
Mosaic Industries, Inc.

24/7 Data Acquisition Module 26

Forth Example Listing
\ ---
\ Example 1
\ ---

hex

FF constant LSB_MASK \ Constant to isolate 8 least
 \ significant bits of an integer

decimal

\ This first sample routine demonstrates how to use Init_AD24,
\ Use_Onboard_Ref, Start_Conversion, and AD24_Sample. This routine
\ takes 1 differential 24-bit bipolar sample at 10 Hz with a gain of 1
\ and the burnout options turned off and prints it out. If an invalid
\ option is specified or if a timeout occurs, an error flag is
\ returned. Error flags are: INIT_ERROR = 0,
\ INVALID_GAIN = 1, INVALID_FREQ = 2, INVALID_CAL = 3,
\ INVALID_CHANNEL = 4, INVALID_FSYNC = 5, INVALID_BO = 6,
\ INVALID_SIZE = 7, INVALID_POLARITY = 8, TIMEOUT_ERROR = 9
: Sample_Routine (-- flag | flag = success)
false locals{ &flag }

 MODULE0 Init_AD24 \ 24/7 Data Acquisition Module is
 \ the first module on the stack
 if
 Use_Onboard_Ref \ Use on-board reference
 SELF_CAL
 1920 \ 10 Hz -> 19200 / 10 = 1920
 GAIN_1
 BIPOLAR
 WORD_24BIT \ 24 bit resolution
 BO_OFF
 CH_2_3
 Start_Conversion \ This must be called before

 \ getting a sample
 to &flag
 &flag –1 =
 if
 AD24_Sample \ Get sample
 over LSB_MASK AND \ Just look at 8 LSB of the sample
 TIMEOUT_ERROR = not \ Does it equal to timeout flag?
 if \ If no timeout occurred,
 -8 DSCALE \ Shift sample to get 24 bits
 \ Convert to volts
 din 8388608 d- dflot \ Subtract off 0x800000 because
 \ of the bipolar conversion
 0.0000002980 f* \ Multiply by (5.00+/-0.01)/(2^24)

 \ 5.00+/-0.01 is obtained by multiplying the reference
 \ voltage by 2; i.e. (2.500+/-0.005)*2

 \ 1.0 f/ \ Divide by the gain if necessary
 \ DO NOT DIVIDE BY GAIN_1!

Mosaic Industries, Inc.

24/7 Data Acquisition Module 27

 \ GAIN_1 != 1, GAIN_2 != 2, ...
 f. \ Print out result
 true to &flag \ Return true
 endif
 endif
 endif
 &flag
;

\ ---
\ Example 2
\ ---

\ This second sample routine demonstrates how to use AD24_Multiple.
\ This routine takes 10 samples from a single channel at 10 hz and
\ stores the samples to the pad area. Returns TRUE if successful,
\ FALSE if a timeout occurred in AD24_Multiple, an invalid calibration
\ coefficient was passed to Start_Conversion, or an invalid module
\ number was passed to Init_AD24.

: Sample_Routine2 (-- flag)

 MODULE0 Init_AD24 \ 24/7 Data Acquisition Module is
 \ the first module on the stack
 if
 Use_Onboard_Ref \ Use on-board reference
 SELF_CAL
 1920 \ 10 Hz -> 19200 / 10 = 1920
 GAIN_1
 BIPOLAR
 WORD_24BIT \ 24 bit resolution
 BO_OFF
 CH_0_1
 Start_Conversion \ This must be called before
 \ getting a sample
 if \ If a conversion was

 \ successfully started,
 10 pad AD24_Multiple \ Get 10 samples, store to pad
 else
 FALSE \ Invalid calibration coefficient
 endif
 else
 FALSE \ Invalid module number
 endif
;

\ ---
\ Example 3
\ ---

\ The final sample routine uses the timeslice clock to obtain 10
\ samples from 4 different sensors at 60 Hz without using interrupts.
\ This routine uses a global structure to contain the settings and
\ calibration coefficients of each channel.

