects when designing your application.

We have built sophisticated instruments using the Handheld that operate very reliably using multiple
interrupts in addition to the software UART. If your application requires use of the secondary serial
port as well as other interrupt routines, the key is to keep the interrupt service routines short and fast.
You might also consider operating the secondary serial port at a lower baud rate to relax the timing
constraints.

168 Chapter 11: Serial Communications

Setting Baud Rates

The rate of data transmission is expressed in bits per second, or baud. The primary serial channel
can operate at standard speeds up to 19200 baud and can be configured for either RS232 (the de-
fault) or RS485 operation. The Serial2 channel is always configured for RS232 communications,
and can sustain baud rates up to 4800 baud.

The routines

void Baud1AtStartup(int baud);
void Serial2AtStartup(int baud);

make it easy to establish a standard baud rate at which the board will communicate each time it
starts up. Although the maximum standard baud rate of the primary serial port is 19200 baud, non-
standard baud rates of over 80 Kbaud can be attained by the 68HC11's on-chip UART and the on-
board RS232 driver. The maximum sustainable baud rate on the secondary serial port is 4800 baud.

Multi-Drop Communications Using RS-485

Connecting computers together in multi-drop networks is common in factories and laboratories. In
these distributed processing networks, a variety of machines and instruments work locally, but
communicate and share data or resources with one another globally using a single serial link. You
can use the Handheld’s RS485 link to create such a multi-drop serial network.

In the most common multi-drop RS-485 protocol, one computer is designated as a “master” and the
rest of the computers or devices on the serial bus are designated as “slaves”. At any given time,
only the master and a single “active” slave communicate. The remaining “inactive” slaves may
actively receive, or listen to, data on the communications line, but only one slave at a time can
transmit a message. If more than one slave tried to drive the transmit line simultaneously, their
serial drivers would fight with each other for control of the bus. To ensure that no two devices drive
the network at the same time, it is necessary that each slave device be able to disable it’s own RS-
485 data transmitter.

Software Implementation of an RS485 Network

Because the requirements of every multi-drop application are so unique, it is difficult to specify or
design a software protocol that meets everyone’s needs. This section describes the QED-Forth
routines that control the RS485 transceiver, and presents some ideas that may prove useful in de-
signing a multi-drop data exchange protocol.

The Handheld controls the RS485 transceiver with bit 5 of Port D of the processor. When this bit is
high, the transceiver is in transmit mode. When it is low, the transceiver is in receive mode. QED-
Forth includes three built-in routines to facilitate control of the RS485 transceiver. They are:

void InitRS485(void);
void RS485Receive(void);
void RS485Transmit(void);

InitRS485() configures Port D to ensure that bit 5 is an output. RS485Receive() clears bit
PD5 to place the transceiver in receive mode, and RS485Transmit() sets bit PD5 to place the
transceiver in transmit mode.

Synchronous Serial Peripheral Interface (SPI) 169

To use a Handheld as a slave in a multi-drop network, simply define a word, (named
Silence(void), for example) that when executed calls RS485Receive() to wait for any pend-
ing character transmission to complete, then disable the transmitter, and then execute a routine such
as Key() to listen to the communications on the serial bus. The Silence() routine searches the
incoming serial characters for a pre-determined keyword (for example, the ascii “name” of this
particular slave). When the network master wants to talk to this particular slave, it outputs the
slave’s ascii name onto the serial bus. When the keyword name is received by the Silence()
routine running in the slave, the slave Handheld executes RS485Transmit() to send an acknowl-
edgment to the master (which should now be listening to the serial bus to accept the acknowledg-
ment). The master and slave can then exchange data.

The data exchange format may be a line of ascii text. The master and slave could even exchange
ascii QED-Forth commands. When the exchange is complete, the slave can again execute the
Silence() routine to disable its transmitter and begin listening for its name.

Synchronous Serial Peripheral Interface (SPI)
The Serial Peripheral Interface, SPI, is a fast synchronous serial interface. It provides a convenient
means of connecting the Handheld to a variety of peripheral devices, including analog to digital and
digital to analog converters, real time clocks, and other computers which use high speed communi-
cation.

The SPI can transfer data much more rapidly than an asynchronous serial link – its maximum rate is
2 Megabits/second.

