
Mosaic Industries, Inc.

AAnnaalloogg II//OO WWiillddccaarrdd UUsseerr GGuuiiddee

Version 1.1
September, 2002
Copyright Mosaic Industries, Inc.
All rights reserved

Mosaic Industries, Inc.

Analog I/O Module User Guide .. 1

Analog I/O Module Hardware... 1

Connecting To the Wildcard Carrier Board .. 2

Selecting the Module Address... 2

Selecting the Reference Voltage ... 3

Analog I/O Module Field Header.. 6

Software .. 6

Overview of the Software Device Driver Functions ... 6

Installing the Analog I/O Module Driver Software... 11

Using the Driver Code with C... 13

Using the Driver Code with Forth... 14

Glossary... 15

Overview of Glossary Notation... 15

Glossary Entries .. 16

Hardware Schematics .. 23

Mosaic Industries, Inc.

AAnnaalloogg II//OO WWiillddccaarrdd UUsseerr GGuuiiddee
The Analog I/O Wildcard provides eight 12-bit digital to analog (DAC) outputs and
eight 16-bit analog to digital (A/D) inputs. This tiny 2” by 2.5” module is a member of
the Wildcard™ series that connects to the QED Board or PanelTouch Controller host
via the Wildcard Carrier Board, or connects directly to the EtherSmart™ Controller.

This document describes the capabilities of the Analog I/O Wildcard, tells how to
configure the hardware, and presents an overview of the driver software. A glossary of
the software functions and complete hardware schematics are also included.

Analog I/O Wildcard Hardware
The Analog I/O Wildcard comprises a Wildcard bus header, field header, digital logic
circuitry, an octal 12-bit digital to analog converter (DAC), an octal 16-bit analog to digital
converter (A/D), and a 4.096 volt reference. The 4.096 reference voltage varies less than 100
microvolts per degree Celsius change in temperature. Jumpers enable module address
selection and reference voltage selection among 5V, 4.096V, the DAC reference voltages
(1.024 or 2.048 V), or an external reference voltage. The Wildcard bus header interfaces to
the host processor (QED Board, Panel-Touch Controller, or EtherSmart Controller), and the
field header brings out the analog I/O signals for the reference, DAC, and A/D.
Specifications are summarized in Table 1-1.

Table 1-1 Analog I/O Wildcard Specifications

Analog Inputs

Input Channels 8 unipolar single-ended, or 4 unipolar differential

Resolution 16-bits (0 – 65,535 counts)

Input Filtering Land patterns are provided for optional input RC filters

Input Voltage Range +IN: -0.2 V to 5.2 V
-IN: -0.2 V to 1.25 V

Full Scale
Differential Voltage

Jumper selectable full scale reference:
1.024 V, 2.048 V, 4.096 V, 5.0 V, or external reference.

Excitation Jumper selectable output excitation reference is provided of:
1.024 V, 2.048 V, 4.096 V, or 5.0 V.

NonLinearity Integral: ± 8 LSB max, ± 3 LSB typ; Differential: ± 1 LSB typ

Noise and Accuracy 20 µV rms effective input noise; 14.4 bits effective resolution

Sample Rate Up to 17k samples per second

2 Mosaic Industries, Inc.

Analog Outputs

Output Channels 8

Resolution 12-bits (0 – 4095 counts)

Output Filtering Land patterns are provided for optional output RC filters

Full Scale Voltage Jumper selectable: 2.048 V, 4.096 V, or 2x external reference; 4.6 V
max.

Settling Time 1 µsec typically, slew rate is typically 10V/µsec

Load Impedance Capable of driving 2 kΩ minimum resistance, 100 pF maximum
capacitance, see data sheet for load regulation.

NonLinearity Integral: ± 2 LSB typ
Differential: ± 0.5 LSB typ

Update Rate Up to 15k samples per second

Connecting To the Wildcard Carrier Board
To connect the Analog I/O Wildcard to the Wildcard Carrier Board, follow these simple
steps:

1. Connect the Wildcard Carrier Board (also known as the “Module Carrier Board”) to the
QED Board as outlined in the “Wildcard Carrier Board User Guide”.

2. With the power off, connect the 24-pin Module Bus on the Analog I/O Wildcard to
Module Port 0 or Module Port 1 on the Wildcard Carrier Board. The corner mounting
holes on the module should line up with the standoffs on the Wildcard Carrier Board.
The module ports are labeled on the silkscreen of the Wildcard Carrier Board. Note that
the Analog I/O Wildcard headers are configured to allow direct stacking onto the
Wildcard Carrier Board, even if other modules are also installed. Moreover, the latest
version of the Wildcard Carrier Board is designed to directly stack onto the QED Board.
Do not use ribbon cables to connect the Analog I/O Wildcard to the Wildcard Carrier
Board. Use of ribbon cables on the Analog I/O Wildcard’s field header is fine.

CAUTION: The Wildcard Carrier Board does not have keyed connectors. Be sure to
insert the module so that all pins are connected. The Wildcard Carrier Board and the
Analog I/O Wildcard can be permanently damaged if the connection is done incorrectly.

Selecting the Module Address
Once you have connected the Analog I/O Wildcard to the Wildcard Carrier Board, you must
set the address of the module using jumper shunts across J1 and J2.

Analog I/O Wildcard User Guide 3

The Module Select Jumpers, labeled J1 and J2, select a 2-bit code that sets a unique address
on the module port of the Wildcard Carrier Board. Each module port on the Wildcard Carrier
Board accommodates up to 4 modules. Module Port 0 provides access to modules 0-3 while
Module Port 1 provides access to modules 4-7. Two modules on the same port cannot have
the same address (jumper settings). Table 1-2 shows the possible jumper settings and the cor-
responding addresses.

Table 1-2 Jumper Settings and Associated Addresses

Module Port Module
Address

Installed Jumper Shunts

0 None
1 J1
2 J2

0

3 J1 and J2
4 None
5 J1
6 J2

1

7 J1 and J2

Selecting the Reference Voltage
The remaining jumpers on the Analog I/O Wildcard select the reference voltage for both the
12-bit DAC and the 16-bit A/D. These jumpers, referred to as the voltage reference selection
jumpers, are labeled J3, J4, J5, and J6 and named “DAC Ref”, “4V Ref”, “5V Ref”, and “Ref
In/Out” respectively.

In most applications the DAC uses its own internal reference, and the jumpers J3, J4, and J5
select one of 3 reference voltages for the A/D converter (the DAC reference output, the
4.096V onboard reference, or the 5V reference, respectively). If installed, jumper J6 connects
the A/D reference to pin 4 (VREF_PIN) on the Field Header.

The default configuration of the reference voltage selection jumpers is J4 and J6 installed.
This connects the temperature-stable 4.096 reference voltage to the A/D reference input pin
providing a 0 to 4.096 input range for each channel of the A/D. The default configuration
also connects the 4.096 reference voltage to the reference pin on the Field Header (pin 4) for
external connections. Using the default configuration requires that you initialize the DAC to
generate its own reference voltage internally by passing the INT_1V_DAC12 or
INT_2V_DAC12 parameters to the Init_Analog_IO function. This will allow the
DAC to output voltages in the range of 0 to 2.048 volts or 0 to 4.096 volts respectively, as the
maximum DAC output is twice the DAC reference voltage. The following sections describe
the function of each jumper and list the valid jumper configuration options. CAUTION: Not

4 Mosaic Industries, Inc.

all jumper configurations are valid and certain invalid configurations may damage the
module.

DAC Reference Jumper

The DAC reference jumper, labeled J3, and named “DAC Ref” on the silkscreen of the
Analog I/O Wildcard, connects the DAC reference pin to the A/D reference input pin. The
DAC reference voltage can be generated internally, or supplied externally by installing
jumper J6. The DAC reference voltage is configured with the function Init_Analog_IO
and the constants INT_1V_DAC12, INT_2V_DAC12, or EXT_DAC12. Table 1-3
summaries the configuration options available for the DAC reference voltage with a jumper
shunt installed across J3.