0 constant CH0 \ Constants for channels 0 - 3

Mosaic Industries, Inc.

24/7 Data Acquisition Module 28

1 constant CH1
2 constant CH2
3 constant CH3
320 constant SAMPLE_FREQ \ freq int corresponding to 60 hz

 \ 19200 / 60 = 320 [See Table 5]
40 constant NUM_SAMPLES \ Total number of samples:
 \ 10 samples for 4 channels
4 constant NUM_CHANNELS \ Num channels we are sampling

array: my_data \ Declare an array for samples

structure.begin: ad_channel \ Config options for each channel
 double-> +ad_zero_cal \ 24-bit zero scale cal val
 double-> +ad_fs_cal \ 24-bit full scale cal val
 int-> +ad_freq_int \ Frequency Integer 19 - 4000.
 byte-> +ad_gain \ Gain 1 to 128.
 byte-> +ad_polarity \ Bipolar or Unipolar mode.
 byte-> +ad_res \ Resolution: 16-bit or 24-bit.
 byte-> +ad_bo \ Burn out current on/off
 byte-> +ad_fsync \ Sync on/off.
 byte-> +ad_ch \ Channel.
structure.end

structure.begin: ad_info \ Global structure.
 ad_channel struct-> +ch0
 ad_channel struct-> +ch1
 ad_channel struct-> +ch2
 ad_channel struct-> +ch3
 byte-> +current_channel \ Current channel being used.
 int-> +index \ Index into data array
structure.end

ad_info v.instance: my_struct \ Declare a global instance of
 \ the structure in variable area.

: Init_CH0 (-- flag)
 \ Perform a Full Self Calibration on channel 0-1 for bipolar, unity
 \ gain, 60 Hz operation and get calibration coefficients. Initialize
 \ channel 0 of my_struct with calibration coefficients and settings.
 SELF_CAL 320 GAIN_1 BIPOLAR WORD_24BIT BO_OFF CH_0_1
 Start_Conversion
 -1 =
 if
 SAMPLE_FREQ my_struct +ch0 +ad_freq_int !
 GAIN_1 my_struct +ch0 +ad_gain c!
 BIPOLAR my_struct +ch0 +ad_polarity c!
 WORD_24BIT my_struct +ch0 +ad_res c!
 BO_OFF my_struct +ch0 +ad_bo c!
 FSYNC_OFF my_struct +ch0 +ad_fsync c!
 CH_0_1 my_struct +ch0 +ad_ch c!
 Read_Zero_Cal my_struct +ch0 +ad_zero_cal 2!
 Read_FS_Cal my_struct +ch0 +ad_fs_cal 2!
 true
 else
 false \ Invalid calibration coefficients CH0
 endif

Mosaic Industries, Inc.

24/7 Data Acquisition Module 29

;

: Init_CH1 (-- flag)
 \ Perform a Full Self Calibration on channel 2-3 for bipolar, unity
 \ gain, 60 Hz operation and get calibration coefficients. Initialize
 \ channel 0 of my_struct with calibration coefficients and settings.
 SELF_CAL 320 GAIN_1 BIPOLAR WORD_24BIT BO_OFF CH_2_3
 Start_Conversion
 -1 =
 if
 SAMPLE_FREQ my_struct +ch1 +ad_freq_int !
 GAIN_1 my_struct +ch1 +ad_gain c!
 BIPOLAR my_struct +ch1 +ad_polarity c!
 WORD_24BIT my_struct +ch1 +ad_res c!
 BO_OFF my_struct +ch1 +ad_bo c!
 FSYNC_OFF my_struct +ch1 +ad_fsync c!
 CH_2_3 my_struct +ch1 +ad_ch c!
 Read_Zero_Cal my_struct +ch1 +ad_zero_cal 2!
 Read_FS_Cal my_struct +ch1 +ad_fs_cal 2!
 true
 else
 false \ Invalid calibration coefficients CH1
 endif
;