After configuring the SPI system to communicate on a properly connected network of devices,
sending and receiving data is as simple as writing and reading a register. The QED-Forth kernel
includes pre-coded drivers that configure and control the SPI for maximum speed data transfers.
This chapter describes those drivers, and presents code that makes it easy to configure the SPI for
different data transfer rates and formats.

SPI Bus Pins

Hardware is interfaced to the SPI via three PORTD pins named SCK, MOSI, and MISO brought out
to pins 7, 8, and 10 on the Wildcard Port Header (see Appendix B). The SCK (serial clock) pin is a
configurable synchronous data clock output. This signal synchronizes the exchange of bytes be-
tween the Handheld and its peripherals. The byte-sized messages are transmitted and received via
the MOSI (master out/slave in) and MISO (master in/slave out) pins. The /SS (active-low slave
select) is typically used to enable data transfers by slave devices when it is active low. For the
Handheld, /SS is not used for SPI communication because it is used to control the direction of the
RS485 transceiver; you can use any digital I/O line as a /SS signal. A ground connection is also
necessary to ensure that the communicating devices have a common voltage reference.

When the Handheld controls the network, it is referred to as a “master”; otherwise, it is a “slave”.
The distinction between master and slave is an important one. The device that initiates a data trans-
fer is the master, and all other devices on the network are slaves. Only one active master may con-

170 Chapter 11: Serial Communications

trol the network at a time; however, the device that assumes the role of master may change accord-
ing to an appropriate protocol.

If you are using the Handheld as a slave device and require the /SS signal for your external SPI
hardware, configure one of the Port A pins on the Field Header as an input pin. By polling the Port
A pin or by setting up an interrupt service routine, you can configure the Handheld to ignore the
SCK input when /SS is high and keep MISO in a high-impedance state so that it does not interfere
with the SPI bus. When the /SS input goes low, the slave (or Handheld in this case) transfers data in
response to the SCK clock input that is initiated by the master.

If you are using the Handheld as a master device, each external SPI device will require a separate
select line (/SS). You can implement the slave select lines by configuring Port A pins as outputs.
Remember that the /SS is active low so to select a device you need to set the pin low; otherwise the
pin should idle high.

There are many possible configurations of master/slave networks. Regardless of the network, how-
ever, there are only four signals used: SCK provides a synchronized clock, MOSI and MISO signals
are used for data transmission and reception, and /SS configures the Handheld as a master or slave
device. In this section we will consider the most general and simple configurations.

SPI Network Connections

Configured as a master device, the Handheld transmits bytes via the “master out/slave in” pin,
MOSI. It receives bytes sent by a slave device via the “master in/slave out” pin, MISO. Transmis-
sions are always initiated by the master device, and consist of an exchange of bytes. As the master
transmits a byte to an active slave (that is, a slave with its /SS input active low), the master receives
a byte from the slave. It may be that only the byte sent from the master to the slave is meaningful;
nevertheless, each device simultaneously transmits and receives one byte. The only difference be-
tween the master and slave devices is that the master initiates the transmission.

Slave devices use the master in/slave out pin, MISO, for transmitting, and the master out/slave in
pin, MOSI, for receiving data. The following wiring diagram illustrates how the MOSI, and MISO
pins of a master and a slave would be connected to exchange data:

Master Slave

MOSI → MOSI

MISO ← MISO

SCK → SCK

/SS → /SS

GROUND ↔ GROUND

The status of a device as master or slave determines how the various pins must be configured. The
arrows in the diagram point to pins configured as inputs, and originate from output pins. Thus, the
master has only one input, MISO, which is the slave’s only output. Note that the master device
outputs the clock synchronization signal SCK to the slave’s SCK which is configured as an input.
Also, in the diagram, the master’s /SS (slave select) is configured as an output. By setting this out-

Synchronous Serial Peripheral Interface (SPI) 171

put LOW, the slave’s input /SS is pulled LOW. The GROUND line serves as a common voltage
reference for the master and slave.

There are a variety of ways the MOSI, MISO, SCK and /SS pins on your Handheld can be con-
nected. The one you choose depends on the specific device, or devices you will be connecting to.
In some circumstances a one-way data flow may suffice. For example, a Handheld connected to a
serial A/D converter might have these connections:

Master
Handheld

Slave
Serial A/D Device

MOSI → not connected

MISO ← Conversion Output

SCK → CLK

/SS (Port A pin) → /CS

GROUND ↔ GROUND

In this example, the Handheld selects the serial A/D by outputting a LOW signal on /SS. Even
though the MOSI pin is not connected to anything, the master initiates a transmission using a
“dummy” byte. The SCK pin clocks the serial A/D’s CLK input which causes the A/D’s conversion
result to be transferred to the master via the MISO line.