Table 1-3 DAC reference voltage configuration options with jumper J3 installed

Init_Analog_IO
Option

DAC Ref
Pin
State

DAC
Reference
Pin Voltage

A/D
Reference
Voltage

DAC Output
Range

A/D Input
Range

INT_1V_DAC12 Output 1.024 volts 1.024 volts 0 to 2.048 volts 0 to 1.024
volts

INT_2V_DAC12 Output 2.048 volts 2.048 volts 0 to 4.096 volts 0 to 2.048
volts

EXT_DAC12 Input Voltage on pin
4 of Field
Header with
J6 installed

Voltage on pin
4 of Field
Header with
J6 installed

0 to 2x voltage
on pin 4 of Field
Header with J6
installed

0 to voltage on
pin 4 of Field
Header with
J6 installed

4.096 Volt Reference Jumper

The 4.096 Reference Jumper, labeled J4, and named “4V Ref” on the silkscreen of the Analog
I/O Wildcard, connects the onboard 4.096 voltage reference to the reference input pin on the
A/D. This configures the input range of the A/D as 0 to 4.096 volts. With this option, the
DAC must be configured to generate its own reference voltage (using the INT_1V_DAC12
or INT_2V_DAC12 options with the Init_Analog_IO function).

5.0 Volt Reference Jumper

The 5.0 Reference Jumper, labeled J5, and named “5V Ref” on the silkscreen of the Analog
I/O Wildcard, connects the onboard 5 volt analog supply to the reference input pin on the
A/D. This configures the input range of the A/D as 0 to 5.0 volts. With this option, the DAC
must be configured to generate its own reference voltage (using the INT_1V_DAC12 or
INT_2V_DAC12 options with the Init_Analog_IO function).

Analog I/O Wildcard User Guide 5

Reference In/Out Jumper

The Reference In/Out Jumper, labeled J6, connects the reference input pin of the A/D to the
reference pin on the Field Header (pin 4). Install this jumper if the reference voltage is
desired on the Field Header or an external reference voltage is required to drive the A/D or
the DAC.

Table 1-4 shows the valid jumper configurations for selecting the reference voltage. Jumper
configurations that are not shown in the table may damage the Analog I/O Wildcard!

Table 1-4 Valid Voltage Reference Jumper Configurations

Installed
Jumpers

Description

J4 & J6 Default Configuration. Connects the 4.096 internal reference voltage to the A/D
reference input pin and to the reference pin on the Field Header. The DAC must be
configured to generate an internal reference of 1.024V or 2.048V. A/D input range:
0 to 4.096V. DAC output range: 0 to 2.048V or 0 to 4.096V.

J5 & J6 Connects the 5.0 analog supply voltage to the A/D reference input pin and to the
reference pin on the Field Header. The DAC must be configured to generate an
internal reference of 1.024V or 2.048V. A/D input range: 0 to 5.0V. DAC output
range: 0 to 2.048V or 0 to 4.096V.

J3 & J6 Connects the DAC reference pin to the A/D reference input pin and to the reference
pin on the Field Header. If the DAC is configured to generate an internal reference
of 2.048V, 2.048V appears on pin 4 of the Field Header and the A/D reference input
pin. A/D input range: 0 to 2.048V. DAC output range: 0 to 4.096V. If the DAC is
configured to generate an internal reference of 1.024V, 1.024V appears on pin 4 of
the Field Header and the A/D reference input pin. A/D input range: 0 to 1.024V.
DAC output range: 0 to 2.048V. If the DAC is configured to use an external
reference, the reference voltage that is supplied to pin 4 of the Field Header
becomes the reference for both the A/D and the DAC. A/D input range: 0 to Vpin4.
DAC output range: 0 to 2*Vpin4.

J3 Connects the DAC reference pin to the A/D reference input pin. The DAC must be
configured to generate an internal reference of 1.024V or 2.048V. The reference
pin on Field Header is unconnected. A/D input range: 0 to 1.024V or 0 to 2.048V.
DAC output range: 0 to 2.048V or 0 to 4.096V.

J4 Connects the 4.096 internal reference voltage to the A/D reference input pin. The
reference pin on Field Header is unconnected. The DAC must be configured to
generate an internal reference of 1.024V or 2.048V. A/D input range: 0 to 4.096v.
DAC output range: 0 to 2.048V or 0 to 4.096V.

J5 Connects the 5.0 analog supply voltage to the A/D reference input pin. The
reference pin on Field Header is unconnected. The DAC must be configured to
generate an internal reference of 1.024V or 2.048V. A/D input range: 0 to 5.0v.
DAC output range: 0 to 2.048V or 0 to 4.096V.

6 Mosaic Industries, Inc.

Analog I/O Wildcard Field Header
The analog inputs and outputs are brought out to a 24-pin dual row header on the Analog I/O
Wildcard as shown in Table 1-5.

Table 1-5 Analog I/O Wildcard Field
Header

 Signal Pins Signal
GND – 1 2 – +5V

VAN – 3 4 – REF

ADCGND – 5 6 – ADCGND

AD16_CH7 – 7 8 – AD16_CH6

AD16_CH5 – 9 10 – AD16_CH4

AD16_CH3 – 11 12 – AD16_CH2

AD16_CH1 – 13 14 – AD16_CH0

DACGND – 15 16 – DACGND

DAC12_CH7 – 17 18 – DAC12_CH6

DAC12_CH5 – 19 20 – DAC12_CH4

DAC12_CH3 – 21 22 – DAC12_CH2

DAC12_CH1 – 23 24 – DAC12_CH0

To connect your transducer signals or control inputs to the Field Bus (H3 on the Analog I/O
Wildcard) use a ribbon cable or the Screw Terminal Module that brings out the signals to
screw terminal blocks. Shielding the connecting wires is highly recommended for optimal
performance.

Software
A package of pre-coded device driver functions is provided to make it easy to use the Analog
I/O Wildcard. This code is available as a pre-compiled “kernel extension” library to C and
Forth programmers.

Overview of the Software Device Driver Functions
The Analog I/O Wildcard driver code makes it easy to initialize the A/D and DAC, acquire
16-bit samples from the A/D, and write 12-bit values to the DAC. The following sections

Analog I/O Wildcard User Guide 7

describe the functions that initialize the A/D and DAC, read from the A/D inputs, and write to
the DAC outputs.

Most of the functions accept as input parameters the channel number and the Analog I/O
Wildcard Number (0 through 7). Be sure the module number passed to the software functions
correspond to the hardware jumper settings as described in Table 1-2 above.

Initializing the Analog I/O Software Drivers

Use Init_Analog_IO to initialize the software drivers for the DAC and A/D, set the
reference voltage of the DAC, and output 0 volts to all DAC channels. Init_Analog_IO
must be called before attempting to read a value from the A/D or write a value to the DAC.
The constants INT_2V_DAC12, INT_1V_DAC12, and EXT_DAC12, specify one of the
three different reference voltage options for the DAC when passed to Init_Analog_IO.
The following section provides more information about the DAC reference voltage options.

Using the DAC Drivers

The Analog I/O Wildcard has eight 12-bit DAC outputs. Each DAC accepts a number
between 0 and 4095 that we’ll designate as N, and outputs a voltage given by Equation 1-1.

Vout = 2 * Vref * (N / 4096) Eqn. 1-1

There are three different options for Vref:

1. The DAC’s internally generated 2.048 volts, selected by passing the constant
INT_2V_DAC12 to Init_Analog_IO. This is the default option and provides an
output range for each DAC channel of 0 to 4.096 volts.

2. The DAC’s internally generated 1.024 volts, selected by passing the constant
INT_1V_DAC12 to Init_Analog_IO. This provides an output range for each
DAC channel of 0 to 2.048 volts.

