Mosaic Industries, Inc.

Forth Example Listing

N
\ Example 1
\ ___
hex
FF constant LSB MASK \ Constant to isolate 8 least
\ significant bits of an integer
decimal
\ This first sample routine demonstrates how to use Init AD24,
\ Use Onboard Ref, Start Conversion, and AD24 Sample. This routine
\ takes 1 differential 24-bit bipolar sample at 10 Hz with a gain of 1
\ and the burnout options turned off and prints it out. If an invalid
\ option is specified or if a timeout occurs, an error flag is
\ returned. Error flags are: INIT ERROR = O,
\ INVALID GAIN = 1, INVALID FREQ = 2, INVALID CAL = 3,
\ INVALID CHANNEL = 4, INVALID FSYNC = 5, INVALID BO = 6,
\ INVALID SIZE = 7, INVALID POLARITY = 8, TIMEOUT ERROR = 9
: Sample Routine (-- flag | flag = success)
false locals{ &flag }
MODULEO Init AD24 \ 24/7 Data Acquisition Module is
\ the first module on the stack
if
Use Onboard Ref \ Use on-board reference
SELF CAL
1920 \ 10 Hz -> 19200 / 10 = 1920
GAIN 1
BIPOLAR
WORD 24BIT \ 24 bit resolution
BO OFF
CH 2 3
Start Conversion \ This must be called before
\ getting a sample
to &flag
&flag -1 =
if

AD24 Sample Get sample
over LSB MASK AND Just look at 8 LSB of the sample
TIMEOUT ERROR = not Does it equal to timeout flag?
if If no timeout occurred,

-8 DSCALE Shift sample to get 24 bits

Convert to volts

Subtract off 0x800000 because
of the bipolar conversion
Multiply by (5.00+/-0.01)/(2724)

din 8388608 d- dflot

PP A

0.0000002980 f£*

\ 5.00+/-0.01 is obtained by multiplying the reference
\ voltage by 2; i.e. (2.500+/-0.005)*2

\ 1.0 £/ \ Divide by the gain if necessary
\ DO NOT DIVIDE BY GAIN_l!

24/7 Data Acquisition Module 26

s

Mosaic Industries, Inc.

\ GAIN 1 != 1, GAIN 2 != 2,
f. \ Print out result
true to &flag \ Return true
endif
endif
endif
&flag

This second sample routine demonstrates how to use AD24 Multiple.
This routine takes 10 samples from a single channel at 10 hz and
stores the samples to the pad area. Returns TRUE if successful,
FALSE if a timeout occurred in AD24 Multiple, an invalid calibration
coefficient was passed to Start Conversion, or an invalid module
number was passed to Init AD24.

Sample Routine2 (-- flag)

MODULEO Init AD24

-

24/7 Data Acquisition Module is
\ the first module on the stack

if
Use Onboard Ref \ Use on-board reference
SELF CAL
1920 \ 10 Hz -> 19200 / 10 = 1920
GAIN 1
BIPOLAR
WORD 24BIT \ 24 bit resolution
BO OFF
CH 0 1
Start Conversion \ This must be called before
\ getting a sample
if \ If a conversion was
\ successfully started,
10 pad AD24 Multiple \ Get 10 samples, store to pad
else
FALSE \ Invalid calibration coefficient
endif
else
FALSE \ Invalid module number
endif

The final sample routine uses the timeslice clock to obtain 10
samples from 4 different sensors at 60 Hz without using interrupts.
This routine uses a global structure to contain the settings and
calibration coefficients of each channel.

constant CHO \ Constants for channels 0 - 3

24/7 Data Acquisition Module 27

Mosaic Industries, Inc.

1 constant CHI1
2 constant CH2
3 constant CH3
320 constant SAMPLE FREQ \ freq int corresponding to 60 hz
\ 19200 / 60 = 320 [See Table 5]
40 constant NUM SAMPLES \ Total number of samples:
\ 10 samples for 4 channels
4 constant NUM CHANNELS \ Num channels we are sampling
array: my data \ Declare an array for samples
structure.begin: ad channel \ Config options for each channel
double-> +ad zero cal \ 24-bit zero scale cal val
double-> +ad fs cal \ 24-bit full scale cal val
int-> +ad freg_int \ Frequency Integer 19 - 4000.
byte-> +ad gain \ Gain 1 to 128.
byte-> +ad polarity \ Bipolar or Unipolar mode.
byte-> +ad res \ Resolution: 16-bit or 24-bit.
byte-> +ad bo \ Burn out current on/off
byte-> +ad fsync \ Sync on/off.
byte-> +ad ch \ Channel.
structure.end
structure.begin: ad info \ Global structure.
ad _channel struct-> +chO
ad channel struct-> +chl
ad channel struct-> +ch2
ad channel struct-> +ch3
byte-> +current channel \ Current channel being used.
int-> +index \ Index into data array
structure.end
ad info v.instance: my struct \ Declare a global instance of

\ the structure in variable area.