The Handheld allows the details of the synchronous communications protocol to be customized for
compatibility with a variety of peripherals. The next section describes the registers that configure
and control the Handheld’s SPI.

Configuring the SPI

The SPI is configured and accessed via four registers:

Name Description Reference

SPCR SPI control register MC68HC11F1 Technical Data Manual, p.8-5

SPSR SPI status register MC68HC11F1 Technical Data Manual, p.8-7

SPDR SPI data register MC68HC11F1 Technical Data Manual, p.8-7

DDRD Port D data direction MC68HC11F1 Technical Data Manual,p. 6-4

Given a properly wired network and a properly configured SPCR control register, a master device
may transmit a message by simply storing the byte to the SPDR data register. This automatically
activates the SCK clock which synchronously transmits the data. As the master transmits its data, 8
bits of data are simultaneously received. The received data byte is accessed by reading SPDR data
register. This ability to exchange messages means that the SPI is capable of full duplex communi-
cation. Once the data has been exchanged, a flag bit in the SPSR status register is set to indicate that
the transfer is complete. If the programmer has enabled the local interrupt mask for the SPI, an
interrupt is recognized at this point. Any required SPI output signals must be configured as outputs,

172 Chapter 11: Serial Communications

either by calling InitSPI() or by setting the appropriate bits in the Port D data direction register
DDRD.

The InitSPI() function provides a convenient way to initialize the SPI as the master at a 2MHz
baud rate. This function properly configures the directions of the SPI I/O pins, and configures the
data transfer such that data is valid on the falling trailing edge of the clock, with the clock idling in
the low state. This configuration works for many SPI devices, including the optional battery-backed
real-time clock. Consult the data sheets for any peripheral devices that you are interfacing to the
SPI and, if a different configuration is needed, follow the instructions below to set up the appropri-
ate SPI data transfer protocol.

The BufferToSPI() function implements fast data transfer from a specified buffer in the control-
ler’s memory to an SPI device. This function cannot accept incoming data; consult its glossary
entry for details.

Multitasking applications with more than one SPI device should control access to the SPI bus using
the resource variable SPI_RESOURCE and the access control functions GET() and RELEASE().
Consult their glossary entries for details.

Initializing the SPI Control Register

The SPI control register, SPCR, contains 8 bits which must be initialized for proper control of the
Handheld’s SPI (M68HC11 Reference Manual, Section 8.6.2). These bits are:

Bit Name Description

SPIE SPI interrupt enable

SPE SPI system enable

DWOM Port D wired-or mode

MSTR Master

CPOL Clock polarity

CPHA Clock phase

SPR1 SPI clock rate select bit1

SPR0 SPI clock rate select bit0

The DWOM bit (port D wired-or mode) should always be set to 0. Setting DWOM to 1 takes away
the processor’s ability to pull the Port D signals high unless there is a pull-up resistor on each bit of
the port. Setting this bit to 1 without installing pull-up resisters corrupts the operation of the serial
communications interface which uses bits 0 and 1 of Port D.

Setting SPE (SPI enable) to 1 turns on the SPI system. This bit should be set only after all other SPI
configuration is complete.

SPIE is a local interrupt mask that allows an interrupt to be recognized when an SPI data transfer
has completed, or if a write collision or mode fault is detected.

Setting the MSTR bit initializes the Handheld as a master, and clearing the MSTR bit initializes it as
a slave. If the /SS pin of the master is an input and if a low input level is detected, the processor sets

Synchronous Serial Peripheral Interface (SPI) 173

the MODF bit in the SPI status register a “mode fault” condition. This detects the presence of more
than one master on the SPI bus.

The CPOL, CPHA, SR1 and SPR0 configure the SCK pin’s clock polarity, clock phase, and clock
rate. These signals are described in detail below.