3. An externally generated voltage applied to the reference pin (pin 4) of the Field Header
with jumpers J3 and J6 installed, selected by passing the constant EXT_DAC12 to
Init_Analog_IO. The maximum voltage of the external reference voltage is 5
volts. However, voltages above 2.048 volts will result in degraded performance of the
DAC. Also, the DAC’s maximum specified output voltage is 4.6 volts, corresponding
to an external reference of 2.3 V.

The constants that are associated with the DAC output channels are DAC12_CH0,
DAC12_CH1, DAC12_CH2, DAC12_CH3, DAC12_CH4, DAC12_CH5, DAC12_CH6,
and DAC12_CH7. To output a voltage on channel DAC 0 (pin 24 on the Field Header), use
the function To_DAC as shown in Listings 1-1 and 1-2.

8 Mosaic Industries, Inc.

Listing 1-1 C Code Listing for outputing 2.000 votls to Channel 0 on Module 0.
#include <\mosaic\allqed.h> // include all qed utilities
#include “library.c” // be sure to include kernel ext

#define ANALOG_MODULE0 0 // define current module
void main (void)
{
 Init_Analog_IO(INT_2V_DAC12,ANALOG_MODULE0); // init DAC to use 2.048 int ref
 To_DAC12(2000, DAC12_CH0, ANALOG_MODULE0); // output 2.000 volts to ch 0
}

Listing 1-2 Forth Code Listing for outputing 2.048 volts to Channel 0 on Module 0
DECIMAL \ set base to decimal
0 CONSTANT ANALOG_MODULE0 \ define current module
INT_2V_DAC12 ANALOG_MODULE0 Init_Analog_IO \ init DAC to use 2.048 internal ref
2000 DAC12_CH0 ANALOG_MODULE0 To_DAC12 \ output 2.000 volts to channel 0

Another useful function, named To_All_DACs, simultaneously outputs a single 12-bit
value to all DAC channels on a specified module. To_All_DACs uses the primitives
Delay_Update_DAC12 and Update_DAC12 to simultaneously output the specified
value to all channels. Listings 1-3 and 1-4 demonstrate how to use the
Delay_Update_DAC12 and Update_DAC12 functions to simultaneously write a stair-
step pattern to all eight output channels of a DAC.

Listing 1-3 C Code Listing for using Delay_Update_DAC12 and Update_DAC12.
#include <\mosaic\allqed.h> // include all qed utilities
#include “library.c” // be sure to include kernel ext
#define ANALOG_MODULE0 0 // define current module
void main (void)
{
 Init_Analog_IO(INT_2V_DAC12,ANALOG_MODULE0); // init DAC to use 2.048 int ref
 Delay_Update_DAC12(ANALOG_MODULE0); // delay DAC update
 To_DAC12(0500, DAC12_CH0, ANALOG_MODULE0); // output 0.5 volts to ch 0
 To_DAC12(1000, DAC12_CH1, ANALOG_MODULE0); // output 1.0 volts to ch 0
 To_DAC12(1500, DAC12_CH2, ANALOG_MODULE0); // output 1.5 volts to ch 0
 To_DAC12(2000, DAC12_CH3, ANALOG_MODULE0); // output 2.0 volts to ch 0
 To_DAC12(2500, DAC12_CH4, ANALOG_MODULE0); // output 2.5 volts to ch 0
 To_DAC12(3000, DAC12_CH5, ANALOG_MODULE0); // output 3.0 volts to ch 0
 To_DAC12(3500, DAC12_CH6, ANALOG_MODULE0); // output 3.5 volts to ch 0
 To_DAC12(4000, DAC12_CH7, ANALOG_MODULE0); // output 4.0 volts to ch 0
 Update_DAC12(ANALOG_MODULE0); // simultaneously update all dacs
}

Listing 1-4 Forth Code Listing for using Delay_Update_DAC12 and Update_DAC12.
DECIMAL \ set base to decimal

Analog I/O Wildcard User Guide 9

0 CONSTANT ANALOG_MODULE0 \ define current module
: STAIR_STEP (--)
 INT_2V_DAC12 ANALOG_MODULE0 Init_Analog_IO \ init DAC to use 2.048 int ref
 ANALOG_MODULE0 Delay_Update_DAC12 \ delay DAC update
 0500 DAC12_CH0 ANALOG_MODULE0 To_DAC12 \ output 0.5 volts to channel 0
 1000 DAC12_CH1 ANALOG_MODULE0 To_DAC12 \ output 1.0 volts to channel 1
 1500 DAC12_CH2 ANALOG_MODULE0 To_DAC12 \ output 1.5 volts to channel 2
 2000 DAC12_CH3 ANALOG_MODULE0 To_DAC12 \ output 2.0 volts to channel 3
 2500 DAC12_CH4 ANALOG_MODULE0 To_DAC12 \ output 2.5 volts to channel 4
 3000 DAC12_CH5 ANALOG_MODULE0 To_DAC12 \ output 3.0 volts to channel 5
 3500 DAC12_CH6 ANALOG_MODULE0 To_DAC12 \ output 3.5 volts to channel 6
 4000 DAC12_CH7 ANALOG_MODULE0 To_DAC12 \ output 4.0 volts to channel 7
 ANALOG_MODULE0 Update_DAC12 \ simultaneously update all dacs
;

Using the A/D Drivers

The eight input lines of the Analog I/O Wildcard can be configured as either eight 16-bit
unipolar single-ended input channels or four 16-bit unipolar-differential input channels. In
single-ended configuration, the convertor can digitize only positive ground-referenced
voltages. Each differential channel pair can also only convert a positive differential voltage,
but the channel pair can be reconfigured to swap the polarity of the inputs so that a negative
difference voltage can also be read. Consequently the four differential inputs can each be
reconfigured so that there are a total of eight differential input combinations.

The A/D converts the positive voltage difference between a greater, “positive” input (+IN)
and a lesser, “negative” input (–IN) into a digital number in the range 0 to 65536, with 0
corresponding to +IN = –IN and 65535 corresponding to +IN – –IN = Vref. If the voltage on
the –IN pin is greater than that of the +IN pin, the conversion result is zero.

In single-ended mode the –IN input is connected to ground and eight input channels of +IN
are provided for reading positive voltages referenced to ground. In differential mode, the +IN
and –IN are assigned to different input channels, and the positive voltage difference, +IN
minus –IN, is converted. The –IN input must be kept within the range –0.2 V to +1.25 V, and
should not be greater than the +IN input. The +IN input must be kept within the range –0.2 V
to +5.2 V and produces meaningful results for values from the –IN input value up to the –IN
input value plus the reference voltage. Because both the +IN and –IN input voltage ranged
extend well below ground (to –0.2V), voltage differences near or slightly below ground can
be read. Further, the +IN can range up to 5.2V.

The sixteen different input options are itemized in Table 1-6.

10 Mosaic Industries, Inc.

Table 1-6 Analog Input Connection Options

Associated Constant Positive Input
(+IN)

Negative Input
(–IN)

Type

AD16_CH0 AD16_CH0 (pin 14) ADCGND (pin 5,6) Single Ended

AD16_CH1 AD16_CH1 (pin 13) ADCGND (pin 5,6) Single Ended

AD16_CH2 AD16_CH2 (pin 12) ADCGND (pin 5,6) Single Ended

AD16_CH3 AD16_CH3 (pin 11) ADCGND (pin 5,6) Single Ended

AD16_CH4 AD16_CH4 (pin 10) ADCGND (pin 5,6) Single Ended

AD16_CH5 AD16_CH5 (pin 9) ADCGND (pin 5,6) Single Ended

AD16_CH6 AD16_CH6 (pin 8) ADCGND (pin 5,6) Single Ended

AD16_CH7 AD16_CH7 (pin 7) ADCGND (pin 5,6) Single Ended

AD16_CH0_CH1 AD16_CH0 (pin 14) AD16_CH1 (pin 13) Differential

AD16_CH1_CH0 AD16_CH1 (pin 13) AD16_CH0 (pin 14) Differential

AD16_CH2_CH3 AD16_CH2 (pin 12) AD16_CH3 (pin 11) Differential

AD16_CH3_CH2 AD16_CH3 (pin 11) AD16_CH2 (pin 12) Differential

AD16_CH4_CH5 AD16_CH4 (pin 10) AD16_CH5 (pin 9) Differential

AD16_CH5_CH4 AD16_CH5 (pin 9) AD16_CH4 (pin 10) Differential

AD16_CH6_CH7 AD16_CH6 (pin 8) AD16_CH7 (pin 7) Differential

AD16_CH7_CH6 AD16_CH7 (pin 7) AD16_CH6 (pin 8) Differential

To read a voltage from channel 2 (pin 12 on the Field Header) on module 1 with a single-
ended conversion, use the function AD16_Sample as shown in the example code Listings
1-5 and 1-6.