Init CHO (-- flag)
\ Perform a Full Self Calibration on channel 0-1 for bipolar, unity
\ gain, 60 Hz operation and get calibration coefficients. Initialize

\ channel 0 of my struct with calibration coefficients and settings.
SELF CAL 320 GAIN 1 BIPOLAR WORD 24BIT BO OFF CH 0 1
Start Conversion

-1 =

if
SAMPLE FREQ my struct +ch0 +ad freg int !
GAIN 1 my struct +ch0 +ad gain c!
BIPOLAR my struct +ch0 +ad polarity c!
WORD_24BIT my struct +ch0 +ad res c!
BO OFF my struct +ch0 +ad bo c!
FSYNC OFF my struct +ch0 +ad fsync c!
CH 01 my struct +ch0 +ad ch c!

Read Zero Cal my struct +chO +ad zero cal 2!

Read FS Cal my struct +ch0 +ad fs cal 2!

true
else

false \ Invalid calibration coefficients CHO
endif

24/7 Data Acquisition Module 28

Mosaic Industries, Inc.

Init CH1 (-- flag)
\ Perform a Full Self Calibration on channel 2-3 for bipolar, unity
\ gain, 60 Hz operation and get calibration coefficients. Initialize

\ channel 0 of my struct with calibration coefficients and settings.
SELF CAL 320 GAIN 1 BIPOLAR WORD 24BIT BO OFF CH 2 3
Start Conversion

-1 =
if
SAMPLE FREQ my struct +chl +ad freg int !
GAIN 1 my struct +chl +ad gain c!
BIPOLAR my struct +chl +ad polarity c!
WORD_ 24BIT my struct +chl +ad res c!
BO OFF my struct +chl +ad bo c!
FSYNC OFF my struct +chl +ad fsync c!
CH 2 3 my struct +chl +ad ch c!

Read Zero Cal my struct +chl +ad zero cal 2!

Read FS Cal my struct +chl +ad fs cal 2!

true
else

false \ Invalid calibration coefficients CHI1
endif

Init CH2 (-- flag)

\ Perform a Full Self Calibration on channel 4-5 for bipolar, unity

\ gain, 60 Hz operation and get calibration coefficients. Initialize
\ channel 0 of my struct with calibration coefficients and settings.
SELF CAL 320 GAIN 1 BIPOLAR WORD 24BIT BO OFF CH 4 5

Start Conversion

-1 =
if
SAMPLE FREQ my struct +ch2 +ad freqg int !
GAIN 1 my struct +ch2 +ad gain c!
BIPOLAR my struct +ch2 +ad polarity c!
WORD_ 24BIT my struct +ch2 +ad res c!
BO OFF my struct +ch2 +ad bo c!
FSYNC OFF my struct +ch2 +ad fsync c!
CH 4 5 my struct +ch2 +ad ch c!

Read Zero Cal my struct +ch2 +ad zero cal 2!

Read FS Cal my struct +ch2 +ad fs cal 2!

true
else

false \ Invalid calibration coefficients CH2
endif

Init CH3 (-- flag)
\ Perform a Full Self Calibration on channel 6-7 for bipolar, unity
\ gain, 60 Hz operation and get calibration coefficients. Initialize
\ channel 0 of my struct with calibration coefficients and settings.
SELF_CAL 320 GAIN 1 BIPOLAR WORD 24BIT BO OFF CH 6 7
Start Conversion
-1 =
if
SAMPLE FREQ my struct +ch3 +ad freg int !

24/7 Data Acquisition Module 29

Mosaic Industries, Inc.

GAIN 1 my struct +ch3 +ad gain c!
BIPOLAR my struct +ch3 +ad polarity c!
WORD 24BIT my struct +ch3 +ad res c!
BO OFF my struct +ch3 +ad bo c!
FSYNC OFF my struct +ch3 +ad fsync c!
CH 6 7 my struct +ch3 +ad ch c!