SPI Clock Signal Configuration

The SCK pin’s synchronous clock signal has configurable phase, polarity and baud rate so that it can
interface to a variety of synchronous serial devices. In general, all devices on a network should use
the same phase, polarity, and baud rate clock signal. In some cases, however, a sophisticated net-
work may have device groups on a network that use different clock configurations. Although the
devices would share the same network, communications would only be understandable by members
of the same group.

The clock’s polarity is controlled by a bit named CPOL (clock polarity) and its phase is controlled
by CPHA (clock phase). CPOL determines whether the clock idles in the low state (CPOL = 0) or
the high state (CPOL = 1). If the clock idles in the low state, the leading edge of the clock is a rising
edge. If the clock idles in the high state, the leading edge of the clock is a falling edge. The CPHA
bit determines whether data is valid on the leading or trailing edge of the clock. Note that the data is
changed by the transmitting device one half clock cycle before it is valid.

The following table summarizes the combinations of CPHA and CPOL settings:

CPOL CPHA Data is valid on the:

0 0 Rising, leading edge

0 1 Falling, trailing edge

= default set by InitSPI()

1 0 Falling, leading edge

1 1 Rising, trailing edge

Many serial devices require a clock that idles in the low state (CPOL = 0), and expect valid data to
be present on rising clock edges. Thus in this common configuration the transmitting device outputs
the data when the clock goes low, and the receiving device samples the valid data when the clock
goes high (CPHA = 0). In other words, data is valid on the “rising leading edge” of the clock.

To interface devices that support synchronized serial interfaces, but are not configurable like the
Handheld, determine the device’s requirements for clock phase and polarity and configure the
Handheld’s CPHA and CPOL accordingly. It is important to note that when the CPHA bit is 0, the
/SS line must be de-asserted and re-asserted between each successive data byte exchange (68HC11
Reference Manual, Section 8.3.2). If the CPHA bit is 1, the /SS line may be tied low between suc-
cessive transfers.

SPI Baud Rate

The two lowest order bits in the SPCR control register, named SPR1 and SPR0, determine the data
exchange frequency expressed in bits per second; this frequency is also known as the baud rate.

174 Chapter 11: Serial Communications

This setting is only relevant for the master device, as it is the master’s clock which drives the trans-
fer. SPR1 and SPR0 determine the baud rate according to the following table:

SPR1 SPR0 SPI Frequency (bits/s)

0 0 2.0 MHz

= default set by InitSPI()

0 1 1.0 MHz

1 0 250 kHz

1 1 125 kHz

Summary of the SPCR Control Register

The SPIE bit in the SPCR (SPI control register) enables SPI interrupt handling. The SPE bit turns
on the SPI system. The DWOM bit determines whether Port D needs pull-up resistors; it should be
set to 0. The MSTR bit determines whether the device is a master or slave. The CPOL and CPHA
bits configure the synchronous clock polarity and phase and specify when valid data is present on
the MISO and MOSI data lines. Finally, for master devices, the SPR1 and SPR0 bits determine the
baud rate at which data is exchanged.

SPI Status Register Flags

There are three flag bits implemented in the SPSR (SPI status register). They are:

Flag Condition

SPIF SPI transfer complete

WCOL Write collision

MODF Mode fault

Any of these conditions may generate an interrupt if the SPIE (SPI interrupt enable) bit in the SPCR
control register is set.

The SPIF is set when a data transfer is complete, and is cleared by a read of the SPSR status register,
followed by a read or write to the SPDR data register. Thus, resetting the SPIF flag is very simple.
After a data transfer is initiated by writing to the SPDR data register, the processor may poll the
SPSR status register until the SPIF flag is set. Then reading the data that was received (by reading
the SPDR) or initiating a new data transfer (by writing to the SPDR) automatically clears the SPIF
flag. Alternatively, the if the SPI interrupts are enabled, the SPI interrupt handler determines what
caused the interrupt by reading the SPSR register to see which of the three status bits is set. If SPIF
is set, reading the received data or initiating a new data transfer automatically clears the SPIF bit.

A write collision occurs when a byte is written to the SPI data register, SPDR, while data is being
exchanged. The WCOL flag is set when a write collision occurs. The data transfer that is in process
when the write collision occurs is completed. WCOL is cleared by a read to the SPSR followed by a
read or write to the SPDR.