: Init_CH2 (-- flag)
 \ Perform a Full Self Calibration on channel 4-5 for bipolar, unity
 \ gain, 60 Hz operation and get calibration coefficients. Initialize
 \ channel 0 of my_struct with calibration coefficients and settings.
 SELF_CAL 320 GAIN_1 BIPOLAR WORD_24BIT BO_OFF CH_4_5
 Start_Conversion
 -1 =
 if
 SAMPLE_FREQ my_struct +ch2 +ad_freq_int !
 GAIN_1 my_struct +ch2 +ad_gain c!
 BIPOLAR my_struct +ch2 +ad_polarity c!
 WORD_24BIT my_struct +ch2 +ad_res c!
 BO_OFF my_struct +ch2 +ad_bo c!
 FSYNC_OFF my_struct +ch2 +ad_fsync c!
 CH_4_5 my_struct +ch2 +ad_ch c!
 Read_Zero_Cal my_struct +ch2 +ad_zero_cal 2!
 Read_FS_Cal my_struct +ch2 +ad_fs_cal 2!
 true
 else
 false \ Invalid calibration coefficients CH2
 endif
;

: Init_CH3 (-- flag)
 \ Perform a Full Self Calibration on channel 6-7 for bipolar, unity
 \ gain, 60 Hz operation and get calibration coefficients. Initialize
 \ channel 0 of my_struct with calibration coefficients and settings.
 SELF_CAL 320 GAIN_1 BIPOLAR WORD_24BIT BO_OFF CH_6_7
 Start_Conversion
 -1 =
 if
 SAMPLE_FREQ my_struct +ch3 +ad_freq_int !

Mosaic Industries, Inc.

24/7 Data Acquisition Module 30

 GAIN_1 my_struct +ch3 +ad_gain c!
 BIPOLAR my_struct +ch3 +ad_polarity c!
 WORD_24BIT my_struct +ch3 +ad_res c!
 BO_OFF my_struct +ch3 +ad_bo c!
 FSYNC_OFF my_struct +ch3 +ad_fsync c!
 CH_6_7 my_struct +ch3 +ad_ch c!
 Read_Zero_Cal my_struct +ch3 +ad_zero_cal 2!
 Read_FS_Cal my_struct +ch3 +ad_fs_cal 2!
 true
 else
 false \ Invalid calibration coefficients CH3
 endif
;

: Do_So_Often (word_xcfa \ ud -- | ud is in ticks of timeslice clock)

\ This word calls another routine periodically, with a fixed time
\ interval between calls of ud ticks of the timeslicer clock. The
\ routine is designated by word.xcfa and it should return only a flag
\ on the stack. If the flag is true it will continue to be repeatedly
\ executed; as soon as it returns with a false flag this routine stops
\ calling it and returns immediately. The word.xcfa is called at times
\ 0, ud, 2*ud, 3*ud, etc.. measured in units of timeslicer clock ticks.

\ If the execution time of word.xcfa is greater than ud ticks of the
\ timeslicer then it is just repeatedly called as rapidly as possible.
\ With a 5 msec timeslicer period the interval between calls can be up
\ to 248 days with a resolution of 5 msec. Because we depend on the
\ timeslicer clock that clock should not be stopped or reset while this
\ routine is running. To prevent unnoticed rollover if this routine is
\ interrupted by another task, the other task should not take longer
\ than 248 days; that is, control must return to this routine at least
\ once every 248 days. Also word.xcfa should not take longer than 248
\ days to execute either. That should generally not be a problem.

\ If another task has control when ud ticks are done and it is time to
\ call word.xcfa then the call to word.xcfa will be delayed until this
\ routine regains control. However, as long as the other routine and
\ the word.xcfa routine together don't take longer than ud then all
\ subsequent timing will still occur at integer multiples of ud; there
\ is no cumulative timing error.