Listing 1-5 C Code Listing for reading A/D Channel 2 on Module 1.
#include <\mosaic\allqed.h> // include all qed utilities
#include “library.c” // be sure to include kernel ext

#define ANALOG_MODULE1 1 // define current module
void main (void)
{
 uint ad16_result;
 Init_Analog_IO(INT_2V_DAC12,ANALOG_MODULE1); // init DAC to use 2.048 int ref
 ad16_result = AD16_Sample(AD16_CH2, ANALOG_MODULE1); // read ch 2 on mod 1
 printf(“AD Result = %u\n”,ad16_result); // print out A/D counts
}

Analog I/O Wildcard User Guide 11

Listing 1-6 Forth Code Listing for reading A/D Channel 2 on Module 1.
DECIMAL \ set base to decimal
1 CONSTANT ANALOG_MODULE1 \ define current module
INT_2V_DAC12 ANALOG_MODULE1 Init_Analog_IO \ init DAC to use 2.048 internal ref
AD16_CH2 ANALOG_MODULE1 AD16_Sample \ read sample from ch 2 on mod 1
U. \ print out A/D counts

To convert the 16-bit result returned from AD16_Sample into a voltage, use Equation 1-2.

Input Voltage = +IN – -IN = (Count / 65536) * Vref Eqn. 1-2

Vref in Equation 1-2 is the reference voltage selected using the voltage reference selection
jumpers which were described in the section entitled “Selecting The Reference Voltage”.
With the default voltage reference selection jumper configuration (jumpers J4 and J6
installed), Vref is 4.096 volts.

Components and transducers with high output impedances connected to the analog inputs will
introduce errors in the analog to digital converter. Table 1-7 shows the maximum source
resistance at various sampling rates. Larger source resistances may cause conversion errors
of more than one least significant bit (LSB).

The function AD16_Multiple rapidly obtains a specified number of samples from an A/D
channel and stores the results as sequential 2-byte values in memory starting at the specified
extended address. If the specified extended address is in common RAM, the fastest sampling
frequency is approximately 17 kHz (corresponding to 57.5 microseconds per sample). If the
specified extended address is in paged memory, the fastest sampling frequency is
approximately 12 kHz (corresponding to 82.5 microseconds per sample). The timing
parameter specifies the timing of the samples, with 0 representing the fastest sampling rate,
and 65,535 representing the slowest sampling rate. See the glossary entry for more
information.

Table 1-7 Maximum Source Resistance at Various Sampling Rates

Sample Rate
(samples per second)

Maximum Source Resistance

< 1K 60 Ohms

1 K 57 Ohms

2 K 50 Ohms

5 K 40 Ohms

10 K 30 Ohms

20 K 20 Ohms

12 Mosaic Industries, Inc.

Installing the Analog I/O Wildcard Driver Software
The Analog I/O Wildcard device driver software is provided as a pre-coded modular runtime
library, known as a “kernel extension” because it enhances the on-board kernel's capabilities.
The library functions are accessible from C and Forth.

Mosaic Industries can provide you with a web site link that will enable you to create a
packaged kernel extension that has drivers for all of the hardware that you have on your
system. In this way the software drivers are customized to your needs, and you can generate
whatever combination of drivers you need. Make sure to specify the Analog I/O Wildcard
Drivers in the list of kernel extensions you want to generate, and download the resulting
“packages.zip” file to your hard drive.

For convenience, a separate pre-generated kernel extension for the Analog I/O Wildcard is
available from Mosaic Industries on the Demo and Drivers media (diskette or CD). Look in
the Drivers directory, in the subdirectory corresponding to your hardware (QED, PanelTouch,
or EtherSmart), in the ANIO_Module folder.

The kernel extension is shipped as a “zipped” file named “packages.zip”. Unzipping it (using,
for example, winzip or pkzip) extracts the following files:

◙ readme.txt - Provides summary documentation about the library.

◙ install.txt - The installation file, to be loaded to COLD-started QED Board.

◙ library.4th - Forth name headers and utilities; prepend to Forth programs.

◙ library.c - C callers for all functions in library; #include in C code.

◙ library.h - C prototypes for all functions; #include in extra C files.

Library.c and library.h are only needed if you are programming in C. Library.4th is only
needed if you are programming in Forth. The uses of all of these files are explained below.

We recommend that you move the relevant files to the same directory that contains your
application source code.

To use the kernel extension, the runtime kernel extension code contained in the install.txt file
must first be loaded into the flash memory of the QED Board. Start the QED Terminal
software with the QED board connected to the serial port and turned on. If you have not yet
tested your QED board and terminal software, please refer to the documentation provided
with the QED Terminal software. Once you can hit enter and see the 'ok' prompt returned in
the terminal window, type

COLD

Analog I/O Wildcard User Guide 13

to ensure that the board is ready to accept the kernel extension install file. Use the “Send
File” menu item of the terminal to download the install.txt to the QED Board or Panel-Touch
Controller.

Now, type
COLD

again and the kernel has been extended! Once install.txt has been loaded, it does not need to
be reloaded each time you revise your source code.

Using the Driver Code with C
Move the library.c and library.h files into the same directory as your other C source code
files. After loading the install.txt file as described above, use the following directive in your
source code file:

#include “library.c”

This file contains calling primitives that implement the functions in the kernel extension
package. The library.c file automatically includes the library.h header file. If you have a
project with multiple source code files, you should only include library.c once, but use the
directive

#include “library.h”

in every additional source file that references the Analog I/O functions.

Note that all of the functions in the kernel extension are of the _forth type. While they are
fully callable from C, there are two important restrictions. First, _forth functions may not be
called as part of a parameter list of another _forth function. Second, _forth functions may not
be called from within an interrupt service routine unless the instructions found in the file
named

\fabius\qedcode\forthirq.c
are followed.

NOTE: If your compiler was purchased before June 2002, you must update the files, qlink.bat
and qmlink.bat in your /fabius/bin directory on your installation before using the kernel
extension. You can download a zip file of new versions at

http://www.mosaic-industries.com/Download/new_qlink.zip

The two new files should be placed in c:\Fabius\bin. This upgrade only has to be done once
for a given installation of the C compiler.

14 Mosaic Industries, Inc.

Using the Driver Code with Forth
After loading the install.txt file and typing COLD, use the terminal to send the “library.4th”
file to the QED Board. Library.4th sets up a reasonable memory map and then defines the
constants, structures, and name headers used by the Analog I/O Wildcard kernel extension.
Library.4th leaves the memory map in the download map.

After library.4th has been loaded, the board is ready to receive your high level source code
files. Be sure that your software doesn't initialize the memory management variables DP, VP,
or NP, as this could cause memory conflicts. If you wish to change the memory map, edit the
memory map commands at the top of the library.4th file itself. The definitions in library.4th
share memory with your Forth code, and are therefore vulnerable to corruption due to a crash
while testing. If you have problems after reloading your code, try typing COLD, and reload
everything starting with library.4th. It is very unlikely that the kernel extension runtime code
itself (install.txt) can become corrupted since it is stored in flash on a page that is not typically
accessed by code downloads.