Synchronous Serial Peripheral Interface (SPI) 175

A mode fault occurs when the SPI senses that a multimaster conflict (MC68HC11F1 Technical Data
Manual, p.8-7) exists on the network as explained above in connection with the /SS input. When a
mode fault is detected, the processor:

1. disables the SPI outputs by clearing the bits in the Port D data direction register (DDRD),

2. clears the MSTR bit in the SPCR to configure the SPI as a slave,

3. clears the SPE bit to disable the SPI, and

4. generates an interrupt if the SPIE bit in the SPCR is enabled

These steps greatly reduce the chance that the communicating devices might be damaged by con-
tention on the SPI bus. The MODF bit is cleared by a read of the SPSR followed by a write to the
SPCR.

SPI Data Transfers

A data transfer is initiated by a master device when it stores a message byte into its SPDR register.
If a slave device has already stored a byte into its SPDR register, that byte will be exchanged with
the master’s byte. Once the bytes have been exchanged, the master may write a new byte to initiate
another byte exchange. Although data byte transfers are easily executed once the network has been
wired and configured properly, a carefully executed software protocol may be required to ensure
data integrity.

Summary

The flexibility and power of the 68HC11’s serial peripheral interface supports high speed communi-
cation between the 68HC11 and other synchronous serial devices. The interface can be used to
support analog to digital and digital to analog converters, networks of many computers controlled by
a single master, or networks of devices controlled by several coordinated masters. Pre-coded device
drivers configure the SPI for a standard data format, and it is easy to customize a data format and
baud rate for your application. With careful design, many peripherals can communicate via the SPI,
and powerful multi-processor systems can be linked using this high speed bus.

176 Chapter 11: Serial Communications

177

Chapter 12

The Battery-Backed Real-Time Clock

A battery-backed real time clock (RTC) may be optionally included. If so, the RTC’s battery also
backs-up the 128K RAM. Note however that if the expanded memory option is chosen, providing
512K or RAM, then none of the RAM can be battery-backed. The accuracy of the clock is better
than +/- 2 minutes per month.

A 7 ma-hr Lithium rechargable battery is used. This backup battery charges automatically while
+5V is applied to the board. When +5V is not applied the battery keeps alive the RTC and the RAM
so that information is not lost. The length of time the battery lasts varies from board to board pri-
marily because RAM chips vary device-to-device in their leakage currents. Their leakage currents
also depend strongly on ambient temperature so that while a battery may last a long time at normal
or low ambient temperatures, at greater temperature it may discharge quickly.

We have measured battery discharge times for typical devices and have found the following:

◙ Actual measurements at normal temperatures (<40°C) show the battery should backup the
memory more than two years between recharging. Our actual measurements of the RAM cur-
rent draw show it to draw much less than its “typical” spec from its datasheet.

◙ Assuming the “typical” current specifications of the RAM data sheets the battery should last
139 days; and,

◙ At the worst case current specification for the RAM, battery life would be 44 days at normal
temperatures, and as little as 6 days if operated continuously at an ambient temperature of
70°C.

◙ If the RAM is not battery backed, but the RTC installed, typical RTC retention time at 25°C
should be 300 days.

Figure 12-1 illustrates the dependence of battery lifetime between charges while backing up the
128K RAM and powering the RTC, and ambient temperature.

178 Chapter 12: The Battery-Backed Real-Time Clock

1

10

100

1000

20 25 30 35 40 45 50 55 60 65 70 75

Discharge Time from Measured Current (days)

Discharge Time from Worst Case RAM Spec

D
ay

s

Ambient Temperature (C)

Figure 12-1 Battery discharge time as a function of ambient temperature.

After each cold restart the kernel re-initializes the RTC chip to charge the battery and to use battery
backup on removal of power. The maximum battery recharge time is 22 hours.

Setting and Reading the Real Time Clock

The built-in library functions SetWatch() and ReadWatch() make it easy to set and read the real
time clock. The SetWatch() and ReadWatch() functions use the top 16 bytes of the 68HC11F1’s
on-chip RAM as a buffer to hold intermediate results during the data transfers, and the top 8 bytes at
addresses 0xB3F8-0xB3FF serve as the watch_results structure that contains the results returned
by the most recent call to ReadWatch() as described below.