\ There is a PAUSE which may be removed if you don't want any other
\ tasks to have a chance at machine time.

locals{ d&time_interval x&word_xcfa | d&target_time d&start_time
 d&elapsed_time }

 timeslice.count 2@ to d&start_time \ get the start time
 begin
 d&time_interval to d&target_time
 x&word_xcfa execute \ execute the user's word
 while \ we stop repetitively calling the user's word

\ when it returns with a false flag
\ D&Target.Time and D&Elapsed.Time are measured from

 D&Start.Time
 begin

Mosaic Industries, Inc.

24/7 Data Acquisition Module 31

pause
timeslice.count 2@ 2dup
d&start_time d- to d&elapsed_time to d&start_time
d&elapsed_time d&target_time
du<

 while \ We readjust the start and target times to maximize
\ the time available to other tasks before we
\ experience a rollover. This way the rollover
\ horizon is always pushed out to the maximum count.

d&target_time d&elapsed_time d- to d&target_time
 repeat
 d&start_time d&target_time d+ d&elapsed_time d- to d&start_time
 repeat
;

\ This routine takes one sample, stores it to an array, then starts a
\ conversion for the next channel.
: Get_Sample (-- flag | done?)
my_struct +current_channel c@ \ Get current channel
my_struct +index @ \ Get current index
locals{ &index &ch | x&struct_base }

 AD24_Sample_NP \ Get sample from a/d
 &index &ch my_data 2! \ Store to array

 &ch 1 + NUM_CHANNELS <
 if
 &ch 1 + \ Increment channel number
 dup
 my_struct +current_channel c! \ Store to structure
 to &ch \ Store to local
 else
 0 my_struct +current_channel c! \ Roll over channel
 0 to &ch \ Roll over local
 &index 1 + my_struct +index ! \ Increment index
 endif

 my_struct &ch ad_channel * xn+ \ Get base address of struct
 to x&struct_base \ store to local

 x&struct_base +ad_fs_cal 2@ \ Get settings for next channel
 x&struct_base +ad_zero_cal 2@
 x&struct_base +ad_freq_int @
 x&struct_base +ad_gain c@
 x&struct_base +ad_polarity c@
 x&struct_base +ad_res c@
 x&struct_base +ad_bo c@
 x&struct_base +ad_fsync c@
 x&struct_base +ad_ch c@
 Start_Conv_With_Values

 &ch 1 + &index 1 + * NUM_SAMPLES >= \ Index and channel start at 0
 if
 false \ Done sampling
 else
 true \ Keep going

Mosaic Industries, Inc.

24/7 Data Acquisition Module 32

 endif
;

\ This routine takes 10 samples from 4 sensors at 60 Hz. All of the
\ settings for each channel are stored in a global structure. All
\ channels must have the same sampling rate!
: Sample_Routine3 (-- flag)

 \ Allocate memory for 10 samples from 4 sensors; each sample is
 \ 4 bytes.
 NUM_SAMPLES NUM_CHANNELS / NUM_CHANNELS 2 4 ' my_data dimensioned

 MODULE0 Init_AD24 \ 24/7 Data Acquisition Module is
 \ the first module on the stack
 if
 Use_Onboard_Ref \ Use on-board ref for samples

 CH0 my_struct +current_channel c! \ Set ch0 as the current channel
 0 my_struct +index ! \ Init array index number
 Init_CH1 \ Init global structure
 Init_CH2 or
 Init_CH3 or
 Init_CH0 or \ Init ch 0 last since it will be
 \ the first channel to be sampled

 \ Get 1 sample every 60 ms. 60 ms is the fastest we can call
 \ Get_Sample because the sample rate is 60Hz and the 24-Bit A/D
 \ takes 3 clock cycles to obtain a sample when using
 \ Start_Conv_With_Values. This alone is 3/60 or 50 ms. If a
 \ full Self-Calibration was performed before each conversion, the
 \ fastest rate you could sample one channel would be 10/60 or 166
 \ ms. This would amount to 666 ms for 4 channels or 1.5 Hz per
 \ channel.
 cfa.for get_sample 12 0 do_so_often \ 12 * 5ms = 60 ms
 endif
;