We recommend that your source code file begin with the sequence:

WHICH.MAP 0=
IFTRUE 4 PAGE.TO.RAM \ if in standard.map...
 5 PAGE.TO.RAM
 6 PAGE.TO.RAM
 DOWNLOAD.MAP
ENDIFTRUE

This moves all pre-loaded flash contents to RAM if the QED Board is in the standard (flash-
based) memory map, and then establishes the download (RAM-based) memory map. At the
end of this sequence the QED Board is in the download map, ready to receive additional code.

We recommend that your source code file end with the sequence:

4 PAGE.TO.FLASH
5 PAGE.TO.FLASH
6 PAGE.TO.FLASH
STANDARD.MAP
SAVE

This copies all loaded code from RAM to flash, and sets up the standard (flash-based)
memory map with code located in pages 4, 5 and 6. The SAVE command means that you can
often recover from a crash and continue working by typing RESTORE as long as flash pages 4,
5 and 6 haven't been rewritten with any bad data.

Analog I/O Wildcard User Guide 15

Glossary
This glossary defines important constants and functions from the Analog I/O Wildcard driver
code.

Overview of Glossary Notation
The main glossary entries presented in this document are listed in case-insensitive
alphabetical order (the underscore character comes at the end of the alphabet). The keyword
name of each entry is in bold typeface. Each function is listed with both a C-style declaration
and a Forth-style stack comment declaration as described below. The "C:" and "4th:" tags at
the start of the glossary entry distinguish the two declaration styles.

The Forth language is case-insensitive, so Forth programmers are free to use capital or lower
case letters when typing keyword names in their program. Because C is case sensitive, C
programmers must type the keywords exactly as shown in the glossary. The case conventions
are as follows:

◙ Function names begin with a capital letter, and every letter after an underscore is
capitalized. Other letters are lower case, except for capitalized acronyms such as
"DAC".

◙ Constant names and C macros use capital letters.

◙ Variable names use lower case letters.

Each glossary entry starts with C-style and Forth-style declarations, and presents a description
of the function. Here is a sample glossary entry:

C: void To_DAC12 (int value, int channel_num, int module_num)
4th: To_DAC12 (value\channel_num\module_num --)

Writes the specified 12-bit value to the specified channel of the 12-bit DAC on the specified
module. The eight valid module numbers are 0 to 7 while the channel number is specified
with one of the following constants DAC12_CH0, DAC12_CH1, DAC12_CH2,
DAC12_CH3, DAC12_CH4, DAC12_CH5, DAC12_CH6, and DAC12_CH7. The 12-bit
value is clamped to the range of 0 to 4095 but no error checking is performed on the channel
number or the module number. Init_Analog_IO must be called before calling
To_DAC12 to initialize the DAC’s reference voltage. Unlike the routines for the 8-bit DAC
and 12-bit A/D, a resource variable is not needed for the 12-bit DAC and the 16-bit A/D in
multitasking systems. To_DAC12 executes in approximately 37 microseconds. See also
Init_Analog_IO.

16 Mosaic Industries, Inc.

The C declaration specifies the return data type before the function name, and lists the
comma-delimited input parameters between parentheses, showing the type and a descriptive
name for each.

The Forth declaration contains a "stack picture" between parentheses; this is recognized as a
comment in a Forth program. The items to the left of the double-dash (--) are input
parameters, and the item to the right of the double-dash is the output parameter. Forth is
stack-based, and the first item shown is lowest on the stack. The backslash (\) character is
read as "under" to indicate the relative positions of the input parameters on the stack. In the
Forth declaration the parameter names and their data types are combined. All unspecified
parameters are 16-bit integers. Forth promotes all characters to integer type.

The presence of both C and Forth declarations is helpful: the C syntax shows the types of the
parameters, and the Forth declaration provides a descriptive name of the output parameter.

Glossary Quick Reference

Configuration Function
void Init_Analog_IO (int reference_option, int module_num)

Constants
AD16_CH0 AD16_CH0_CH1
AD16_CH1 AD16_CH1_CH0
AD16_CH2 AD16_CH2_CH3
AD16_CH3 AD16_CH3_CH2
AD16_CH4 AD16_CH4_CH5
AD16_CH5 AD16_CH5_CH4
AD16_CH6 AD16_CH6_CH7
AD16_CH7 AD16_CH7_CH6

DAC12_CH0 DAC12_CH4
DAC12_CH1 DAC12_CH5
DAC12_CH2 DAC12_CH6
DAC12_CH3 DAC12_CH7

INT_1V_DAC12 INT_2V_DAC12
EXT_DAC12

A/D Routines
void AD16_Multiple (xaddr buffer, uint timing, uint samples, int channel, int module)
uint AD16_Sample (int channel_num, int module_num)

Analog I/O Wildcard User Guide 17

DAC Routines

void To_DAC12 (int value, int channel_num, int module_num)
void To_All_DACs (int value, int module_num)
void Delay_Update_DAC12 (int module_num)
void Update_DAC12 (int module_num)

Glossary Entries
C: AD16_CH0
4th: AD16_CH0 (-- n)
A constant (= 0x04) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform single-ended conversions on
Channel 0, pin 14, on the Analog I/O Field Header. See also AD16_Sample and
AD16_Multiple.

C: AD16_CH0_CH1
4th: AD16_CH0_CH1 (-- n)
A constant (= 0x00) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform differential conversions between
Channel 0 and Channel 1 (pins 14 and 13) on the Analog I/O Field Header. See also
AD16_Sample and AD16_Multiple.

C: AD16_CH1
4th: AD16_CH1 (-- n)
A constant (= 0x44) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform single-ended conversions on
Channel 1, pin 13, on the Analog I/O Field Header. See also AD16_Sample and
AD16_Multiple.

C: AD16_CH1_CH0
4th: AD16_CH1_CH0 (-- n)
A constant (= 0x40) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform differential conversions between
Channel 1 and Channel 0 (pins 13 and 14) on the Analog I/O Field Header. See also
AD16_Sample and AD16_Multiple.

C: AD16_CH2
4th: AD16_CH2 (-- n)
A constant (= 0x14) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform single-ended conversions on
Channel 2, pin 12, on the Analog I/O Field Header. See also AD16_Sample and
AD16_Multiple.

18 Mosaic Industries, Inc.

C: AD16_CH2_CH3
4th: AD16_CH2_CH3 (-- n)
A constant (= 0x10) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform differential conversions between
Channel 2 and Channel 3 (pins 12 and 11) on the Analog I/O Field Header. See also
AD16_Sample and AD16_Multiple.

C: AD16_CH3
4th: AD16_CH3 (-- n)
A constant (= 0x54) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform single-ended conversions on
Channel 3, pin 11, on the Analog I/O Field Header. See also AD16_Sample and
AD16_Multiple.

C: AD16_CH3_CH2
4th: AD16_CH3_CH2 (-- n)
A constant (= 0x50) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform differential conversions between
Channel 3 and Channel 2 (pins 11 and 12) on the Analog I/O Field Header. See also
AD16_Sample and AD16_Multiple.

C: AD16_CH4
4th: AD16_CH4 (-- n)
A constant (= 0x24) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform single-ended conversions on
Channel 4, pin 10, on the Analog I/O Field Header. See also AD16_Sample and
AD16_Multiple.

C: AD16_CH4_CH5
4th: AD16_CH4_CH5 (-- n)
A constant (= 0x20) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform differential conversions between
Channel 4 and Channel 5 (pins 10 and 9) on the Analog I/O Field Header. See also
AD16_Sample and AD16_Multiple.

C: AD16_CH5
4th: AD16_CH5 (-- n)
A constant (= 0x64) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform single-ended conversions on
Channel 5, pin 9, on the Analog I/O Field Header. See also AD16_Sample and
AD16_Multiple.

C: AD16_CH5_CH4

Analog I/O Wildcard User Guide 19

4th: AD16_CH5_CH4 (-- n)
A constant (= 0x60) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform differential conversions between
Channel 5 and Channel 4 (pins 9 and 10) on the Analog I/O Field Header. See also
AD16_Sample and AD16_Multiple.