Because the structure that is written to by ReadWatch() is at a fixed location, this code is not re-
entrant. This is not a problem in single-task applications or applications where only one task uses
the watch. But it can cause problems if multiple tasks are executing ReadWatch(). For example,
assume that task #1 calls ReadWatch(), but before it can access the contents of the structure using
the assignment statement, the timeslice interrupt occurs and task#2 proceeds to call ReadWatch(),
then the contents of the structure could be changed before task#1 is able to execute its assignment
statement. To avoid this situation, the multitasking application can be configured so that only one
task calls ReadWatch() and SetWatch() and shares the data with other tasks.

Another option is to define a resource variable to mediate access to the watch. The routines needed
to accomplish this are declared in the MTASKER.H file and described in detail in the Control-C Glos-
sary. The following brief example illustrates how to design a re-entrant function that returns the
current WATCH_MINUTE:

RESOURCE watch_resource; // declare resource variable: controls
 // watch access
 _Q int CurrentMinute(void) // reads watch, returns current minute
 { int minute;
 GET(watch_resource); // get access to watch; Pause() if
 // another task has it
 ReadWatch(); // updates contents of watch structure

The Battery-Backed Real-Time Clock 179

 minute = WATCH_MINUTE;
 // you can also transfer other contents
 // from the watch structure to
 // "task-private" variables here
 RELEASE(watch_resource); // release access to watch so other
 // tasks can use it
 return minute;
 }

The CurrentMinute() function can be simultaneously called from multiple tasks without causing
any conflicts. The GET() and RELEASE() macros automatically mediate access to the watch, en-
suring that only one task has access at a time.

The battery-backed clock is pre-set at the factory to Pacific Time in the United States. To re-set the
smart watch to your time zone, your program can call the function:

void SetWatch(hundredth_seconds,seconds,minute,hour,day,date,month,year)

The interactively callable routine named SetTheWatch() is defined in the TIMEKEEP.C file so you
can set the watch from your terminal. As explained in the Control-C Glossary, the hour parameter
ranges from 0 to 23, the day from 1 to 7 (Monday=1 in this example), and the year parameter ranges
from 00 to 99. For example, if it is now 10 seconds past 5:24 PM on Wednesday, May 26, 2004,
you could interactively set the watch by typing:

SetTheWatch(0, 10, 24, 17, 3, 26, 5, 4)

The watch is set and read using 24-hour time, where midnight is hour 0, noon is hour 12, and 11 PM
is hour 23. Note that you may assign any day of the week as “day number 1”.

The function ReadWatch() writes the current time and date information into a structure named
watch_results that occupies the top 8 bytes of on-chip RAM at addresses 0xB3F8-0xB3FF. Pre-
coded macros name the structure elements so it is easy to access the time and date information. For
example, the following simple function in the TIMEKEEP.C file reads the smart watch and prints the
time and date:

_Q void SayDate(void)
{ ReadWatch(); // results are placed in watch_results structure
printf(“\nIt is now %d:%d:%d on %d/%d/%d.\n”,
WATCH_HOUR, WATCH_MINUTE, WATCH_SECONDS,
WATCH_MONTH, WATCH_DATE, WATCH_YEAR);
}

It simply calls ReadWatch(), and then executes a printf() statement using the pre-coded struc-
ture macros to reference the time parameters in the watch_results structure. If you called this
function immediately after setting the watch as described in the prior section, the response at your
terminal might be:

It is now 17:24:31 on 5/26/04.

After compiling TIMEKEEP.C, you can interactively type at your terminal:
SayDate()

at any time to see a display of the current time and date.

180 Chapter 12: The Battery-Backed Real-Time Clock

For backwards compatibility with the QED product line, the hundredths of a second field is present
but it is not used. The hundredths of a second value is required for SetWatch() but it is ignored and
it is always 0 from ReadWatch().

181

Chapter 13

Customizing Your Handheld Instrument

Your Handheld comes with 17 I/O signals including timer controlled digital I/O, 8 lines of 8-
bit A/D, and two serial ports. You can further customize its I/O by:

Adding WildCards for virtually any kind of I/O;

Routing any I/O signals to the Handheld’s DB-25 connector;

 Filtering and/or protecting any of the I/O; and,

Adding custom circuitry.

Using the Personality Board to Customize I/O
The Handheld’s Personality Board allows you to place your own custom circuitry into the Handheld,
to mount WildCards for custom-off-the-shelf I/O, to route any of the Handheld’s signals to its DB-
25 connector, or to filter, protect, or condition any of its I/O signals.