Read Zero Cal my struct +ch3 +ad zero cal 2!
Read FS Cal my struct +ch3 +ad fs cal 2!

true
else

false \ Invalid calibration coefficients CH3
endif
Do So Often (word xcfa \ ud -- | ud is in ticks of timeslice clock)

This word calls another routine periodically, with a fixed time
interval between calls of ud ticks of the timeslicer clock. The
routine is designated by word.xcfa and it should return only a flag
on the stack. If the flag is true it will continue to be repeatedly
executed; as soon as it returns with a false flag this routine stops
calling it and returns immediately. The word.xcfa is called at times
0, ud, 2*ud, 3*ud, etc.. measured in units of timeslicer clock ticks.

s s

If the execution time of word.xcfa is greater than ud ticks of the
timeslicer then it is just repeatedly called as rapidly as possible.
With a 5 msec timeslicer period the interval between calls can be up
to 248 days with a resolution of 5 msec. Because we depend on the
timeslicer clock that clock should not be stopped or reset while this
routine is running. To prevent unnoticed rollover if this routine is
interrupted by another task, the other task should not take longer
than 248 days; that is, control must return to this routine at least
once every 248 days. Also word.xcfa should not take longer than 248
days to execute either. That should generally not be a problem.

PP A A A e

If another task has control when ud ticks are done and it is time to
call word.xcfa then the call to word.xcfa will be delayed until this
routine regains control. However, as long as the other routine and
the word.xcfa routine together don't take longer than ud then all
subsequent timing will still occur at integer multiples of ud; there
is no cumulative timing error.

s

There is a PAUSE which may be removed if you don't want any other
\ tasks to have a chance at machine time.

locals{ dé&time interval x&word xcfa | d&target time dé&start time
déelapsed time }
timeslice.count 2@ to d&start time \ get the start time
begin
d&time interval to dé&target time
x&word xcfa execute \ execute the user's word
while \ we stop repetitively calling the user's word
\ when it returns with a false flag
\ D&Target.Time and D&Elapsed.Time are measured from
D&Start.Time
begin

24/7 Data Acquisition Module 30

Mosaic Industries, Inc.

pause

timeslice.count 2@ 2dup

déstart time d- to dé&elapsed time to d&start time

dséelapsed time d&target time

du<
while We readjust the start and target times to maximize
the time available to other tasks before we
experience a rollover. This way the rollover
horizon is always pushed out to the maximum count.

détarget time dé&elapsed time d- to d&target time

repeat

déstart time d&target time d+ d&elapsed time d- to dé&start time
repeat

~ -

’

\ This routine takes one sample, stores it to an array, then starts a
\ conversion for the next channel.

Get Sample (-- flag | done?)
my struct +current channel c@ \ Get current channel
my struct +index @ \ Get current index
locals{ &index &ch | x&struct base }
AD24 Sample NP \ Get sample from a/d
&index &ch my data 2! \ Store to array
&ch 1 + NUM CHANNELS <
if
&ch 1 + \ Increment channel number
dup
my struct +current channel c! \ Store to structure
to &ch \ Store to local
else
0 my struct +current channel c! \ Roll over channel
0 to &ch \ Roll over local
&index 1 + my struct +index ! \ Increment index
endif
my struct &ch ad channel * xn+ \ Get base address of struct
to x&struct base \ store to local
x&struct base +ad fs cal 2@ \ Get settings for next channel

x&struct base +ad zero cal 2@
x&struct base +ad freq int @

x&struct base +ad gain ca@
x&struct base +ad polarity c@
x&struct base +ad res ca@
x&struct base +ad bo c@
x&struct base +ad fsync ca@
x&struct base +ad ch ca@

Start Conv_With Values

&ch 1 + &index 1 + * NUM SAMPLES >= \ Index and channel start at 0
if

false \ Done sampling
else
true \ Keep going

24/7 Data Acquisition Module 31

Mosaic Industries, Inc.

endif

This routine takes 10 samples from 4 sensors at 60 Hz. All of the
settings for each channel are stored in a global structure. All
channels must have the same sampling rate!

Sample Routine3 (-- flag)

. - -

\ Allocate memory for 10 samples from 4 sensors; each sample is
\ 4 bytes.
NUM SAMPLES NUM CHANNELS / NUM CHANNELS 2 4 ' my data dimensioned

MODULEQO Init AD24 \ 24/7 Data Acquisition Module is
\ the first module on the stack
if
Use Onboard Ref \ Use on-board ref for samples

Set ch0O as the current channel
Init array index number
Init global structure

CHO my struct +current channel c!
0 my struct +index !

Init CH1

Init CH2 or

Init CH3 or

Init CHO or

~ -

\ Init ch 0 last since it will be
\ the first channel to be sampled

Get 1 sample every 60 ms. 60 ms is the fastest we can call
Get Sample because the sample rate is 60Hz and the 24-Bit A/D
takes 3 clock cycles to obtain a sample when using
Start Conv _With Values. This alone is 3/60 or 50 ms. If a
full Self-Calibration was performed before each conversion, the
fastest rate you could sample one channel would be 10/60 or 166
ms. This would amount to 666 ms for 4 channels or 1.5 Hz per

\ channel.

cfa.for get sample 12 0 do so often \ 12 * 5ms = 60 ms
endif

PP e

24/7 Data Acquisition Module 32