C: AD16_CH6
4th: AD16_CH6 (-- n)
A constant (= 0x34) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform single-ended conversions on
Channel 6, pin 8, on the Analog I/O Field Header. See also AD16_Sample and
AD16_Multiple.

C: AD16_CH6_CH7
4th: AD16_CH6_CH7 (-- n)
A constant (= 0x30) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform differential conversions between
Channel 6 and Channel 7 (pins 8 and 7) on the Analog I/O Field Header. See also
AD16_Sample and AD16_Multiple.

C: AD16_CH7
4th: AD16_CH7 (-- n)
A constant (= 0x74) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform single-ended conversions on
Channel 7, pin 7, on the Analog I/O Field Header. See also AD16_Sample and
AD16_Multiple.

C: AD16_CH7_CH6
4th: AD16_CH7_CH6 (-- n)
A constant (= 0x70) that, when passed as a parameter to AD16_Sample or
AD16_Multiple, configures the 16-bit A/D to perform differential conversions between
Channel 7 and Channel 6 (pins 7 and 8) on the Analog I/O Field Header. See also
AD16_Sample and AD16_Multiple.

C: void AD16_Multiple (xaddr buffer, uint timing, uint samples, int channel, int module)
4th: AD16_Multiple (xaddr\timing\num_samples\channel_num\module_num --)
Acquires num_samples from the specified channel of the 16-bit A/D on the specified module
and stores the samples as sequential unsigned 16-bit values starting at the specified buffer
address. The timing parameter specifies the timing of the samples. The eight valid module
numbers are 0 to 7. For single-ended conversions, the channel is selected using one of the
following constants: AD16_CH0, AD16_CH1, AD16_CH2, AD16_CH3, AD16_CH4,
AD16_CH5, AD16_CH6, and AD16_CH7. Single-ended sampling means that the input
voltage of the specified channel is referenced to ADCGND (pins 5 or 6 on the Field Header).

20 Mosaic Industries, Inc.

For differential conversions, the channel is selected using one of the following constants:
AD16_CH0_CH1, AD16_CH1_CH0, AD16_CH2_CH3, AD16_CH3_CH2,
AD16_CH4_CH5, AD16_CH5_CH4, AD16_CH6_CH7, and AD16_CH7_CH6.
Differential sampling means that the voltage of the second specified channel is subtracted
from the voltage of the first specified channel and the resulting voltage is digitized by the
A/D. Be sure that the second specified channel’s voltage does not exceed 1.25 volts and the
second specified channel’s voltage does not exceed the first specified channel’s voltage (i.e.
the 16-bit A/D can only operate in unipolar mode). Init_Analog_IO must be called
before calling AD16_Multiple. Unlike the routines for the 8-bit DAC and 12-bit A/D, a
resource variable is not required for the 12-bit DAC and the 16-bit A/D in multitasking
systems. If the specified buffer is in common memory, the first sample is taken after 32.5
microseconds and subsequent samples are taken every (57.5+2.5*timing parameter)
microseconds. If the specified buffer is in paged memory, the first sample is taken after 32.5
microseconds and subsequent samples are taken every (82.5+2.5*timing parameter)
microseconds. If the buffer crosses a page boundary, the sampling interval increases by
approximately 4 microseconds for the sample stored after the page boundary was crossed. Of
course, the operation of interrupts (including timesliced multitasking) will affect these
sampling times. Disables interrupts for 27 microseconds per sample. See also
AD16_Sample and Init_Analog_IO.

C: uint AD16_Sample (int channel_num, int module_num)
4th: AD16_Sample (channel_num\module_num -- 16-bit_result)
Returns a single 16-bit sample from the specified channel of the 16-bit A/D on the specified
module. The eight valid module numbers are 0 to 7. For single-ended conversions, the
channel is selected using one of the following constants: AD16_CH0, AD16_CH1,
AD16_CH2, AD16_CH3, AD16_CH4, AD16_CH5, AD16_CH6, and AD16_CH7.
Single-ended sampling means that the input voltage of the specified channel is referenced to
ADCGND (pins 5 or 6 on the Field Header). For differential conversions, the channel is
selected using one of the following constants: AD16_CH0_CH1, AD16_CH1_CH0,
AD16_CH2_CH3, AD16_CH3_CH2, AD16_CH4_CH5, AD16_CH5_CH4,
AD16_CH6_CH7, and AD16_CH7_CH6. Differential sampling means that the voltage of
the second specified channel is subtracted from the voltage of the first specified channel and
the resulting voltage is digitized by the A/D. Be sure that the second specified channel’s
voltage does not exceed 1.25 volts and the second specified channel’s voltage does not
exceed the first specified channel’s voltage (i.e. the 16-bit A/D can only operate in unipolar
mode). Init_Analog_IO must be called before calling AD16_Sample. Unlike the
routines for the 8-bit DAC and 12-bit A/D, a resource variable is not required for the 12-bit
DAC or the 16-bit A/D in multitasking systems. AD16_Sample executes in 52.25
microseconds and disables interrupts for 27 microseconds. See also AD16_Multiple and
Init_Analog_IO.

C: DAC12_CH0
4th: DAC12_CH0 (-- n)

Analog I/O Wildcard User Guide 21

A constant (= 0x00) that, when passed as a parameter to the To_DAC12 function, configures
the 12-bit DAC to output a voltage on Channel 0, pin 24, of the Analog I/O Field Header.
See also To_DAC12.

C: DAC12_CH1
4th: DAC12_CH1 (-- n)
A constant (= 0x10) that, when passed as a parameter to the To_DAC12 function, configures
the 12-bit DAC to output a voltage on Channel 1, pin 23, of the Analog I/O Field Header.
See also To_DAC12.

C: DAC12_CH2
4th: DAC12_CH2 (-- n)
A constant (= 0x20) that, when passed as a parameter to the To_DAC12 function, configures
the 12-bit DAC to output a voltage on Channel 2, pin 22, of the Analog I/O Field Header.
See also To_DAC12.

C: DAC12_CH3
4th: DAC12_CH3 (-- n)
A constant (= 0x30) that, when passed as a parameter to the To_DAC12 function, configures
the 12-bit DAC to output a voltage on Channel 3, pin 21, of the Analog I/O Field Header.
See also To_DAC12.

C: DAC12_CH4
4th: DAC12_CH4 (-- n)
A constant (= 0x40) that, when passed as a parameter to the To_DAC12 function, configures
the 12-bit DAC to output a voltage on Channel 4, pin 20, of the Analog I/O Field Header.
See also To_DAC12.

C: DAC12_CH5
4th: DAC12_CH5 (-- n)
A constant (= 0x50) that, when passed as a parameter to the To_DAC12 function, configures
the 12-bit DAC to output a voltage on Channel 5, pin 19, of the Analog I/O Field Header.
See also To_DAC12.

C: DAC12_CH6
4th: DAC12_CH6 (-- n)
A constant (= 0x60) that, when passed as a parameter to the To_DAC12 function, configures
the 12-bit DAC to output a voltage on Channel 6, pin 18, of the Analog I/O Field Header.
See also To_DAC12.

C: DAC12_CH7
4th: DAC12_CH7 (-- n)

22 Mosaic Industries, Inc.

A constant (= 0x70) that, when passed as a parameter to the To_DAC12 function, configures
the 12-bit DAC to output a voltage on Channel 7, pin 17, of the Analog I/O Field Header.
See also To_DAC12.

C: void Delay_Update_DAC12 (int module_num)
4th: Delay_Update_DAC12 (module_num --)
Configures the 12-bit DAC to accept 12-bit values for each DAC channel but to delay
outputting the voltage to the corresponding pin of the DAC until Update_DAC12 is called.
This option is disabled by default and is typically used to simultaneously set the output
voltages of all 12-bit DAC channels. See also Update_DAC12 and To_All_DACs.