Figure 13-1 shows the Personality Board. On the left is prototyping area you can use to mount
custom sensors, actuators or to include your custom circuitry. On the right are field connections for
up to four WildCards. Each of the field connectors for the WildCards is mirrored with a sea of holes
to provide access to any of the field signals. Corresponding hole patterns for the DB-25 connector
and the Processor Board’s native I/O are provided so that you may point-to-point wire from any I/O
signal to the DB-25 connector.

The Personality Board includes protection circuitry for you to use to protect up to eight signals.
This protection circuitry comprises SIDACtor overvoltage protection devices mated with current-
limiting resistors. The schematic for the protection devices is found on the “Protection” page of the
Handheld Schematic.

Figure 13-2 and Figure 13-3 show the internal and external dimensions of the Handheld. There is
considerable volume between the Personality Board and the Handheld’s back shell. This volume is
roughly in the shape of two adjacent cubes, one of approximately 17.7 in3 (4.0” x 3.4” x 1.3”)
available for mounting Wildcards or your custom hardware, and another of 5 in3 (appx. 1.5” x 2.8” x
1.2”) over the prototyping area. Even if you fill the Handheld with four Wildcards, there is still the
sizeable prototyping area available for your custom devices.

182 Chapter 13: Customizing Your Handheld Instrument

WildCard Port 0

+5V Rail

DB-25 Connections

Ground Rail

WildCard Field 1
Connections

WildCard Field 2
Connections

WildCard Field 1

WildCard Field 2

WildCard Field 4

WildCard Field 3

WildCard Field 3
Connections

WildCard Field 4
Connections

Protection
Connections

Probe
Header

User-Configurable
I/O Protection or

Filtering

Prototyping Area:
1.45 x 2.8 in.

Mounting Holes:
1.20 x 2.535 in.

WildCard Port 1 WildCard Port
Connections

Ports A & E
Connections

Protection
Connections

Figure 13-1 The Personality Board showing room for custom circuitry on the
left, and protection circuitry in the center.

Routing I/O Into the Instrument
Figure 13-1 shows that the Personality Board includes a hole pattern corresponding to the DB-25
signals, labled “DB-25 Connections”. All the DB-25 lines are routed for you from the connector to
these holes. You may point-to-point wire on the Personality Board from any of the WildCard field
headers, the Port A and E Connections, or your custom circuitry to these holes.

183

Mounting Additional Components

4.073

3.780

4.600

.605

5.205

.500

2.650
3.300

.250

2.905

3.120

.700
.810

.810

.425

.465

.650

Display Frame 2.895 x 3.110

Display Frame Cut-out is
2.905 x 3.120

(.005 larger than display
frame on each edge)

Display Overlay Outside
4.073 x 3.780

Overlay Cut-out and
Display Active Area

2.450 x 2.450

Keypad Overlay
5.205 x 2.650

32 Keypad Buttons as
8 rows x 4 columns

.6501.006 .055
.062

2.400

10.340

.885 1.515

2.050

.525

1.350

1.750

.185

1.515

1.091

1.013
.633

.375

Figure 13-2 The Handheld’s external dimensions (in inches).

184 Chapter 13: Customizing Your Handheld Instrument

Notes:
All dimensions ± .005, distances that span the top and bottom shell are ± .010.
Display protrudes appx. .030 from front shell surface.
Processor/Personality board spacing is .125 at the spacer, .115 at the high density connector, and appx. .120 at the
WildCard connectors.

DB - 25

.710

.609

.180

.075

Battery Compartment 6 AA NiMH cells

.098

.098

.065

.063

.131
.125

2.020

.625

.780

1.091

.375

.8003.740

Power Board

Processor Board

.125
2.10

.110 (.145 including plate warp)
3.110

.150

Processor Board

Personality Board

LCD Display with LED Backlight

Acceptance Port 1.75 x .185 centered on card

Compact Flash WildCard

High Density Conn

1.200.490 .1252.250

.338

.250

.120

.4375

.338

.062

.340

1.339

.530

.465
1.350

.584

.305

.870

.525

.010

.185

.860

2.380

.660

.220

.062

.062

1.690

1.100

.209

1.120

.230
.591

.045

Display Board

Ext
Power
Jack

1.013

.382

.315

Figure 13-3 The Handheld’s internal dimensions (in inches).