C: EXT_DAC12
4th: EXT_DAC12 (-- n)
A constant (= 0x00) that, when passed as a parameter to the Init_Analog_IO function,
configures the 12-bit DAC to use the voltage on the reference pin of the Analog I/O Field
Header, pin 4 as its reference if jumper J6 is installed. See also Init_Analog_IO.

C: void Init_Analog_IO (int reference_option, int module_num)
4th: Init_Analog_IO (reference_option\module_num --)
Initializes the software drivers for the 12-bit DAC and the 16-bit A/D, sets the reference
voltage of the DAC to the specified option on the specified module, and sets all 8 DAC
channels to 0 volts. The reference option is selected using one of the following constants:
INT_2V_DAC12, INT_1V_DAC12, and EXT_DAC12. The eight valid module numbers
are 0 to 7. See also INT_2V_DAC12, INT_1V_DAC12, and EXT_DAC12.

C: INT_1V_DAC12
4th: INT_1V_DAC12 (-- n)
A constant (= 0x04) that, when passed as a parameter to the Init_Analog_IO function,
configures the 12-bit DAC to use its own internally generated 1.024 volt as its reference.
With this option, the DAC output range is from 0 to 2.048 volts. See also
Init_Analog_IO.

C: INT_2V_DAC12
4th: INT_2V_DAC12 (-- n)
A constant (= 0x06) that, when passed as a parameter to the Init_Analog_IO function,
configures the 12-bit DAC to use its own internally generated 2.048 volt as its reference.
With this option, the DAC output range is 0 to 4.096 volts. See also Init_Analog_IO.

C: void To_All_DACs (int value, int module_num)
4th: To_All_DACs (value\module_num --)
Writes the specified 12-bit value simultaneously to all channels of the 12-bit DAC on the
specified module. To_All_DACs uses the functions Delay_Update_DAC12 and
Update_DAC12 to output all voltages to all channels at the same time. The eight valid

Analog I/O Wildcard User Guide 23

module numbers are 0 to 7. The 12-bit value is clamped to the range of 0 to 4095 but no error
checking is performed on the module number. Init_Analog_IO must be called before
this routine initialize the reference voltage of the DAC. See also Init_Analog_IO,
Delay_Update_DAC12, and Update_DAC12.

C: void To_DAC12 (int value, int channel_num, int module_num)
4th: To_DAC12 (value\channel_num\module_num --)
Writes the specified 12-bit value to the specified channel of the 12-bit DAC on the specified
module. The eight valid module numbers are 0 to 7 while the channel number is specified
with one of the constants DAC12_CH0, DAC12_CH1, DAC12_CH2, DAC12_CH3,
DAC12_CH4, DAC12_CH5, DAC12_CH6, and DAC12_CH7. The 12-bit value is
clamped to the range of 0 to 4095 but no error checking is performed on the channel number
or the module number. Init_Analog_IO must be called before calling To_DAC12 to
initialize the DAC’s reference voltage. Unlike the routines for the 8-bit DAC and 12-bit A/D,
a resource variable is not needed for the 12-bit DAC and the 16-bit A/D in multitasking
systems. To_DAC12 executes in approximately 37 microseconds and disables interrupts for
16.5 microseconds. See also Init_Analog_IO.

C: void Update_DAC12 (int module_num)
4th: Update_DAC12 (module_num --)
Configures the 12-bit DAC to immediately output a voltage on each DAC channel
corresponding to the last 12-bit value written to the channel. This option is enabled by
default and is typically used after a call to the Delay_Update_DAC12 routine. See also
Delay_Update_DAC12.

Hardware Schematics

24 Mosaic Industries, Inc.

1
2

3
4

ABCD

4
3

2
1

D C B A

1
2

L
og

ic

2

2-
Ja

n-
20

03

16
:1

8:
18

Lo
gi

c.
Sc

h

Ti
tle

Si
ze

:
D

es
ig

ne
r

D
at

e:
Fi

le
:

R
ev

:

Sh
ee

t
of

A

M
os

ai
c

In
du

st
rie

s

Pr
oj

ec
t

A
na

lo
g

I/O
 M

od
ul

e

M
ic

ha
el

 D
or

m
an

1
2
3
4
5
6

H
2

JT
A

G
 H

EA
D

ER

R
13

1k

R
11

1k
R

12
1k

R
8 10
k

R
6 10
k

21

J1
2

JM
P

21

J2
2

JM
P

R
7 (0
)

R
5 (0

)

J0
J1

C
26

0.
1u

F

C
25

0.
1u

F

+5
V

C
5

0.
01

uF

+5
V

TD0
TCK
TMS
TDI

+5
V

C
4

0.
1u

F

C
3

1u
F

C
11

0.
01

uF

C
12

0.
1u

F

C
13

1u
F

G
N

D
1

+5
V

2

/IR
Q

3

SE
L1

/X
M

IT
-

5

M
O

SI
/X

C
V

-
7

/R
ES

ET
9

/M
O

D
.C

S
11

E
13

/O
E

15

A
D

6
18

A
D

4
20

A
D

2
22

A
D

0
24

V
+R

A
W

4

SE
L0

/X
M

IT
+

6

M
IS

O
/X

C
V

+
8

SC
K

10

16
 M

H
z

12

R
//W

14

/W
E

16

A
D

1
23

A
D

7
17

A
D

5
19

A
D

3
21

H
1 M

O
D

U
LE

 B
U

S

+5
V

C
8

0.
01

uF

C
7

0.
1u

F

C
6

1u
F

R
4

0

V
+R

A
W

C
2

10
0u

F

+5
V

SE
L0

C
9

0.
1u

F+5
V

+5
V

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

A
D

[0
..7

]

SE
L1

/M
O

D
_C

S
E /O

E

PGND 1

J1 2

LSR_SCK 3

GND 4

SR_LOAD 8

TDI 9

TMS 10

TCK 11/M
_O

E
12

/M
SR

_O
E

13
PG

N
D

14
V

C
C

15
PG

N
D

16
G

N
D

17
PG

N
D

18
M

_A
D

3
19

D
A

C
_S

C
K

20
M

_R
W

21
A

D
C

_S
C

K
22

TDO24 GND25 VCC26

/M_WE23

M_AD227 /M_CS28

/M_RESET33

J030

V
C

C
35

M_AD031

PG
N

D
34

/D
A

C
_L

O
A

D
37

/D
A

C
_C

S
38

LS
R

_Q
7

39

A
D

C
_D

IN
41

M
SR

_S
C

K
42

PG
N

D
43

PG
N

D
44

/S
R

_H
O

LD
40

PG
N

D
36

M_AD129 M_E 5

/LSR_OE 6

SEL0 7

SEL132

U
1

95
36

V
Q

44

/D
A

C
_L

O
A

D
/D

A
C

_C
S

/D
A

C
_L

O
A

D
/D

A
C

_C
S

C
LR

9

O
E1

2

O
E2

3

S0
1

S1
19

C
LK

12

D
S0

11

IO
_0

7
Q

0
8

IO
_1

13

IO
_2

6

IO
_3

14

IO
_4

5

IO
_5

15

IO
_6

4

IO
_7

16

D
S7

18
Q

7
17

V
C

C
20

G
N

D
10

U
4

74
A

C
29

9

C
LR

9

O
E1

2

O
E2

3

S0
1

S1
19

C
LK

12

D
S0

11

IO
_0

7
Q

0
8

IO
_1

13

IO
_2

6

IO
_3

14

IO
_4

5

IO
_5

15

IO
_6

4

IO
_7

16

D
S7

18
Q

7
17

V
C

C
20

G
N

D
10

U
3

74
A

C
29

9

A
na

lo
g

M
od

ul
e

C
PL

D

A
D

C
_D

IN

AD0

AD1

AD2

AD3

C
10

0.
1u

F+5
V

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

A
D

0
A

D
1

A
D

2
A

D
3

A
D

4
A

D
5

A
D

6
A

D
7

A
D

C
_S

C
K

D
A

C
_S

C
K

A
D

C
_S

C
K

D
A

C
_S

C
K

D
A

C
_D

IN

A
D

C
_D

O
U

T
A

D
C

_D
O

U
T

D
A

C
_D

IN

M
_M

O
SI

M
_M

IS
O

M
_S

C
K

M
_M

IS
O

M
_S

C
K

M
_M

O
SI

/M
_R

ES
ET

/M
_W

E

/S
R

_H
O

LD

LS
R

_S
C

K

M
SR

_S
C

K

/L
SR

_O
E

/M
SR

_O
E

SR
_L

O
A

D

SH
IF

T_
LE

FT
_C

A
R

R
Y

FR
A

M
E_

G
N

D
FR

A
M

E_
G

N
D

D
A

C
G

N
D

R
1

0
C

1
1u

F

M
_R

W

A
D

C
_D

IN

LS
R

_Q
7

Analog I/O Wildcard User Guide 25

1
2

3
4

ABCD

4
3

2
1

D C B A

2
2

A
D

C
 a

nd
 D

A
C

2

2-
Ja

n-
20

03

16
:1

9:
23

A
D

C
&

D
A

C
.S

ch

Ti
tle

Si
ze

:
D

es
ig

ne
r

D
at

e:
Fi

le
:

R
ev

:

Sh
ee

t
of

A

M
os

ai
c

In
du

st
rie

s

Pr
oj

ec
t

A
na

lo
g

I/O
 M

od
ul

e

M
ic

ha
el

 D
or

m
an

C
H

0
1

C
H

1
2

C
H

2
3

C
H

3
4

C
H

4
5

C
H

5
6

C
H

6
7

C
H

7
8

C
O

M
9

/S
H

D
N

10
V

R
EF

11

V
C

C
12

G
N

D
13

G
N

D
14

D
_O

U
T

15

B
U

SY
16

D
_I

N
17

/C
S

18

D
C

LK
19

V
C

C
20

U
7

A
D

S8
34

4

D
V

D
D

20
D

G
N

D
1

D
IN

2

SC
LK

3

FS
4

/P
R

E
5

O
U

T4
6

O
U

T5
7

O
U

T6
8

O
U

T7
9

A
G

N
D

10
A

V
D

D
11

O
U

T0
12

O
U

T1
13

O
U

T2
14

O
U

T3
15

R
EF

16

M
O

D
E

17

/L
D

A
C

18

D
O

U
T

19

U
6

TL
V

56
30

G
N

D
1

+5
V

A
N

3

D
A

C
0

24
D

A
C

2
22

D
A

C
4

20
D

A
C

6
18

D
A

C
G

N
D

16
A

D
C

0
14

A
D

C
2

12
A

D
C

4
10

A
D

C
6

8
A

D
C

G
N

D
6

+5
V

2

V
R

EF
4

D
A

C
1

23
D

A
C

3
21

D
A

C
5

19
D

A
C

7
17

D
A

C
G

N
D

15
A

D
C

1
13

A
D

C
3

11
A

D
C

5
9

A
D

C
7

7
A

D
C

G
N

D
5

H
3

A
N

A
LO

G
 M

O
D

U
LE

 H
EA

D
ER

N
/C

1

V
IN

2

SL
EE

P
3

G
N

D
4

N
/C

5
V

R
EF

6
N

/C
7

N
/C

8
U

5
R

EF
19

8

R
35

0

R
33

0

R
31

0

R
29

0

R
34

0

R
32

0

R
30

0

R
36

0
C

43
(0

.1
uF

)

C
41

(0
.1

uF
)

C
39

(0
.1

uF
)

C
40

(0
.1

uF
)

C
44

(0
.1

uF
)

C
42

(0
.1

uF
)

C
38

(0
.1

uF
)

C
37

(0
.1

uF
)

+5
V

A
N

A
D

C
G

N
D

C
24

0.
1u

F
R

3

10
C

23
10

uF

A
D

C
_S

C
K

D
A

C
_S

C
K

A
D

C
_D

IN

D
A

C
_D

IN

A
D

C
_D

O
U

T

/D
A

C
_L

O
A

D

/D
A

C
_C

S

R
23

0

R
24

0

R
22

0

R
21

0

R
26

0

R
25

0

R
27

0

R
28

0

C
31

(0
.1

uF
)

C
32

(0
.1

uF
)

C
33

(0
.1

uF
)

C
34

(0
.1

uF
)

C
27

(0
.1

uF
)

C
29

(0
.1

uF
)

C
30

(0
.1

uF
)

C
28

(0
.1

uF
)

+5
V

A
N

+5
V

A
N

C
21 0.

1u
F+5

V
A

N

C
16 0.

1u
F

+5
V

A
N

O
ct

al
 1

2b
it

D
A

C

O
ct

al
 1

6b
it

A
D

C

D
A

C
G

N
D

5V
 @

 1
00

m
A

C
22

22
uF

C
17

0.
1u

F
C

19

0.
1u

F
C

15

0.
1u

F

4.
09

6V
R

EF

A
D

C
G

N
D

D
A

C
G

N
D

R
2

0

+5
V

A
N

V
C

C
_A

D
C

A
D

C
0

A
D

C
1

A
D

C
2

A
D

C
3

A
D

C
4

A
D

C
5

A
D

C
6

A
D

C
7

A
D

C
_C

H
0

A
D

C
_C

H
1

A
D

C
_C

H
2

A
D

C
_C

H
3

A
D

C
_C

H
4

A
D

C
_C

H
5

A
D

C
_C

H
6

A
D

C
_C

H
7

D
A

C
0

D
A

C
1

D
A

C
2

D
A

C
3

D
A

C
4

D
A

C
5

D
A

C
6

D
A

C
7

0_
0

0_
1

0_
2

0_
3

0_
4

0_
5

0_
6

0_
7

+5
V

+5
V

A
N

4.
09

6V
 @

 1
0m

A

V
ou

t
1

Se
ns

e
2

Er
ro

r
5

Sh
ut

do
w

n
3

G
N

D
4

V
ta

p
6

Fe
ed

ba
ck

7

V
in

8
U

2

LP
29

51

30
V

 M
ax

V
+R

A
W

R
9

(0
)

R
10

(0
)

M
_M

IS
O

M
_S

C
K

M
_M

O
SI

R
18

(0
)

M
_S

C
K

R
20

(0
)

R
19

(0
)

M
_M

O
SI

R
17

(0
)

D
A

C
G

N
D

D
A

C
G

N
D

J3

DACREF

R
16

(0
)

J4

4V_REF

R
15

(0
)

J5

VAN_REF

R
14

(0
)

J6

REFPIN

+5
V

A
N

D
A

C
_V

R
EF

V
R

EF
_P

IN

A
D

C
_V

R
EF

C
35

0.
1u

F

C
36

1u
F

C
45

0.
1u

F

ES
R

 <
 2

0
O

hm
s

C
18

0.
01

uF
C

14

22
uF

C
20

22
uF

	Analog I/O Wildcard User Guide
	Analog I/O Wildcard User Guide
	Analog I/O Wildcard Hardware
	Connecting To the Wildcard Carrier Board
	Selecting the Module Address
	Selecting the Reference Voltage
	DAC Reference Jumper
	4.096 Volt Reference Jumper
	5.0 Volt Reference Jumper
	Reference In/Out Jumper

	Analog I/O Wildcard Field Header

	Software
	Overview of the Software Device Driver Functions
	Initializing the Analog I/O Software Drivers
	Using the DAC Drivers
	Using the A/D Drivers

	Installing the Analog I/O Wildcard Driver Software
	Using the Driver Code with C
	Using the Driver Code with Forth

	Glossary
	Overview of Glossary Notation
	Glossary Quick Reference
	Configuration Function
	Constants
	A/D Routines
	DAC Routines

	Glossary Entries

	Hardware Schematics

